An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. ICESat-2 ATL-07 and ATL-10 Data
2.2.2. AMSR2 Snow Depth Product
2.2.3. Sentinel-1 and Sentinel-2 Images
2.2.4. Ship-Based Observational Sea Ice Thickness Data
2.3. Methods
2.3.1. Assessment of Lead Discrimination Based on the ICESat-2 Data Product Algorithm
2.3.2. Sea Ice Freeboard and Thickness Retrieval from ICESat-2 Altimeter Data
3. Results
3.1. Accuracy of Surface Type Classification Based on the ICESat-2 Data Product Algorithm
3.2. Antarctic Sea Ice Freeboard Retrieval from ICESat-2 Altimeter Data
3.3. Spatiotemporal Variations in the Antarctic Sea Ice Thickness from November 2018 to October 2019
3.4. Accuracy of the Retrieved Antarctic Sea Ice Thickness Based on the Improved Algorithm of the Lowest Point Method
4. Discussion
4.1. Improvement in the Variable Lead Proportion for the Retrieval of the Sea Ice Freeboard and Thickness from ICESat-2 Data
4.2. Influence of Negative Freeboard for the Retrieval from ICESat-2 Altimeter Data
4.3. Uncertainty in the Sea Ice Freeboard and Thickness Retrieved from ICESat-2 Altimeter Data
4.4. Limitation of the Calculated Lead Proportions along ICESat-2 Measurement Points Based on Sentinel-1 SAR Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, J.; Comiso, J.C.; Marshall, G.J.; Lachlan-Cope, T.A.; Bracegirdle, T.; Maksym, T.; Meredith, M.P.; Wang, Z.; Orr, A. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 2009, 36, L08502. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xie, H.; Kern, S.; Wan, W.; Ozsoy, B.; Ackley, S.; Hong, Y. Spatio-temporal variability of Antarctic sea-ice thickness and volume obtained from ICESat data using an innovative algorithm. Remote Sens. Environ. 2018, 219, 44–61. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Xie, H.; Ackley, S.F.; Tang, J.; Mestas-Nuñez, A.M.; Wang, X. Sea-ice freeboard and thickness in the Ross Sea from airborne (IceBridge 2013) and satellite (ICESat 2003–2008) observations. Ann. Glaciol. 2020, 61, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R. Satellite remote sensing of sea-ice thickness and kinematics: A review. J. Glaciol. 2010, 56, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Galin, N.; Studinger, M. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting. Cryosphere 2014, 8, 1217–1237. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Zwally, H.J.; Yi, D. ICESat observations of Arctic sea ice: A first look. Geophys. Res. Lett. 2004, 31, L16401. [Google Scholar] [CrossRef] [Green Version]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Hass, C.; et al. CryoSat-2 estimates of Antarctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Ackley, S.; Yi, D.; Zwally, H.; Wagner, P.; Weissling, B.; Lewis, M.; Ye, K. Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1039–1051. [Google Scholar] [CrossRef]
- Xie, H.; Tekeli, A.E.; Ackley, S.F.; Yi, D.; Zwally, H.J. Sea ice thickness estimations from ICESat Altimetry over the Bellingshausen and Amundsen Seas, 2003–2009. J. Geophys. Res. Oceans 2013, 118, 2438–2453. [Google Scholar] [CrossRef]
- Holland, M.M.; Bitz, C.; Hunke, E.C.; Lipscomb, W.H.; Schramm, J.L. Influence of the Sea Ice Thickness Distribution on Polar Climate in CCSM3. J. Clim. 2006, 19, 2398–2414. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Losa, S.N.; Losch, M.; Tian-Kunze, X.; Nerger, L.; Liu, J.; Kaleschke, L.; Zhang, Z. Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. J. Geophys. Res. Oceans 2014, 119, 6680–6692. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Zwally, H.J.; Robbins, J.W. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003–2009). Ann. Glaciol. 2011, 52, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Kern, S.; Ozsoy-Çiçek, B.; Worby, A.P. Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches. Remote Sens. 2016, 8, 538. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Im, J.; Kim, J.; Kim, M.; Shin, M.; Kim, H.-C.; Quackenbush, L.J. Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection. Remote Sens. 2016, 8, 698. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Kacimi, S. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2. Cryosphere 2018, 12, 2789–2801. [Google Scholar] [CrossRef] [Green Version]
