Characteristics of Regions with High-Density Initiation of Flashes in Mesoscale Convective Systems
Abstract
:1. Introduction
2. Data
2.1. Lightning Location Data
2.2. Radar Data
2.3. Temperature Corresponding to Altitude
3. Results
4. Case Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Proctor, D.E. Regions where lightning flashes began. J. Geophys. Res. 1991, 96, 5099–5112. [Google Scholar] [CrossRef]
- Lund, N.R.; MacGorman, D.R.; Schuur, T.J.; Biggerstaff, M.I.; Rust, W.D. Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Weather Rev. 2009, 137, 4151–4170. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, R.M.; Carey, L.D. Lightning characteristics relative to radar, altitude and temperature for a multicell, MCS and supercell over northern Alabama. Atmos. Res. 2017, 191, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, R.M.; Carey, L.D. Radar reflectivity and altitude distributions of lightning as a function of IC CG and HY flashes: Implications for LNOx production. J. Geophys. Res. Atmos. 2018, 123, 12796–12813. [Google Scholar] [CrossRef]
- Mecikalski, R.M.; Carey, L.D. Radar reflectivity and altitude distributions of lightning flashes as a function of three main storm types. J. Geophys. Res. Atmos. 2018, 123, 12814–12828. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Dong, W.; Zhang, Y.; Yao, W.; Zheng, D. Radar reflectivity of lightning flashes in stratiform regions of mesoscale convective systems. J. Geophys. Res. Atmos. 2019, 124, 14114–14132. [Google Scholar] [CrossRef]
- Fuchs, B.R.; Rutledge, S.A. Investigation of lightning flash locations in isolated convection using LMA observations. J. Geophys. Res. Atmos. 2018, 123, 6158–6174. [Google Scholar] [CrossRef]
- Figueras i Ventura, J.; Pineda, N.; Besic, N.; Grazioli, J.; Hering, A.; van der Velde, O.A.; Romero, D.; Sunjerga, A.; Mostajabi, A.; Azadifar, M.; et al. Polarimetric radar characteristics of lightning initiation and propagating channels. Atmos. Meas. Tech. 2019, 12, 2881–2911. [Google Scholar] [CrossRef] [Green Version]
- Coquillat, S.; Defer, E.; de Guibert, P.; Lambert, D.; Pinty, J.P.; Pont, V.; Prieur, S.; Thomas, R.J.; Krehbiel, P.R.; Rison, W. SAETTA: High-resolution 3-D mapping of the total lightning activity in the Mediterranean Basin over Corsica, with a focus on a mesoscale convective system event. Atmos. Meas. Tech. 2019, 12, 5765–5790. [Google Scholar] [CrossRef] [Green Version]
- López, J.A.; Montanyà, J.; Velde, O.A.; Pineda, N.; Salvador, A.; Romero, D.; Aranguren, D.; Taborda, J. Charge structure of two tropical thunderstorms in Colombia. J. Geophys. Res. Atmos. 2019, 124, 5503–5515. [Google Scholar] [CrossRef]
- Salvador, A.; Pineda, N.; Montanya, J.; Sola, G. Seasonal variations on the conditions required for the lightning production. Atmos. Res. 2020, 243, 104981. [Google Scholar] [CrossRef]
- Saunders, C. Charge separation mechanisms in clouds. Space Sci. Rev. 2008, 137, 335–353. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Y.; Meng, Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells. J. Geophys. Res. Atmos. 2018, 123, 12857–12876. [Google Scholar] [CrossRef]
- Mazur, V.; Rust, W.D. Lightning propagation and flash density in squall lines as determined with radar. J. Geophys. Res. 1983, 88, 1495–1502. [Google Scholar] [CrossRef]
- Mazur, V.; Rust, W.D.; Gerlach, J.C. 1986. Evolution of lightning flash density and reflectivity structure in a multicell thunderstorm. J. Geophys. Res. 1986, 91, 8690–8700. [Google Scholar] [CrossRef]
- Bruning, E.C.; MacGorman, D.R. Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci. 2013, 70, 4012–4029. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Dong, W.; Zhang, Y.; Meng, Q. Characteristics of lightning flashes associated with the charge layer near the 0 °C isotherm in the stratiform region of mesoscale convective systems. J. Geophys. Res. Atmos. 2018, 123, 9524–9541. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Liu, H.; Dong, W.; Yao, W.; Zheng, D. Vertical reflectivity structures near lightning flashes in the stratiform regions of mesoscale convective systems. Atmos. Res. 2020, 242, 104961. [Google Scholar] [CrossRef]
