Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Dataset and Sampling Collection
2.3. Multispectral Satellite Data and Bare Soil Images
2.3.1. Multispectral Satellite Data
2.3.2. Bare Soil Images
2.4. Multi-Sensor Image Fusion
2.5. Spectral Index Images
2.6. Multi-Sensor Satellite Data Fusion of Spectral Index Images
2.7. Statistical Analysis
2.7.1. Soil Line Analysis
2.7.2. Canonical Correlation Analysis
2.7.3. Pearson’s Correlation Analysis
2.7.4. Spatial Regression Models
2.7.5. Variable Selection Using MLP-BP Mean Decrease in Accuracy (MDA)
2.7.6. Model Performances Assessment
2.7.7. Spatial Structure Analysis
3. Results
3.1. Bare Soil Images and Spectral Pattern Descriptions
3.2. Descriptive Statistics of Clay Soil Samples and Correlation with Bare Soil Images
3.3. Selected Features from the Spectral Bands of the Fusion Image
3.4. Spectral Index vs. Spectral Bands Prediction Performances
3.5. Predicted Soil Maps and Spatial Structure Analysis
4. Discussion
4.1. Clay Predictions Depending on the Multispectral Sensor
4.2. Clay Predictions Obtained from Spectral Indexes vs. Entire Spectra
4.3. Added-Value of Fusion Images
4.4. Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lagacherie, P.; McBratney, A. Chapter 1. Spatial soil information systems and spatial soil inference systems: Perspectives for Digital Soil Mapping. In Digital Soil Mapping, an Introductory Perspective. Developments in Soil Science; Lagacherie, P., McBratney, A.B., Voltz, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 31, pp. 3–24. [Google Scholar]
- Grunwald, S.; Thompson, J.A.; Boettinger, J.L. Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues. Soil Sci. Soc. Am. J. 2011, 75, 1201–1213. [Google Scholar] [CrossRef]
- Mulder, V.; de Bruin, S.; Schaepman, M.; Mayr, T. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.; Dharumarajan, S.; Féret, J.-B.; Lagacherie, P.; Ruiz, L.; Sekhar, M. Use of Sentinel-2 Time-Series Images for Classification and Uncertainty Analysis of Inherent Biophysical Property: Case of Soil Texture Mapping. Remote Sens. 2019, 11, 565. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Dobarco, M.R.; Richer-De-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.A.; Martin, M.P.; Vaudour, E.; et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Bellinaso, H.; Silvero, N.E.; Ruiz, L.F.C.; Amorim, M.T.A.; Rosin, N.A.; Mendes, W.D.S.; de Sousa, G.P.B.; Sepulveda, L.M.A.; de Queiroz, L.G.; Nanni, M.R.; et al. Clay content prediction using spectra data collected from the ground to space platforms in a smallholder tropical area. Geoderma 2021, 399, 115116. [Google Scholar] [CrossRef]
- Datt, B.; McVicar, T.; Van Niel, T.; Jupp, D.; Pearlman, J. Preprocessing eo-1 hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Kidron, G.J.; Ben-Dor, E. Surface properties of stabilizing coastal dunes: Combining spectral and field analyses. Sedimentology 2007, 54, 771–788. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 2008, 148, 141–148. [Google Scholar] [CrossRef]
- Lagacherie, P.; Baret, F.; Feret, J.-B.; Netto, J.M.; Robbez-Masson, J.M. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens. Environ. 2008, 112, 825–835. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma 2012, 189–190, 176–185. [Google Scholar] [CrossRef]
- Gomez, C.; Gholizadeh, A.; Borůvka, L.; Lagacherie, P. Using legacy data for correction of soil surface clay content predicted from VNIR/SWIR hyperspectral airborne images. Geoderma 2016, 276, 84–92. [Google Scholar] [CrossRef]
- Chabrillat, S.; Goetz, A.F.; Krosley, L.; Olsen, H.W. Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens. Environ. 2002, 82, 431–445. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral reflectance of-carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Segal, D. Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. In Proceedings of the 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Symposium for Remote Sensing of Environment, Fort Worth, TX, USA, 6–10 December 1982; pp. 949–951. [Google Scholar]
- Drury, S.A. Image interpretation in geology. Geocarto Int. 1987, 2, 48. [Google Scholar] [CrossRef]
- Haubrock, S.-N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface soil moisture quantification models from reflectance data under field conditions. Int. J. Remote Sens. 2008, 29, 3–29. [Google Scholar] [CrossRef]
- Weng, Y.-L.; Gong, P.; Zhu, Z.-L. A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data. Pedosphere 2010, 20, 378–388. [Google Scholar] [CrossRef]
- Mathieu, R.; Pouget, M.; Cervelle, B.; Escadafal, R. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sens. Environ. 1998, 66, 17–28. [Google Scholar] [CrossRef]
- Danoedoro, P.; Zukhrufiyati, A. Integrating Spectral Indices and Geostatistics Based on Landsat-8 Imagery for Surface Clay Content Mapping in Gunung Kidul Area, Yogyakarta, Indonesia. In Proceedings of the 36th Asian Conference on Remote Sensing 2015 Fostering Resilient Growth, Quezon City, Metro Manila Philippines, 24–28 October 2015; Volume 1. Available online: https://www.researchgate.net/publication/302580476 (accessed on 12 January 2019).
