Long-Term Impacts of COVID-19 Lockdown on the NO2 Concentrations and Urban Thermal Environment: Evidence from the Five Largest Urban Agglomerations in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection and Preprocessing
2.2.1. TROPOMI/Sentinel-5p Data (NO2)
2.2.2. MODIS Data (LST)
2.3. Methods
2.3.1. Calculation of NO2 Time Effect
2.3.2. Reclassification of LST
2.3.3. Quantification of LST Patch Aggregation
3. Results
3.1. Temporal Variation in NO2
3.2. Temporal Variation in LST
3.3. Spatial Pattern Analysis of NO2
3.4. Thermal Environment Spatial Pattern Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, F.; Yu, T.; Du, R.H.; Fan, G.H.; Liu, Y.; Liu, Z.B.; Xiang, J.; Wang, Y.M.; Song, B.; Gu, X.Y.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Serafini, G.; Parmigiani, B.; Amerio, A.; Aguglia, A.; Sher, L.; Amore, M. The psychological impact of COVID-19 on the mental health in the general population. QJM-AN Int. J. Med. 2020, 113, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Van Bavel, J.J.; Baicker, K.; Boggio, P.S.; Capraro, V.; Cichocka, A.; Cikara, M.; Crockett, M.J.; Crum, A.J.; Douglas, K.M.; Druckman, J.N.; et al. Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 2020, 4, 460–471. [Google Scholar] [CrossRef]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Zheng, Z.F.; Yim, S.Y.L.; Roth, M.; Ren, G.Y.; Gao, Z.Q.; Wang, T.J.; Li, Q.X.; Shi, C.N.; Ning, G.C.; et al. PM2.5 Pollution modulates wintertime urban heat island intensity in the Beijing-Tianjin-Hebei megalopolis, China. Geophys. Res. Lett. 2020, 47, e2019GL084288. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Horne, B.D.; Joy, E.A.; Hofmann, M.G.; Gesteland, P.H.; Cannon, J.B.; Lefler, J.S.; Blagev, D.P.; Korgenski, E.K.; Torosyan, N.; Hansen, G.I.; et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am. J. Respir. Crit. Care Med. 2018, 198, 759–766. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Xie, J.G.; Huang, F.M.; Cao, L.Q. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 7. [Google Scholar] [CrossRef]
- Zheng, P.; Chen, Z.J.; Liu, Y.H.; Song, H.B.; Wu, C.H.; Li, B.Y.; Kraemer, M.U.G.; Tian, H.Y.; Yan, X.; Zheng, Y.X.; et al. Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: Evidence from the first epidemic wave in China. Environ. Pollut. 2021, 276, 9. [Google Scholar] [CrossRef]
- Travaglio, M.; Yu, Y.Z.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Friel, S.; Dixon, J.; Corvalan, C.; Rehfuess, E.; Campbell-Lendrum, D.; Gore, F.; Bartram, J. Urban environmental health hazards and health equity. J. Urban Health-Bull. N. Y. Acad. Med. 2007, 84, I86–I97. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, J.; Yang, W.; Wang, C.; Bärnighausen, T. COVID-19 control in China during mass population movements at New Year. Lancet 2020, 395, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.-Q.; Peng, H.-J. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J. Clin. Med. 2020, 9, 575. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Wang, M.; Huang, C.; Kinney, P.L.; Anastas, P.T. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. Lancet Planet. Health 2020, 4, e210–e212. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Sannino, A.; D’Emilio, M.; Castellano, P.; Amoruso, S.; Boselli, A. Analysis of Air Quality during the COVID-19 Pandemic Lockdown in Naples (Italy). Aerosol Air Qual. Res. 2021, 21, 200381. [Google Scholar] [CrossRef]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Mousavinezhad, S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 2021, 754, 142226. [Google Scholar] [CrossRef]