- Rison, W.; Thomas, R.J.; Krehbiel, P.R.; Hamlin, T.; Harlin, J. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett. 1999, 26, 3573–3576. [Google Scholar] [CrossRef] [Green Version]
- Koshak, W.J.; Solakiewicz, R.J.; Blakeslee, R.J.; Goodman, S.J.; Christian, H.J.; Hall, J.M.; Bailey, J.C.; Krider, E.P.; Bateman, M.G.; Boccippio, D.J.; et al. North Alabama lightning mapping array (LMA): VHF source retrieval algorithm and error analyses. J. Atmos. Ocean. Technol. 2004, 21, 543–558. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Krehbiel, P.R.; Rison, W.; Hamlin, T.; Harlin, J.; Shown, D. Observations of VHF source power radiated by lightning. Geophys. Res. Lett. 2001, 28, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Krehbiel, P.R.; Rison, W.; Hunyada, S.J.; Winn, W.P.; Hamlin, T.; Harlin, J. Accuracy of the lightning mapping array. J. Geophys. Res. 2004, 109, D14207. [Google Scholar] [CrossRef] [Green Version]
- MacGorman, D.; Rust, W.D.; Schuur, T.J.; Biggerstaff, M.; Straka, J.M.; Ziegler, C.L.; Mansell, E.R.; Bruning, E.; Kuhlman, K.M.; Lund, N.R.; et al. TELEX the thunderstorm electrification and lightning experiment. Bull. Am. Meteorol. Soc. 2008, 89, 997–1013. [Google Scholar] [CrossRef]
- Rison, W.; Krehbiel, P.R.; Stock, M.G.; Edens, H.E.; Shao, X.-M.; Thomas, R.J.; Stanley, M.A.; Zhang, Y. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nat. Commun. 2016, 7, 10721. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.M.; Krehbiel, P.R. The spatial and temporal development of intracloud lightning. J. Geophys. Res. Earth Surf. 1996, 101, 26641–26668. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Xia, W.; Gourley, J.J. Comparison of objective analysis schemes for the WSR-88D radar data. In Proceedings of the 31st International Conference on Radar Meteorology, Seattle, WA, USA, 6–12 August 2003; pp. 907–910. [Google Scholar]
- Biggerstaff, M.I.; Listemaa, S.A. An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteorol. 2000, 39, 2129–2150. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Smull, B.F.; Dodge, P. Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Weather Rev. 1990, 118, 613–654. [Google Scholar] [CrossRef]
- Biggerstaff, M.I.; Houze, R.A. Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci. 1993, 50, 3091–3110. [Google Scholar] [CrossRef] [Green Version]
- Loehrer, S.M.; Johnson, R.H. Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Weather Rev. 1995, 123, 600–621. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.D.; Johnson, R.H. Organizational modes of midlatitude mesoscale convective systems. Mon. Weather Rev. 2000, 128, 3413–3436. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Rutledge, S.A.; Biggerstaff, M.I.; Smull, B.F. Interpretation of Doppler weather-radar displays in midlatitude mesoscale convective systems. Bull. Am. Meteorol. Soc. 1989, 70, 608–619. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A., Jr. Cloud Dynamics; Academic: San Diego, CA, USA, 1993; 573p. [Google Scholar]
- Yuter, S.E.; Houze, R.A., Jr. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Weather Rev. 1995, 123, 1941–1963. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A., Jr. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Weather Rev. 1995, 123, 1964–1983. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A., Jr. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Steiner, M.; Houze, R.A., Jr.; Yuter, S.E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Amitai, E.; Wolff, D.B. Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor. 1995, 34, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T. Riming electrification as a charging generation mechanism in thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Gardiner, B.; Lamb, D.; Pitter, R.L.; Hallett, J.; Saunders, C.P.R. Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J. Geophys. Res. 1985, 90, 6079–6086. [Google Scholar] [CrossRef]
