Monitoring Spatio-Temporal Dynamics in the Eastern Plain Lakes of China Using Long-Term MODIS UNWI Index
Abstract
:1. Introduction
- Build a new framework that can process time-series remote sensing data;
- Develop a universal normalized water index (UNWI) for large areas and long-term lake inundation observations that uses full spectrum information;
- Use the new framework to record patterns of spatio-temporal dynamics of large lakes in the EPL, China, during 2000–2020, and discuss the forces driving the inundation changes at large lakes in the EPL.
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. The Multi-Dimensional Dataset: TSB
3.2. Water Extraction Algorithms
3.3. Calculation of Spatial and Temporal Statistics
4. Results
4.1. Performance of Water Extraction Algorithm
4.2. Spatial and Temporal Patterns of lake Inundation during the Long-Term Observations
5. Discussion
5.1. Driving Forces
5.2. Uncertainties
5.3. Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- Feng, L.; Han, X.; Hu, C.; Chen, X. Four decades of wetland changes of the largest freshwater lake in China: Possible linkage to the Three Gorges Dam? Remote Sens. Environ. 2016, 176, 43–55. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M.; Hinzman, L.D. Disappearing Arctic lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Duan, H.; Hu, C.; Feng, X.; Li, A.; Ju, W.; Jiang, J.; Yang, G. A half-century of changes in China’s lakes: Global warming or human influence? Geophys. Res. Lett. 2010, 37, L24106. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; David Hambright, K. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Miller, C.; Null, S.E.; DeRose, R.J.; Wilcock, P.; Hahnenberger, M.; Howe, F.; Moore, J. Decline of the world’s saline lakes. Nat. Geosci. 2017, 10, 816–821. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X. Drastic change in China’s lakes and reservoirs over the past decades. Sci. Rep. 2014, 4, 6041. [Google Scholar] [CrossRef] [Green Version]
- Bian, D.; Bian, B.; La, B.; Wang, C.; Chen, T. The Response of Water Level of Selin Co to Climate Change during 1975–2008. Acta Geogr. Sin. 2010, 65, 313–319. [Google Scholar]
- Lutz, A.; Immerzeel, W.; Shrestha, A.; Bierkens, M. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhu, L. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000. J. Geogr. Sci. 2008, 18, 177–189. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Q.; Li, Y.; Li, H.; Li, J. Area, lake-level and volume variations of typical lakes on the Tibetan Plateau and their response to climate change, 1972–2019. Geo-Spat. Inf. Sci. 2021, 24, 458–473. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Wang, Y.; Yésou, H. Remote Sensing of Floodpath Lakes and Wetlands: A Challenging Frontier in the Monitoring of Changing Environments. Remote Sens. 2018, 10, 1955. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Chen, L.; Huang, B.; Michishita, R.; Xu, B. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations. ISPRS J. Photogramm. Remote Sens. 2018, 139, 75–87. [Google Scholar] [CrossRef]
- Zhuang, C.; Ouyang, Z.; Xu, W.; Bai, Y.; Zhou, W.; Zheng, H.; Wang, X. Impacts of human activities on the hydrology of Baiyangdian Lake, China. Environ. Earth Sci. 2010, 62, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, L.; Zhang, H.; Han, X.; Zhang, L. Spatial–Temporal Wetland Landcover Changes of Poyang Lake Derived from Landsat and HJ-1A/B Data in the Dry Season from 1973–2019. Remote Sens. 2020, 12, 1595. [Google Scholar] [CrossRef]