- Stratoulias, D.; Nuthammachot, N. Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Sci. Total Environ. 2020, 746, 9. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in Sao Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Rojas, J.P.; Urdanivia, F.R.; Garay, R.A.; Garcia, A.J.; Enciso, C.; Medina, E.A.; Toro, R.A.; Manzano, C.; Leiva-Guzman, M.A. Effects of COVID-19 pandemic control measures on air pollution in Lima metropolitan area, Peru in South America. Air Qual. Atmos. Health 2021, 14, 925–933. [Google Scholar] [CrossRef]
- Bar, S.; Parida, B.R.; Mandal, S.P.; Pandey, A.C.; Kumar, N.; Mishra, B. Impacts of partial to complete COVID-19 lockdown on NO2 and PM2.5 levels in major urban cities of Europe and USA. Cities 2021, 117, 103308. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. J. Environ. Sci. 2021, 99, 346–353. [Google Scholar] [CrossRef]
- Das, R.D.; Bandopadhyay, S.; Das, M.; Chowdhury, M. Global Air Quality Change Detection during COVID-19 Pandemic Using Space-Borne Remote Sensing and Global Atmospheric Reanalysis. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Ahmedabad, India, 1–4 December 2020; pp. 158–161. [Google Scholar]
- Biswal, A.; Singh, V.; Singh, S.; Kesarkar, A.P.; Ravindra, K.; Sokhi, R.S.; Chipperfield, M.P.; Dhomse, S.S.; Pope, R.J.; Singh, T.; et al. COVID-19 lockdown-induced changes in NO2 levels across India observed by multi-satellite and surface observations. Atmos. Chem. Phys. 2021, 21, 5235–5251. [Google Scholar] [CrossRef]
- Kerridge, B.; Siddans, R.; Moore, D.P.; Remedios, J. Diagnosing air quality changes in the UK during the COVID-19 lockdown using TROPOMI and GEOS-Chem. Environ. Res. Lett. 2021, 16, 054031. [Google Scholar] [CrossRef]
- Ferrando, M.; Hong, T.; Causone, F. A simulation-based assessment of technologies to reduce heat emissions from buildings. Build. Environ. 2021, 195, 107772. [Google Scholar] [CrossRef]
- Potter, C.; Alexander, O. Impacts of the San Francisco Bay Area shelter-in-place during the COVID-19 pandemic on urban heat fluxes. Urban Clim. 2021, 37, 100828. [Google Scholar] [CrossRef]
- Maithani, S.; Nautiyal, G.; Sharma, A. Investigating the effect of lockdown during COVID-19 on land surface temperature: Study of Dehradun city. India. J. Indian Soc. Remote Sens. 2020, 48, 1297–1311. [Google Scholar] [CrossRef]
- Alqasemi, A.S.; Hereher, M.E.; Kaplan, G.; Al-Quraishi, A.M.F.; Saibi, H. Impact of COVID-19 lockdown upon the air quality and surface urban heat island intensity over the United Arab Emirates. Sci. Total Environ. 2021, 767. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Abbas, S.; Qamer, F.M.; Wong, M.S.; Rasul, G.; Irteza, S.M.; Shahzad, N. Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. J. Clean. Prod. 2021, 291. [Google Scholar] [CrossRef]
- Cai, Z.; Tang, Y.; Zhan, Q.M. A cooled city? Comparing human activity changes on the impact of urban thermal environment before and after city-wide lockdown. Build. Environ. 2021, 195, 107729. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Chen, A.; Yao, L.; Sun, R.; Chen, L. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Fan, L.P.; Fu, S.; Wang, X.; Fu, Q.Y.; Jia, H.H.; Xu, H.; Qin, G.M.; Hu, X.; Cheng, J.P. Spatiotemporal variations of ambient air pollutants and meteorological influences over typical urban agglomerations in China during the COVID-19 lockdown. J. Environ. Sci. 2021, 106, 26–38. [Google Scholar] [CrossRef]