- Landy, J.C.; Petty, A.A.; Tsamados, M.; Stroeve, J.C. Sea Ice Roughness Overlooked as a Key Source of Uncertainty in CryoSat-2 Ice Freeboard Retrievals. J. Geophys. Res. Ocean. 2020, 125, e2019JC015820. [Google Scholar] [CrossRef]
- Kern, S.; Spreen, G. Uncertainties in Antarctic sea-ice thickness retrieval from ICESat. Ann. Glaciol. 2017, 56, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.; Markus, T.; Hancock, D.; Morison, J.H.; Palm, S.P.; Farrell, S.L.; Ivanoff, A.; Wimert, J.; The ICESat-2 Science Team. ATLAS/ICESat-2 L3A Sea Ice Freeboard, Version 3; NSIDC—National Snow and Ice Data Center: Boulder, CO, USA, 2020. [Google Scholar]
- Kwok, R.; Kacimi, S.; Markus, T.; Kurtz, N.T.; Studinger, M.; Sonntag, J.G.; Manizade, S.S.; Boisvert, L.N.; Harbeck, J.P. ICESat-2 Surface Height and Sea Ice Freeboard Assessed with ATM Lidar Acquisitions from Operation IceBridge. Geophys. Res. Lett. 2019, 46, 11228–11236. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Ke, Y.; Ackley, S.F.; Liu, L. A method to automatically determine sea level for referencing snow freeboards and computing sea ice thicknesses from NASA IceBridge airborne LIDAR. Remote Sens. Environ. 2013, 131, 160–172. [Google Scholar] [CrossRef]
- Shokr, M.; Sinha, N. Sea Ice: Physics and Remote Sensing, 1st ed.; Shokr, M.E., Sinha, N., Eds.; American Geophysical Union: Washington, DC, USA, 2015. [Google Scholar]
- Weissling, B.; Lewis, M.; Ackley, S. Sea-ice thickness and mass at Ice Station Belgica, Bellingshausen Sea, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1112–1124. [Google Scholar] [CrossRef]
- Simmondsxs, I.; Budd, W.F. Sensitivity of the southern hemisphere circulation to leads in the Antarctic pack ice. Q. J. R. Meteorol. Soc. 1991, 117, 1003–1024. [Google Scholar] [CrossRef]
- Beitsch, A.; Kaleschke, L.; Kern, S. Investigating High-Resolution AMSR2 Sea Ice Concentrations during the February 2013 Fracture Event in the Beaufort Sea. Remote Sens. 2014, 6, 3841–3856. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-K.; Kongoli, C.; Key, J. An In-Depth Evaluation of Heritage Algorithms for Snow Cover and Snow Depth Using AMSR-E and AMSR2 Measurements. J. Atmos. Ocean. Technol. 2015, 32, 2319–2336. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J. Snow Depth Distribution over Sea Ice in the Southern Ocean from Satellite Passive Micro-Wave Data; American Geophysical Union: Washington, DC, USA, 1998. [Google Scholar]
- Shi, L.; Karvonen, J.; Cheng, B.; Vihma, T.; Lin, M.; Liu, Y.; Wang, Q.; Jia, Y. Sea ice thickness retrieval from SAR imagery over Bohai sea. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4864–4867. [Google Scholar] [CrossRef]
- Mei, H.; Lu, P.; Wang, Q.; Cao, X.; Li, Z. Study of the spatiotemporal variations of summer sea ice thickness in the Pacific arctic sector based on shipside images. Chin. J. Polar Res. 2021, 2021, 37–48. (In Chinese) [Google Scholar]
- Kwok, R.; Kacimi, S.; Webster, M.; Kurtz, N.; Petty, A. Arctic Snow Depth and Sea Ice Thickness From ICESat-2 and CryoSat-2 Freeboards: A First Examination. J. Geophys. Res. Ocean. 2020, 125, e2019JC016008. [Google Scholar] [CrossRef]
- Kwok, R.; Petty, A.A.; Bagnardi, M.; Kurtz, N.T.; Cunningham, G.F.; Ivanoff, A.; Kacimi, S. Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products. Cryosphere 2021, 15, 821–833. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Markus, T. Satellite observations of Antarctic sea ice thickness and volume. J. Geophys. Res. 2012, 117, C08025. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L.; Cavalieri, D.J. Antarctic Sea Ice Variability and Trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Lange, M.A.; Eicken, H. The sea ice thickness distribution in the northwestern Weddell Sea. J. Geophys. Res. Ocean. 1991, 96, 4821–4837. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.; Liu, B.; Xie, H.; Ozsoy-Cicek, B. Deriving Antarctic Sea-Ice Thickness from Satellite Altimetry and Estimating Consistency for NASA’s ICESat/ICESat-2 Missions. Geophys. Res. Lett. 2021, 48, e2021GL093425. [Google Scholar] [CrossRef]