- Zeng, L.; Schmitt, M.; Li, L.; Zhu, X.X. Analysing changes of the Poyang Lake water area using Sentinel-1 synthetic aperture radar imagery. Int. J. Remote Sens. 2017, 38, 7041–7069. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Ouyang, C.; Duan, H.; Li, Y.; Chen, M.; Ma, J.; An, H.; Zhou, S. Reflections on the Catastrophic 2020 Yangtze River Basin Flooding in Southern China. Innovation 2020, 1, 100038. [Google Scholar] [CrossRef] [PubMed]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2007, 27, 3025–3033. [Google Scholar] [CrossRef]
- Kwak, Y.-J. Nationwide Flood Monitoring for Disaster Risk Reduction Using Multiple Satellite Data. ISPRS Int. J. Geo-Inf. 2017, 6, 203. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Milczarek, M.; Robak, A.; Gadawska, A. Sentinel Water Mask (SWM)-new index for water detection on Sentinel-2 images. In Proceedings of the 7th Advanced Training Course on Land Remote Sensing, Gödöllő, Hungary, 4–9 September 2017. [Google Scholar]
- Kryniecka, K.; Magnuszewski, A. Application of Satellite Sentinel-2 Images to Study Alternate Sandbars Movement at Lower Vistula River (Poland). Remote Sens. 2021, 13, 1505. [Google Scholar] [CrossRef]
- Kryniecka, K.; Magnuszewski, A. Use of Sentinel-2 Images for the Detection of Sandbars Along the Lower Vistula. Acta Sci. Pol. Form. Circumiectus 2020, 19, 23–33. [Google Scholar] [CrossRef]
- Scordo, F.; Bohn, V.; Piccolo, M.; Perillo, G. Mapping and Monitoring Lakes Intra-Annual Variability in Semi-Arid Regions: A Case of Study in Patagonian Plains (Argentina). Water 2018, 10, 889. [Google Scholar] [CrossRef] [Green Version]
- Sima, S.; Ahmadalipour, A.; Shafiee Jood, M.; Tajrishy, M.; Abrishamchi, A. Monitoring Urmia Lake Area Variations Using MODIS Satellite Data. In Proceedings of the World Environmental and Water Resources Congress 2012, Albuquerque, New Mexico, 20–24 May 2012; pp. 1917–1926. [Google Scholar]
- Lin, Y.; Li, X.; Zhang, T.; Chao, N.; Yu, J.; Cai, J.; Sneeuw, N. Water Volume Variations Estimation and Analysis Using Multisource Satellite Data: A Case Study of Lake Victoria. Remote Sens. 2020, 12, 3052. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.-M.; Papa, F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2015, 158, 348–361. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, G.; Zhang, L.; Tang, X.; Shao, K.; Hu, Y. Denitrification and dissimilatory nitrate reduction to ammonium in freshwater lakes of the Eastern Plain, China: Influences of organic carbon and algal bloom. Sci. Total Environ. 2020, 710, 136303. [Google Scholar] [CrossRef]
- Ma, R.; Yang, G.; Duan, H.; Jiang, J.; Wang, S.; Feng, X.; Li, A.; Kong, F.; Xue, B.; Wu, J.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Zou, W.; Zhu, G.; Cai, Y.; Vilmi, A.; Xu, H.; Zhu, M.; Gong, Z.; Zhang, Y.; Qin, B. Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. J. Environ. Manag. 2020, 260, 109923. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Feng, L.; Hu, C.; Chen, X. Wetland changes of China’s largest freshwater lake and their linkage with the Three Gorges Dam. Remote Sens. Environ. 2018, 204, 799–811. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar]
- Bao, Z.; Zhang, J.; Wang, G.; Fu, G.; He, R.; Yan, X.; Jin, J.; Liu, Y.; Zhang, A. Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities? J. Hydrol. 2012, 460–461, 117–129. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Huang, Q. Four Decades of Estuarine Wetland Changes in the Yellow River Delta Based on Landsat Observations Between 1973 and 2013. Water 2018, 10, 933. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Ben, J.; Zhang, Y.S.; Tong, X.C. Analysis of GeoTIFF and Usage of LibGeoTIFF Library. J. Inf. Eng. Univ. 2005, 6, 94–98. [Google Scholar]