- Shabou, M.; Mougenot, B.; Chabaane, Z.L.; Walter, C.; Boulet, G.; Aissa, B.N.; Zribi, M. Soil clay content mapping using a time series of landsat TM data in semi-arid lands. Remote Sens. 2015, 7, 6059–6078. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Piikki, K.; Söderström, M.; Stenberg, B. Sensor data fusion for topsoil clay mapping. Geoderma 2013, 199, 106–116. [Google Scholar] [CrossRef]
- Huang, J.; Desai, A.R.; Zhu, J.; Hartemink, A.E.; Stoy, P.C.; Loheide, S.P.I.; Bogena, H.R.; Zhang, Y.; Zhang, Z.; Arriaga, F. Retrieving Heterogeneous Surface Soil Moisture at 100 m Across the Globe via Fusion of Remote Sensing and Land Surface Parameters. Front. Water 2020, 2, 38. [Google Scholar] [CrossRef]
- Gasmi, A.; Masse, A.; Ducrot, D.; Zouari, H. Télédétection et photogrammétrie pour l’étude de la dynamique de l’occupation du sol dans le bassin versant de l’oued Chiba (Cap-Bon, Tunisie). Rev. Française Photogrammétrie Télédétection 2017, 215, 43–51. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H. Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data. Int. J. Remote Sens. 2019, 40, 1506–1533. [Google Scholar] [CrossRef]
- Baize, D.; Jabiol, B. Guide Pour la Description des Sols; INRA Edition: Paris, France, 1995. [Google Scholar]
- NASA-Goddard Space Flight Center (GSFC). Available online: https://landsat.gsfc.nasa.gov (accessed on 29 September 2020).
- Gasmi, A.; Gomez, C.; Zouari, H.; Masse, A.; Ducrot, D. PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set. Arab. J. Geosci. 2016, 9, 753. [Google Scholar] [CrossRef]
- ESA—European Space Agency. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument (accessed on 11 December 2020).
- Bernstein, L.; Adler-Golden, S.; Sundberg, R.; Levine, R.; Perkins, T.; Berk, A.; Ratkowski, A.; Felde, G.; Hoke, M. A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick atmospheric correction). In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ‘05, Seoul, Korea, 29–29 July 2005. [Google Scholar]
- Dodgson, N.A. Image Resampling. University of Cambridge Computer Laboratory; University of Cambridge, Computer Laboratory: Cambridge, UK, 1992. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 3 September 2013; NASA SP-351. NASA: Greenbelt, MD, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Sadek, M.F.; Ali-Bik, M.W.; Hassan, S.M. Late Neoproterozoic basement rocks of Kadabora-Suwayqat area, Central Eastern Desert, Egypt: Geochemical and remote sensing characterization. Arab. J. Geosci. 2015, 8, 10459–10479. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S.; Hanocq, J. About the soil line concept in remote sensing. Adv. Space Res. 1993, 13, 281–284. [Google Scholar] [CrossRef]
- Jordan, C. Essai sur la géométrie à n dimensions. Bull. Société Mathématique Fr. 1875, 3, 103–174. [Google Scholar] [CrossRef]
- Hotelling, H. Relations between Two Sets of Variates. Biometrika 1936, 28, 321. [Google Scholar] [CrossRef]
- CAMO. The Unscrambler X Software; CAMO: Oslo, Norway, 2018; Available online: www.camo.com (accessed on 28 October 2020).
- Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA. In Automated Machine Learning; Frank, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–95. [Google Scholar]
- Holmes, G.; Donkin, A.; Witten, I. WEKA: A machine learning workbench. In Proceedings of ANZIIS ‘94—Australian New Zealnd Intelligent Information Systems Conference, Brisbane, Australia, 29 November–2 December 1994; pp. 357–361. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10.8. Environmental Systems Research Institute Inc., Redlands. 2018. Available online: https://www.esri.com (accessed on 2 November 2018).