- Cai, Z.; Tang, Y.; Zhang, Q.M. Changes of the Thermal Environment Caused by a City-Wide Lockdown:The Case of Wuhan City. China City Plan. Rev. 2020, 29, 55–62. [Google Scholar]
- Eum, J.H.; Scherer, D.; Fehrenbach, U.; Woo, J.H. Development of an urban landcover classification scheme suitable for representing climatic conditions in a densely built-up Asian megacity. Landsc. Urban Plan. 2011, 103, 362–371. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sezen, I.; Sari, E.N. The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey. Environ. Ecol. Stat. 2021, 28, 733–759. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Yao, Y.B. Multi-Time Scale Analysis of Regional Aerosol Optical Depth Changes in National-Level Urban Agglomerations in China Using Modis Collection 6.1 Datasets from 2001 to 2017. Remote Sens. 2019, 11, 201. [Google Scholar] [CrossRef] [Green Version]
- Bian, J. Recent advances in the study of atmospheric vertial structure in upper troposphere and low stratosphere. Adv. Earth Sci. 2009, 24, 262–271. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Boersma, K.F.; van Vliet, J.; Zhang, X.M.; van der, R.; Zanis, P.; de Laat, J. Detection of NO2 pollution plumes from individual ships with the TROPOMI/S5P satellite sensor. Environ. Res. Lett. 2020, 15, 124037. [Google Scholar] [CrossRef]
- Huang, G.Y.; Sun, K. Non-negligible impacts of clean air regulations on the reduction of tropospheric NO2 over East China during the COVID-19 pandemic observed by OMI and TROPOMI. Sci. Total Environ. 2020, 745, 141023. [Google Scholar] [CrossRef]
- Wan, Z.M.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.M. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Wang, W.; Liang, S.; Meyers, T. Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ. 2008, 112, 623–635. [Google Scholar] [CrossRef]
- Wang, M.M.; He, G.J.; Zhang, Z.M.; Wang, G.Z.; Wang, Z.H.; Yin, R.Y.; Cui, S.A.; Wu, Z.J.; Cao, X.J. A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 204–217. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Wang, D.; Sheng, Y. The Impact of Energy Consumption on the Surface Urban Heat Island in China’s 32 Major Cities. Remote Sens. 2017, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Dutta, I.; Das, A. Exploring the Spatio-temporal pattern of regional heat island (RHI) in an urban agglomeration of secondary cities in Eastern India. Urban Clim. 2020, 34, 100679. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 1 July 2021).
- Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Duffy, D.Q.; Little, M.M.; Yang, C. Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Sci. Total Environ. 2021, 750, 141592. [Google Scholar] [CrossRef]
- Shehzad, K.; Sarfraz, M.; Shah, S.G.M. The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown. Environ. Pollut. 2020, 266, 115080. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Chen, Q.-X.; Huang, C.-L.; Yuan, Y.; Tan, H.-P. Influence of COVID-19 Event on air quality and their association in mainland China. Aerosol Air Qual. Res. 2020, 20, 1541–1551. [Google Scholar] [CrossRef]
- Kenawy, L.A.M.; Lopez-Moreno, J.I.; McCabe, M.F.; Domínguez-Castro, F.; Peña-Angulo, D.; Gaber, I.M.; Alqasemi, A.S.; Al Kindi, K.M.; Al-Awadhi, T.; Hereher, M.E.; et al. The impact of COVID-19 lockdowns on surface urban heat island changes and air-quality improvements across 21 major cities in the Middle East. Environ. Pollut. 2021, 288, 117802. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M.; Mhangara, P. Temporal Analysis of Changes in Anthropogenic Emissions and Urban Heat Islands during COVID-19 Restrictions in Gauteng Province, South Africa. Aerosol Air Qual. Res. 2021, 21, 200437. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Xue, T.; Zhang, Q.; Geng, G.N.; Tong, D.; Li, X.; He, K.B. Air quality improvements and health benefits from China’s clean air action since 2013. Environ. Res. Lett. 2017, 12, 114020. [Google Scholar] [CrossRef]