- Eicken, H.; Fischer, H.; Lemke, P. Effects of the snow cover on Antarctic sea ice and potential modulation of its response to climate change. Ann. Glaciol. 1995, 21, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Cunningham, G.F.; Zwally, H.J.; Yi, D. Ice, Cloud, and land Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard. J. Geophys. Res. Ocean. 2007, 112, C12013. [Google Scholar] [CrossRef] [Green Version]
- Spreen, G.; Kern, S.; Stammer, D.; Forsberg, R.; Haarpaintner, J. Satellite-based estimates of sea-ice volume flux through Fram Strait. Ann. Glaciol. 2006, 44, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Massom, R.A.; Eicken, H.; Haas, C.; Jeffries, M.O.; Drinkwater, M.R.; Sturm, M.; Worby, A.P.; Wu, X.; Lytle, V.I.; Ushio, S.; et al. Snow on Antarctic sea ice. Rev. Geophys. 2001, 39, 413–445. [Google Scholar] [CrossRef] [Green Version]
- Maksym, T.; Markus, T. Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res. 2008, 113, C02S12. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Zhang, J. Fusion of SAR and Optical Image for Sea Ice Extraction. J. Ocean Univ. China 2021, 20, 1440–1450. [Google Scholar] [CrossRef]
Satellite Designation | Image Type | Resolution | Number of Images Used in This Study |
---|---|---|---|
Sentinel-1A, Sentinel-1B | SAR image | 40 m | 213 |
Sentinel-2A, Sentinel-2B | Optical image | 10 m | 10 |
Date | Track | ICESat-2 | |||||
---|---|---|---|---|---|---|---|
CLASSIFIED AS A LEAD | Correct Classification | Incorrect Classification | Missing Lead Discrimination | Number of Leads in Sentinel-1 | Accuracy of ICESat-2 Lead Discrimination (%) | ||
8 October 2019 | 1008-gt1l | 395 | 14 | 381 | 212 | 226 | 3.54 |
1008-gt1r | 468 | 18 | 450 | 161 | 179 | 3.85 | |
1008-gt2l | 775 | 329 | 446 | 634 | 963 | 42.45 | |
1008-gt2r | 815 | 117 | 698 | 712 | 829 | 14.36 | |
1008-gt3l | 944 | 98 | 846 | 207 | 305 | 10.38 | |
1008-gt3r | 1167 | 212 | 955 | 250 | 462 | 18.17 | |
18 June 2019 | 0618-gt1l | 77 | 2 | 75 | 66 | 68 | 2.60 |
0618-gt1r | 69 | 3 | 66 | 39 | 42 | 4.35 | |
0618-gt2l | 56 | 9 | 47 | 52 | 61 | 16.07 | |
0618-gt2r | 44 | 8 | 36 | 75 | 83 | 18.18 | |
0618-gt3l | 72 | 17 | 55 | 94 | 111 | 23.61 | |
0618-gt3r | 38 | 0 | 38 | 116 | 116 | 0 |
Year/Month | Lead Proportion along ICESat-2 Tracks (%) | ||||
---|---|---|---|---|---|
Weddell Sea | Ross Sea | Bellingshausen and Amundsen Sea | Indian Ocean | Pacific Ocean | |
2018/11 | 2.60 | 6.67 | 2.98 | 3.93 | 2.96 |
2018/12 | 6.11 | 4.59 | 3.71 | 2.69 | 5.69 |
2019/01 | 3.44 | 5.82 | 2.71 | 1.53 | 2.80 |
2019/02 | 2.93 | 3.99 | 6.42 | 2.84 | 3.04 |
2019/03 | 1.18 | 3.17 | 2.13 | 1.69 | 2.97 |
2019/04 | 1.94 | 1.10 | 2.27 | 2.14 | 2.78 |
2019/05 | 1.55 | 1.99 | 2.51 | 1.96 | 1.62 |
2019/06 | 1.81 | 1.98 | 3.07 | 1.50 | 2.44 |
2019/07 | 1.60 | 0.73 | 1.97 | 1.17 | 2.47 |
2019/08 | 2.47 | 3.08 | 2.67 | 0.82 | 2.78 |
2019/09 | 1.92 | 2.53 | 1.08 | 1.69 | 2.74 |
2019/10 | 4.23 | 4.27 | 1.73 | 3.46 | 3.52 |
Mean value | 2.65 | 3.33 | 2.77 | 2.12 | 2.99 |
Algorithms for the Retrieval of the Sea Ice Thickness from ICESat-2 data | RMSE (cm) | MAE (cm) |
---|---|---|
Improved algorithm of the lowest point method | 34.8 | 22.0 |
ICESat-2 data product algorithm (single) | 47.2 | 32.6 |
ICESat-2 data product algorithm (comprehensive) | 65.7 | 43.5 |
Improved algorithm of the lowest point method in overlapping data | 41.2 | 27.9 |
ICESat-2 data product algorithm (single) in overlapping data | 47.2 | 32.6 |
ICESat-2 data product algorithm (comprehensive) in overlapping data | 67.9 | 43.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, X.; Chen, Y.; Ji, Q.; Li, G.; Shi, L.; Lan, M.; Liang, Z. An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data. Remote Sens. 2022, 14, 1069. https://doi.org/10.3390/rs14051069
Pang X, Chen Y, Ji Q, Li G, Shi L, Lan M, Liang Z. An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data. Remote Sensing. 2022; 14(5):1069. https://doi.org/10.3390/rs14051069
Chicago/Turabian StylePang, Xiaoping, Yizhuo Chen, Qing Ji, Guoyuan Li, Lijian Shi, Musheng Lan, and Zeyu Liang. 2022. "An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data" Remote Sensing 14, no. 5: 1069. https://doi.org/10.3390/rs14051069
APA StylePang, X., Chen, Y., Ji, Q., Li, G., Shi, L., Lan, M., & Liang, Z. (2022). An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data. Remote Sensing, 14(5), 1069. https://doi.org/10.3390/rs14051069