- Webster, R.; Oliver, M.A. Statistical Methods in Soil and Land Resource Survey; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. Visible and Near-Infrared Spectra of Minerals and Rocks: III. Oxides and Hydroxides. Mod. Geol. 1971, 2, 195–205. [Google Scholar]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Vaudour, E.; Gomez, C.; Loiseau, T.; Baghdadi, N.; Loubet, B.; Arrouays, D.; Ali, L.; Lagacherie, P. The Impact of Acquisition Date on the Prediction Performance of Topsoil Organic Carbon from Sentinel-2 for Croplands. Remote Sens. 2019, 11, 2143. [Google Scholar] [CrossRef] [Green Version]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H.; Laamrani, A.; Chehbouni, A. Mean spectral reflectance from bare soil pixels along a Landsat-TM time series to increase both the prediction accuracy of soil clay content and mapping coverage. Geoderma 2021, 388, 114864. [Google Scholar] [CrossRef]
Multispectral Satellites | Spatial Resolution | Bands | Spectral Ranges (nm) | Acquisition Date |
---|---|---|---|---|
Landsat-5 TM | 30 m | B1—Blue | 450–520 | 14 August 2008 |
B2—Green | 520–600 | |||
B3—Red | 630–690 | |||
B4—NIR | 760–900 | |||
B5—SWIR1 | 1550–1750 | |||
B7—SWIR2 | 2080–2350 | |||
Landsat-8 OLI | 30 m | B2—Blue | 450–510 | 27 July 2013 |
B3—Green | 530–590 | |||
B4—Red | 640–670 | |||
B5—NIR | 850–880 | |||
B6—SWIR1 | 1570–1650 | |||
B7—SWIR2 | 2110–2290 | |||
ASTER | 15 m | B1—Green | 520–600 | 3 July 2004 |
B2—Red | 630–690 | |||
B3N—NIR1 | 780–860 | |||
30 m | B4—SWIR1 | 1600–1700 | ||
B5—SWIR2 | 2145–2185 | |||
B6—SWIR3 | 2185–2225 | |||
B7—SWIR4 | 2235–2285 | |||
B8—SWIR5 | 2295–2365 | |||
B9—SWIR6 | 2360–2430 | |||
Sentinel-2A MSI | 10 m | B2—Blue | 457.5–522.5 | 30 August 2015 |
B3—Green | 542.5–577.5 | |||
B4—Red | 650–680 | |||
B8—NIR1 | 784.5–899.5 | |||
20 m | B5—RED1 | 697.5–712.5 | ||
B6—RED2 | 732.5–747.5 | |||
B7—RED3 | 733–793 | |||
B8a—NIR2 | 855–875 | |||
B11—SWIR1 | 1565–1655 | |||
B12—SWIR2 | 2100–2280 |
Bare Soil Images | OLI_S | AST_S | S2A_S |
---|---|---|---|
TM_S | 0.90 1 | 0.82 | 0.89 1 |
OLI_S | 0.79 | 0.90 1 | |
AST_S | 0.84 |
Images | NS | Min | Q1 | Mean | Q3 | Max | SD | IQ | CV | Sk |
---|---|---|---|---|---|---|---|---|---|---|
TM | 221 | 25 | 256 | 402 | 558 | 772 | 182 | 302 | 45 | 0.14 |
OLI | 174 | 94 | 278 | 423 | 571 | 772 | 179 | 292 | 42 | 0.11 |
AST | 196 | 46 | 261 | 412 | 564 | 772 | 182 | 302 | 44 | 0.09 |
S2A | 218 | 50 | 260 | 400 | 556 | 772 | 179 | 296 | 44 | 0.19 |
Fusion | 149 | 94 | 292 | 435 | 575 | 772 | 179 | 283 | 41 | 0.03 |
Images | Band Name | Band Number | r | p-Value |
---|---|---|---|---|
TM_S | Blue | B1 | −0.04 | 0.55 |
Green | B2 | −0.05 | 0.41 | |
Red | B3 | −0.19 1 | 0.00 ** | |
NIR | B4 | −0.42 1 | 0.00 ** | |
SWIR1 | B5 | −0.58 1 | 0.00 ** | |
SWIR2 | B7 | −0.72 1 | 0.00 ** | |
OLI_S | Blue | B2 | −0.09 | 0.22 |