Urban Agglomeration | Total Area (km2), (Proportion) | Core Cities | Total Population(Million), (Proportion) | GDP (Billion USD), (Proportion) |
---|---|---|---|---|
Beijing–Tianjin–Hebei urban agglomeration (BTH) | 218,000, 2.3% | Beijing, Tianjin | 107, 7.4% | 1299.6, 8.3% |
Yangtze River Delta urban agglomeration (YRD) | 211,700, 2.2% | Shanghai | 188.0, 13.0% | 3936.1, 25.2% |
Yangtze River Middle-Reach urban agglomeration (YRMR) | 326,100, 3.4% | Wuhan, Changsha, Hefei, Nanchang | 105.8, 7.3% | 1000.9, 6.4% |
Cheng-Yu urban agglomeration (CY) | 185,000, 1.9% | Chengdu, Chongqing | 86.2, 6.0% | 1707.7, 10.9% |
Pearl River Delta urban agglomeration (PRD) | 56,500, 0.6% | Guangzhou, Shenzhen, Hong Kong | 132.3, 9.2% | 1461.2, 9.3% |
Category | Abbreviation | Description |
---|---|---|
Low | L areas | |
Sub-low | S-L areas | |
Median | M areas | |
Sub-high | S–H areas | |
High | H areas |
Metrics | Formula | Description |
---|---|---|
Number of patches (NP) | [54] ni = number of patches in the landscape of patch type (class) i. | Number of patches: more patches indicate more fragmentation. |
Aggregation Index (AI) | [54] gij = number of similar adjacencies (joins) between pixels of patch type (class) i based on the single-count method. maxgij = maximum number of similar adjacencies (joins) between pixels of patch type (class) i based on the single-count method. | Aggregation of the landscape: a larger value indicates a higher extent of aggregation. |
Cohesion Index (CI) | [54] pij = perimeter of patch ij in terms of number of cellsurfaces. aij = area of patch ij in terms of the number of cell-surfaces. n = total number of cells in the landscape | Dispersion and interspersion of the landscape: a higher value reflects higher clustering. |
Year | NP | CI | AI |
---|---|---|---|
2019 | 1739 | 98.65 | 84.27 |
2020 | 3887 | 92.50 | 74.38 |
2021 | 2332 | 96.47 | 81.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Ye, H.; Zheng, J.; Leng, X.; Meng, D.; Li, Y. Long-Term Impacts of COVID-19 Lockdown on the NO2 Concentrations and Urban Thermal Environment: Evidence from the Five Largest Urban Agglomerations in China. Remote Sens. 2022, 14, 921. https://doi.org/10.3390/rs14040921
Zhang N, Ye H, Zheng J, Leng X, Meng D, Li Y. Long-Term Impacts of COVID-19 Lockdown on the NO2 Concentrations and Urban Thermal Environment: Evidence from the Five Largest Urban Agglomerations in China. Remote Sensing. 2022; 14(4):921. https://doi.org/10.3390/rs14040921
Chicago/Turabian StyleZhang, Ninghui, Haipeng Ye, Ji Zheng, Xuejing Leng, Dan Meng, and Yu Li. 2022. "Long-Term Impacts of COVID-19 Lockdown on the NO2 Concentrations and Urban Thermal Environment: Evidence from the Five Largest Urban Agglomerations in China" Remote Sensing 14, no. 4: 921. https://doi.org/10.3390/rs14040921
APA StyleZhang, N., Ye, H., Zheng, J., Leng, X., Meng, D., & Li, Y. (2022). Long-Term Impacts of COVID-19 Lockdown on the NO2 Concentrations and Urban Thermal Environment: Evidence from the Five Largest Urban Agglomerations in China. Remote Sensing, 14(4), 921. https://doi.org/10.3390/rs14040921