- Zhang, L.; Wang, S.; Liu, H.; Lin, Y.; Zhu, M.; Gao, L.; Tong, Q. From Spectrum to Temporal Spectrum—Research on Change Detection of Remote Sensing Time Serie. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 451–468. [Google Scholar]
- Wang, S.; Li, J.; Zhang, B.; Lee, Z.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.; Wu, Y.; Zhu, L.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Zhang, B.; Wang, W.-J.; Yuan, Y.; Guo, C. Sedimentation and its response to management strategies of the Three Gorges Reservoir, Yangtze River, China. Catena 2021, 199, 105096. [Google Scholar] [CrossRef]
- Duan, H.; Loiselle, S.A.; Zhu, L.; Feng, L.; Zhang, Y.; Ma, R. Distribution and incidence of algal blooms in Lake Taihu. Aquat. Sci. 2014, 77, 9–16. [Google Scholar] [CrossRef]
- Feng, L.; Hou, X.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sens. Environ. 2019, 221, 675–686. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Zhang, G. China Lake Dataset (1960s–2020); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Masek, J.G.; Huang, C.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Liu, Z. Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) Monthly Precipitation Products: Initial Results. J. Hydrometeorol. 2016, 17, 777–790. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Baik, J.; Choi, M. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res. 2017, 187, 95–105. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Feng, L.; Tang, J.; Song, X.-P.; Liu, J.; Zhang, Y.; Wang, J.; Xu, Y.; Dai, Y.; Zheng, Y.; et al. Anthropogenic transformation of Yangtze Plain freshwater lakes: Patterns, drivers and impacts. Remote Sens. Environ. 2020, 248, 111998. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Sun, X.; Fu, D.; Tong, Q. Designing spatial-temporal-spectral integrated storage structure of multi-dimensional remote sensing images. J. Remote Sens. 2017, 21, 62–73. [Google Scholar]
- Zhang, L.; Fujiwara, N.; Furumi, S.; Muramatsu, K.; Daigo, M.; Zhang, L. Assessment of the universal pattern decomposition method using MODIS and ETM+ data. Int. J. Remote Sens. 2010, 28, 125–142. [Google Scholar] [CrossRef]
- Zhang, L.; Furumi, S.; Muramatsu, K.; Fujiwara, N.; Daigo, M.; Zhang, L. Sensor-independent analysis method for hyperspectral data based on the pattern decomposition method. Int. J. Remote Sens. 2007, 27, 4899–4910. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, N.; Baig, M.H.A.; Huang, C.; Lv, X.; Sun, X.; Zhang, Z. Monitoring vegetation dynamics using the universal normalized vegetation index (UNVI): An optimized vegetation index-VIUPD. Remote Sens. Lett. 2019, 10, 629–638. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- Shi, P.; Sun, S.; Wang, M.; Li, N.; Wang, J.A.; Jin, Y.; Gu, X.; Yin, W. Climate change regionalization in China (1961–2010). Sci. China Earth Sci. 2014, 57, 2676–2689. [Google Scholar] [CrossRef]
- Li, X.-H.; Zhang, Q.; Xu, C.-Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J. Hydrol. 2012, 426–427, 28–38. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Z.; Tangdamrongsub, N.; Zhou, Z.; He, L.; Xu, C.; Li, Q.; Wu, Y. Identifying Flood Events over the Poyang Lake Basin Using Multiple Satellite Remote Sensing Observations, Hydrological Models and In Situ Data. Remote Sens. 2018, 10, 713. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, J.; Yu, Z.; Liang, Z.; Chen, L.; Acharya, K. Climate change driven water budget dynamics of a Tibetan inland lake. Glob. Planet. Chang. 2017, 150, 70–80. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Xu, C.-Y.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and hydrological evaluation of the latest Integrated Multi-satellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in South China. Atmos. Res. 2018, 214, 418–429. [Google Scholar] [CrossRef]