Green | B3 | −0.09 | 0.20 | |
Red | B4 | −0.18 1 | 0.01 * | |
NIR | B5 | −0.29 1 | 0.00 ** | |
SWIR1 | B6 | −0.51 1 | 0.00 ** | |
SWIR2 | B7 | −0.71 1 | 0.00 ** | |
AST_S | Green | B1 | −0.13 | 0.52 |
Red | B2 | −0.24 1 | 0.00 ** | |
NIR1 | B3N | −0.38 1 | 0.00 ** | |
SWIR1 | B4 | −0.59 1 | 0.00 ** | |
SWIR2 | B5 | −0.63 1 | 0.00 ** | |
SWIR3 | B6 | −0.64 1 | 0.00 ** | |
SWIR4 | B7 | −0.64 1 | 0.00 ** | |
SWIR5 | B8 | −0.67 1 | 0.00 ** | |
SWIR6 | B9 | −0.60 1 | 0.00 ** | |
S2A_S | Blue | B2 | −0.12 | 0.05 |
Green | B3 | −0.13 | 0.05 | |
Red | B4 | −0.31 1 | 0.00 ** | |
RED1 | B5 | −0.36 1 | 0.00 ** | |
RED2 | B6 | −0.43 1 | 0.00 ** | |
RED3 | B7 | −0.47 1 | 0.00 ** | |
NIR1 | B8 | −0.50 1 | 0.00 ** | |
NIR2 | B8a | −0.53 1 | 0.00 ** | |
SWIR1 | B11 | −0.62 1 | 0.00 ** | |
SWIR2 | B12 | −0.72 1 | 0.00 ** |
Images | Clay Index | Bands | r | p-Value |
---|---|---|---|---|
TM_SI | SWIR1/SWIR2 | B5/B7 | −0.66 1 | 0.00 ** |
OLI_SI | SWIR1/SWIR2 | B6/B7 | −0.68 1 | 0.00 ** |
AST_SI | SWIR2×SWIR4/SWIR3 | B5×B7/B6 | −0.61 1 | 0.00 ** |
S2A_SI | SWIR1/SWIR2 | B11/B12 | −0.71 1 | 0.00 ** |
Images | NB | NS | H | L | M | RMSEP | MAEP | Bias | RPD | RPIQ | |
---|---|---|---|---|---|---|---|---|---|---|---|
TM_SI | One | 221 | 2 | 0.01 | 0.00 | 0.43 | 140.24 | 112.29 | 6.64 | 1.34 | 2.14 |
OLI_SI | One | 174 | 1 | 0.01 | 0.00 | 0.51 | 126.42 | 99.65 | −4.33 | 1.45 | 2.30 |
AST_SI | One | 196 | 1 | 0.01 | 0.33 | 0.45 | 135.09 | 109.39 | −4.22 | 1.36 | 2.19 |
S2A_SI | One | 218 | 1 | 0.03 | 0.00 | 0.48 | 130.21 | 100.77 | 18.69 | 1.41 | 2.23 |
Fusion_SI | Four | 149 | 5 | 0.01 | 0.43 | 0.61 | 114.18 | 90.92 | −28.47 | 1.63 | 2.50 |
TM_S | Six | 221 | 3 | 0.01 | 0.67 | 0.61 | 115.64 | 88.37 | 47.91 | 1.62 | 2.60 |
OLI_S | Six | 174 | 3 | 0.01 | 0.60 | 0.67 | 102.96 | 81.10 | 2.82 | 1.78 | 2.82 |
AST_S | Nine | 196 | 1 | 0.01 | 0.47 | 0.60 | 114.55 | 91.86 | −13.57 | 1.60 | 2.59 |
S2A_S | Ten | 218 | 2 | 0.01 | 0.65 | 0.71 | 96.45 | 73.29 | 22.35 | 1.90 | 3.01 |
Fusion_S | Eight | 149 | 1 | 0.01 | 0.33 | 0.78 | 87.84 | 69.99 | −16.79 | 2.12 | 3.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; Elfil, H. Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches. Remote Sens. 2022, 14, 1103. https://doi.org/10.3390/rs14051103
Gasmi A, Gomez C, Chehbouni A, Dhiba D, Elfil H. Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches. Remote Sensing. 2022; 14(5):1103. https://doi.org/10.3390/rs14051103
Chicago/Turabian StyleGasmi, Anis, Cécile Gomez, Abdelghani Chehbouni, Driss Dhiba, and Hamza Elfil. 2022. "Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches" Remote Sensing 14, no. 5: 1103. https://doi.org/10.3390/rs14051103
APA StyleGasmi, A., Gomez, C., Chehbouni, A., Dhiba, D., & Elfil, H. (2022). Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches. Remote Sensing, 14(5), 1103. https://doi.org/10.3390/rs14051103