- Saunders, C.P.R.; Keith, W.D.; Mitzeva, R.P. The effect of liquid water on thunderstorm charging. J. Geophys. Res. 1991, 96, 11007–11017. [Google Scholar] [CrossRef]
- Stolzenburg, M.; Marshall, T.C.; Rust, W.D.; Smull, B.F. Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Weather Rev. 1994, 122, 1777–1797. [Google Scholar] [CrossRef] [Green Version]
- Stolzenburg, M.; Rust, W.D.; Marshall, T.C. Electrical structure in thunderstorm convective regions 3. Synthesis. J. Geophys. Res. Earth Surf. 1998, 103, 14097–14108. [Google Scholar] [CrossRef]
- Gremillion, M.S.; Orville, R.E. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Weather Forecast. 1999, 14, 640–649. [Google Scholar] [CrossRef]
- Martinez, M. The relationship between radar reflectivity and lightning activity at initial stages of convective storms. In Proceedings of the American Meteorological Society 2002, 82nd Annual Meeting, First Annual Student Conference, Orlando, FL, USA, 14 January 2002. [Google Scholar]
- Vincent, B.R.; Carey, L.D.; Schneider, D.; Keeter, K.; Gonski, R. Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning: A central North Carolina study. Natl. Weather Dig. 2003, 27, 35–44. [Google Scholar]
- Marshall, T.C.; Rust, W.D. Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull. Am. Meteorol. Soc. 1993, 74, 2159–2170. [Google Scholar] [CrossRef] [Green Version]
- Schuur, T.J.; Rutledge, S.A. Electrification of stratiform regions in mesoscale convective systems. Part I: An observational comparison of symmetric and asymmetric MCSs. J. Atmos. Sci. 2000, 57, 1961–1982. [Google Scholar] [CrossRef]
- Marshall, T.C.; Stolzenburg, M.; Rust, W.D.; Williams, E.R.; Boldi, R. Positive charge in the stratiform cloud of a mesoscale convective system. J. Geophys. Res. 2001, 106, 1157–1163. [Google Scholar] [CrossRef]
- Mo, Q.; Detwiler, A.G.; Hallett, J.; Black, R. Horizontal structure of the electric field in the stratiform region of an Oklahoma mesoscale convective system. J. Geophys. Res. 2003, 108, 4225. [Google Scholar] [CrossRef]
- Carey, L.D.; Murphy, M.J.; McCormick, T.L.; Demetriades, N.W.S. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res. 2005, 110, D03105. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Mesoscale convective systems. Rev. Geophys. 2004, 42, RG4003. [Google Scholar] [CrossRef] [Green Version]
- Saunders, C.P.R.; Peck, S.L. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res. Earth Surf. 1998, 103, 13949–13956. [Google Scholar] [CrossRef]
- Pereyra, R.G.; Avila, E.E.; Castellano, N.E.; Saunders, C.P.R. A laboratory study of graupel charging. J. Geophys. Res. 2000, 105, 20803–20812. [Google Scholar] [CrossRef]
- Saunders, C.P.R.; Bax-Norman, H.; Emerisic, C.; Avila, E.E.; Castellano, N.E. Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc. 2006, 132, 2653–2673. [Google Scholar] [CrossRef]
- Workman, E.J.; Reynolds, S.E. Electrical activity as related to thunderstorm cell growth. Bull. Am. Meteorol. Soc. 1949, 30, 142–149. [Google Scholar]
- Williams, E.R.; Lhermitte, R.M. Radar tests of the precipitation hypothesis for thunderstorm electrification. J. Geophys. Res. Earth Surf. 1983, 88, 10984–10992. [Google Scholar] [CrossRef]
- Dye, J.E.; Jones, J.J.; Weinheimer, A.J.; Winn, W.P. Observations within two regions of charge during initial thunderstorm electrification, Q.J.R. Meteorol. Soc. 1989, 114, 1271–1290. [Google Scholar] [CrossRef]
- Rutledge, S.A.; Williams, E.R.; Keenan, T.D. The down under Doppler and electricity experiment (DUNDEE): Overview and preliminary results. Bull. Am. Meteorol. Soc. 1992, 73, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Carey, L.D.; Rutledge, S.A. A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys. 1996, 59, 33–64. [Google Scholar] [CrossRef]