- Jiang, L.; Bauer-Gottwein, P. How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Zhang, X.; Wang, N.; Zhang, M.; Lin, Y.; Huang, H.; Cen, Y.; Huang, C.; Yang, H.; et al. A Multi-Dimensional Data Format (MDD) and Analysis Tool. J. Glob. Chang. Data Discov. 2017, 1, 121–135. [Google Scholar]
Lakes Name | Acquisition Date | Area (km2) | Truth Area (km2) | User’s Accuracy | Producer’s Accuracy |
---|---|---|---|---|---|
Poyang | 25 July 2001 | 2136.43 | 2104.31 | 93.59% | 95.02% |
5 October 2007 | 2490.43 | 2334.25 | 85.78% | 90.45% | |
Hongze | 20 February 2020 | 1462.31 | 1541.25 | 98.69% | 93.64% |
20 December 2020 | 1413.50 | 1320.38 | 91.10% | 97.52% | |
Chaohu | 14 May 2013 | 722.88 | 725.63 | 99.34% | 98.87% |
19 December 2017 | 772.00 | 781.56 | 99.61% | 98.39% |
Lakes Name | Acquisition Date | MODIS Area (km2) | Landsat Area (km2) | Lakes Name | Acquisition Date | MODIS Area (km2) | Landsat Area (km2) |
---|---|---|---|---|---|---|---|
Dongping (C001) | 3 January 2001 | 136.19 | 143.24 | Douhu (B002) | 26 March 2003 | 27.56 | 28.99 |
8 March 2001 | 116.81 | 124.88 | 7 May 2007 | 6.00 | 6.80 | ||
Shaobo (C008) | 9 March 2009 | 61.50 | 66.77 | Dazonghu (F003) | 19 December 2008 | 19.94 | 22.78 |
10 January 2011 | 73.00 | 80.92 | 23 September 2011 | 8.81 | 9.34 |
Num | Lon | Lat | Ave ± Std. (km2) | Rate (km2 Year. −1) | R | M-K Test (Z) | Num | Lon | Lat | Ave ± Std. (km2) | Rate (km2 Year. −1) | R | M-K Test (Z) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class I | D007 | 118.27 | 31.25 | 3.32 ± 0.76 | 0.03 | 0.56 ** | 2.33 ** | ||||||
A001 | 118.87 | 31.47 | 149.91 ± 22.96 | 0.18 | 0.38 | 1.66 * | D008 | 117.38 | 31.18 | 3.69 ± 3.17 | 0.43 | −0.09 | −0.85 |
A002 | 116.30 | 29.06 | 988.70 ± 309.81 | −29.09 | −0.50 * | −1.64 * | D009 | 117.64 | 31.02 | 1.93 ± 1.62 | 0.07 | −0.16 | −0.94 |
A003 | 112.73 | 29.06 | 325.70 ± 71.01 | −2.89 | 0.02 | 0.45 | D010 | 117.63 | 30.93 | 8.57 ± 0.93 | 0.16 | 0.52 * | 2.42 ** |
A004 | 113.87 | 29.90 | 2.42 ± 0.88 | 0.14 | 0.38 | 1.63 | D011 | 117.67 | 30.90 | 5.34 ± 5.01 | 0.44 | 0.39 | 1.42 |
Class II | … | … | … | … | … | … | … | ||||||
B001 | 118.57 | 33.31 | 1271.87 ± 118.40 | −2.99 | −0.12 | −1.60 | D143 | 117.53 | 31.57 | 741.29 ± 5.47 | 0.18 | −0.33 | −1.24 |
B002 | 118.40 | 33.03 | 5.73 ± 5.16 | −0.10 | −0.46 * | −1.96 * | D144 | 114.18 | 30.66 | 0.14 ± 0.15 | 0.01 | 0.85 ** | 3.96 ** |
B003 | 118.22 | 32.91 | 19.07 ± 8.22 | 0.50 | −0.30 | −1.15 | Class V | ||||||
B004 | 118.08 | 32.96 | 63.10 ± 5.50 | 0.11 | −0.26 | −1.00 | E001 | 117.94 | 33.26 | 7.61 ± 2.16 | −0.22 | −0.73 ** | −3.42 ** |
B005 | 117.82 | 32.98 | 17.95 ± 5.10 | 0.67 | 0.38 | 1.57 | E002 | 117.81 | 33.21 | 15.58 ± 1.67 | 0.17 | 0.02 | −0.12 |
B006 | 117.40 | 32.91 | 0.65 ± 0.38 | −0.05 | −0.34 | −1.49 | E003 | 117.67 | 33.14 | 6.44 ± 4.04 | 0.07 | 0.49 * | 1.66 * |
B007 | 117.24 | 32.86 | 2.49 ± 1.19 | −0.02 | 0.16 | 0.88 | E004 | 117.14 | 33.06 | 0.60 ± 0.63 | 0.00 | −0.29 | −0.33 |
Class III | E005 | 117.18 | 32.63 | 16.47 ± 5.02 | 0.07 | −0.36 | −1.48 | ||||||
C001 | 116.18 | 35.99 | 97.94 ± 8.20 | 0.32 | −0.02 | −0.12 | E006 | 116.59 | 32.72 | 3.43 ± 1.70 | −0.05 | −0.41 | −2.78 ** |