- Petersen, W.A.; Rutledge, S.A.; Orville, R.E. Cloud-to-ground lightning observations to TOGA COARE, selected results and lightning location algorithm. Mon. Weather Rev. 1996, 124, 602–620. [Google Scholar] [CrossRef] [Green Version]
- Petersen, W.A.; Rutledge, S.A.; Cifelli, R.C.; Ferrier, B.S.; Smull, B.F. 999, Shipborne Dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Am. Meteorol. Soc. 1999, 80, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, G.M.; Tian, L.; Heymsfield, A.J.; Li, L.; Guimond, S. Characteristics of deep tropical and subtropi-cal convection from nadir-viewing high-altitude air-borne Doppler radar. J. Atmos. Sci. 2010, 67, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Zhang, Y.; Meng, Q.; Lti, W. Relationship between lightning activities and surface precipitation in thunderstorm weather in Beijing. J. Appl. Meteor. Sci. 2010, 21, 287–297. [Google Scholar]
- Palucki, J.L.; Biggerstaff, M.I.; MacGorman, D.R.; Schuur, T. Comparison between low-flash and non-lightning-producing convective areas within a mature mesoscale convective system. Weather Forecast. 2011, 26, 468–486. [Google Scholar] [CrossRef]
- Reinhart, B.; Fuelberg, H.; Blakeslee, R.; Mach, D.; Heymsfield, A.; Bansemer, A.; Durden, S.L.; Tanelli, S.; Heymsfield, G.; Lambrigtsen, B. Understanding the relationships between lightning, cloud microphysics, and airborne radar-derived storm structure during Hurricane Karl (2010). Mon. Weather Rev. 2014, 142, 590–605. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, Y.; Zheng, D.; Xu, L. Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm. J. Meteor. Res. 2015, 29, 328–343. [Google Scholar] [CrossRef]
No. | Date of Storm | The Maximum Altitude of 30-dBZ Top (km) | The Maximum Area of 30-dBZ Region at 7-km Altitude (km2) | LD Grids (Percentage) | HD Grids (Percentage) | SD Grids (Percentage) |
---|---|---|---|---|---|---|
1 | 1 September 2014 | 14 | 208 | 238 (99.2%) | 2 (0.8%) | 0 (0.0%) |
2 | 1 September 2014 | 11 | 113 | 29 (100.0%) | 0 (0.0%) | 0 (0.0%) |
3 | 9 September 2014 | 15 | 126 | 285 (93.8%) | 19 (6.3%) | 1 (0.3%) |
4 | 11 September 2014 | 15 | 217 | 529 (97.2%) | 15 (2.8%) | 2 (0.4%) |
5 | 11 September 2014 | 16 | 184 | 596 (94.6%) | 34 (5.4%) | 6 (1.0%) |
6 | 7 August 2015 | 15 | 374 | 1354 (91.3%) | 129 (8.7%) | 9 (0.6%) |
7 | 7 August 2015 | 13 | 577 | 1894 (92.7%) | 150 (7.3%) | 21 (1.0%) |
8 | 7 August 2015 | 12 | 77 | 10 (100.0%) | 0 (0.0% | 0 (0.0%) |
9 | 7 August 2015 | 13 | 265 | 191 (96.0%) | 8 (4.0%) | 0 (0.0%) |
10 | 11 August 2015 | 10 | 16 | 15 (83.3%) | 3 (16.7%) | 0 (0.0%) |
11 | 14 August 2015 | 10 | 50 | 3 (100.0%) | 0 (0.0%) | 0 (0.0%) |
12 | 16 August 2015 | 11 | 117 | 283 (84.7%) | 51 (15.3%) | 10 (3.0%) |
13 | 16 August 2015 | 12 | 190 | 108 (98.2%) | 2 (1.8%) | 0 (0.0%) |
14 | 16 August 2015 | 17 | 352 | 46 (95.8%) | 2 (4.2%) | 0 (0.0%) |
Sum | 5581 | 415 | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Zhang, Y.; Deng, X.; Liu, H.; Dong, W.; Yao, W. Characteristics of Regions with High-Density Initiation of Flashes in Mesoscale Convective Systems. Remote Sens. 2022, 14, 1193. https://doi.org/10.3390/rs14051193
Wang F, Zhang Y, Deng X, Liu H, Dong W, Yao W. Characteristics of Regions with High-Density Initiation of Flashes in Mesoscale Convective Systems. Remote Sensing. 2022; 14(5):1193. https://doi.org/10.3390/rs14051193
Chicago/Turabian StyleWang, Fei, Yijun Zhang, Xiaohua Deng, Hengyi Liu, Wansheng Dong, and Wen Yao. 2022. "Characteristics of Regions with High-Density Initiation of Flashes in Mesoscale Convective Systems" Remote Sensing 14, no. 5: 1193. https://doi.org/10.3390/rs14051193
APA StyleWang, F., Zhang, Y., Deng, X., Liu, H., Dong, W., & Yao, W. (2022). Characteristics of Regions with High-Density Initiation of Flashes in Mesoscale Convective Systems. Remote Sensing, 14(5), 1193. https://doi.org/10.3390/rs14051193