C002 | 116.94 | 34.87 | 380.73 ± 164.68 | 5.55 | 0.04 | −1.06 | E007 | 116.60 | 32.60 | 17.60 ± 8.28 | 0.17 | −0.68 ** | −3.23 ** |
C003 | 118.03 | 34.21 | 3.86 ± 2.55 | 0.29 | 0.51 * | 2.30 * | E008 | 116.88 | 32.41 | 91.80 ± 13.17 | 0.47 | −0.32 | −1.54 |
C004 | 118.18 | 34.10 | 221.61 ± 13.93 | 1.78 | 0.47 * | 0.91 | E009 | 116.68 | 32.29 | 26.27 ± 3.02 | −0.06 | −0.05 | −0.94 |
C005 | 119.13 | 33.24 | 32.78 ± 8.31 | −0.24 | −0.68 ** | −3.47 ** | E010 | 116.26 | 32.57 | 4.58 ± 1.19 | 0.04 | −0.16 | −0.45 |
C006 | 119.29 | 33.13 | 4.20 ± 2.58 | 0.07 | −0.21 | −0.12 | E011 | 116.36 | 32.26 | 79.79 ± 6.70 | 0.34 | −0.11 | −0.15 |
C007 | 119.28 | 32.85 | 563.67 ± 53.46 | 2.21 | 0.13 | −0.88 | E012 | 116.20 | 32.32 | 47.12 ± 17.57 | −0.68 | −0.40 | −1.78 * |
C008 | 119.43 | 32.63 | 53.97 ± 14.22 | 1.45 | 0.47 * | 2.02 * | Class VI | ||||||
C009 | 119.04 | 32.80 | 2.18 ± 2.09 | −0.13 | −0.71 ** | −4.35 ** | F001 | 119.82 | 33.08 | 1.64 ± 2.01 | −0.02 | −0.63 ** | −4.27 ** |
Class IV | F002 | 119.81 | 33.15 | 11.82 ± 6.11 | −0.51 | −0.77 ** | −3.41 ** | ||||||
D001 | 120.22 | 31.20 | 2226.50 ± 28.61 | 0.03 | −0.20 | −0.82 | F003 | 112.62 | 31.14 | 5.45 ± 1.90 | 0.32 | 0.74 ** | 3.33 ** |
D002 | 119.82 | 31.60 | 140.71 ± 9.09 | 1.15 | 0.66 ** | 2.69 ** | F004 | 118.00 | 30.36 | 17.93 ± 2.80 | 0.06 | 0.25 | 1.67 * |
D003 | 119.55 | 31.62 | 69.91 ± 7.56 | 0.25 | −0.21 | −0.66 | F005 | 116.75 | 31.29 | 12.35 ± 2.02 | 0.15 | 0.37 | 1.42 |
D004 | 118.91 | 31.28 | 22.30 ± 2.31 | 0.20 | 0.60 ** | 2.54 ** | F006 | 116.18 | 30.51 | 5.39 ± 1.79 | 0.11 | 0.40 | 1.60 |
D005 | 119.06 | 31.20 | 0.29 ± 0.47 | −0.04 | −0.51 * | −1.88 * | F007 | 115.78 | 30.51 | 0.14 ± 0.15 | 0.00 | 0.14 | 0.44 |
D006 | 118.97 | 31.11 | 118.40 ± 15.46 | 2.59 | 0.36 | 1.06 | F008 | 115.28 | 29.28 | 97.18 ± 16.91 | −0.27 | 0.20 | 0.75 |
Class | Area Sig. Decreased (p < 0.05, %) | Area Sig. Increased (p < 0.05, %) | Total Numbers of Lakes in Each Class | ||||||
---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | ||
I | 0.00 | 0.00 | 25.00 | 0.00 | 0.00 | 25.00 | 0.00 | 0.00 | 4 |
II | 14.29 | 0.00 | 42.86 | 42.86 | 0.00 | 0.00 | 0.00 | 0.00 | 7 |
III | 11.11 | 22.22 | 33.33 | 33.33 | 0.00 | 11.11 | 0.00 | 0.00 | 9 |
IV | 12.50 | 15.28 | 35.42 | 13.19 | 8.33 | 9.72 | 2.78 | 10.42 | 144 |
V | 25.00 | 33.33 | 25.00 | 50.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12 |
VI | 12.50 | 25.00 | 25.00 | 25.00 | 0.00 | 37.50 | 0.00 | 0.00 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, S.; Cen, Y.; Huang, C.; Zhang, H.; Sun, X.; Tong, Q. Monitoring Spatio-Temporal Dynamics in the Eastern Plain Lakes of China Using Long-Term MODIS UNWI Index. Remote Sens. 2022, 14, 985. https://doi.org/10.3390/rs14040985
Zhang L, Wang S, Cen Y, Huang C, Zhang H, Sun X, Tong Q. Monitoring Spatio-Temporal Dynamics in the Eastern Plain Lakes of China Using Long-Term MODIS UNWI Index. Remote Sensing. 2022; 14(4):985. https://doi.org/10.3390/rs14040985
Chicago/Turabian StyleZhang, Lifu, Sa Wang, Yi Cen, Changping Huang, Hongming Zhang, Xuejian Sun, and Qingxi Tong. 2022. "Monitoring Spatio-Temporal Dynamics in the Eastern Plain Lakes of China Using Long-Term MODIS UNWI Index" Remote Sensing 14, no. 4: 985. https://doi.org/10.3390/rs14040985
APA StyleZhang, L., Wang, S., Cen, Y., Huang, C., Zhang, H., Sun, X., & Tong, Q. (2022). Monitoring Spatio-Temporal Dynamics in the Eastern Plain Lakes of China Using Long-Term MODIS UNWI Index. Remote Sensing, 14(4), 985. https://doi.org/10.3390/rs14040985