The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite
Abstract
:1. Introduction
2. Satellite and Payloads
3. Data Preprocessing Methods
4. Results
4.1. Single Orbit Analysis
4.2. Multi-Orbits Analysis
4.3. Background Map
4.4. Multi-Parameter Comparisons
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, C.-Y. Earthquake prediction: Electromagnetic emissions before earthquakes. Nature 1983, 301, 377. [Google Scholar] [CrossRef]
- Gokhberg, M.B.; Morgounov, V.A.; Yoshino, T.; Tomizawa, I. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan. J. Geophys. Res. 1982, 87, 7824. [Google Scholar] [CrossRef]
- Nestorov, G. A possible ionospheric presage of the Vrancha earthquake of March 4, 1977. Bolgarska Akademiia Nauk Doklady 1979, 32, 443–446. [Google Scholar]
- Hayakawa, M. Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation. Earthq. Sci. 2011, 24, 609–637. [Google Scholar] [CrossRef] [Green Version]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 234. [Google Scholar]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Larkina, V.I.; Migulin, V.V.; Molchanov, O.A.; Kharkov, I.P.; Inchin, A.S.; Schvetcova, V.B. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones. Phys. Earth Planet. Inter. 1989, 57, 100–109. [Google Scholar] [CrossRef]
- Parrot, M. VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere. Phys. Earth Planet. Inter. 1989, 57, 86–99. [Google Scholar] [CrossRef]
- Chmyrev, V.; Isaev, N.; Bilichenko, S.; Stanev, G. Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over an earthquake centre. Phys. Earth Planet. Inter. 1989, 57, 110–114. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. The Possibility of Earthquake Forecasting; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Parrot, M.; Berthelier, J.; Lebreton, J.; Sauvaud, J.; Santolik, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth Parts A/B/C 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Zhima, Z.; Xuhui, S.; Xuemin, Z.; Jinbin, C.; Jianping, H.; Xinyan, O.; Jing, L.; Lu, B. Possible ionospheric electromagnetic perturbations induced by the Ms7. 1 Yushu earthquake. Earth Moon Planets 2012, 108, 231–241. [Google Scholar] [CrossRef]
- Zhima, Z.; Hu, Y.; Pierstanti, M.; Shen, X.; De Santis, A.; Yan, R.; Yang, Y.; Zhao, S.; Zhang, Z.; Wang, Q. The seismic electromagnetic emissions during the 2010 Mw 7.8 Northern Sumatra Earthquake revealed by DEMETER satellite. Front. Earth Sci. 2020, 8, 459. [Google Scholar] [CrossRef]
- Nemec, F.; Santolík, O.; Parrot, M. Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes: A statistical study. J. Geophys. Res. 2009, 114, A04303. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, M.; Yu, T.; Wan, W.; Lei, J.; Liu, L.; Ning, B. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake? J. Geophys. Res. Space Phys. 2008, 113, A11304. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Pulinets, S.; Legen’ka, A.D. Spatial-temporal characteristics of the large scale disturbances of electron concentration observed in the F-region of the ionosphere before strong earthquakes. Cosm. Res. 2003, 41, 221–229. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Jin, S.; Piscini, A.; Campuzano, S.A. Magnetic field and electron density anomalies from Swarm satellites preceding the major earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) seismic sequence. Pure Appl. Geophys. 2020, 177, 305–319. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Picozzo, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, Y.; Zhang, Y.; Gou, X.; Cheng, B.; Wang, J.; Li, L. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys. 2018, 2, 455–461. [Google Scholar] [CrossRef]
- Pollinger, A.; Lammegger, R.; Magnes, W.; Hagen, C.; Ellmeier, M.; Jernej, I.; Leichtfried, M.; Kürbisch, C.; Maierhofer, R.; Wallner, R.; et al. Coupled dark state magnetometer for the China Seismo-Electromagnetic Satellite. Meas. Sci. Technol. 2018, 29, 095103. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zeng, L.; Zhan, F.; Wang, Z.; Wang, Y.; Chen, Y.; Meng, Q.; Ji, Z.; Wang, P.; Liu, Z.; et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci. China Technol. Sci. 2018, 61, 653–658. [Google Scholar] [CrossRef]
- Huang, J.; Lei, J.; Li, S.; Zeren, Z.; Li, C.; Zhu, X.; Yu, W. The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results. Earth Planet. Phys. 2018, 2, 469–478. [Google Scholar] [CrossRef]
- Liu, C.; Guan, Y.; Zheng, X.; Zhang, A.; Piero, D.; Sun, Y. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2019, 62, 829–838. [Google Scholar] [CrossRef]
- Lin, J.; Shen, X.; Hu, L.; Wang, L.; Zhu, F. CSES GNSS ionospheric inversion technique, validation and error analysis. Sci. China Technol. Sci. 2018, 61, 669. [Google Scholar] [CrossRef]
- Li, X.Q.; Xu, Y.B.; An, Z.H.; Liang, X.H.; Wang, P.; Zhao, X.Y.; Wang, H.Y.; Lu, H.; Ma, Y.Q.; Shen, X.H.; et al. The high-energy particle package onboard CSES. Radiat. Detect. Technol. Methods 2019, 3, 22. [Google Scholar] [CrossRef]
- Picozza, P.; Battiston, R.; Ambrosi, G.; Bartocci, S.; Basara, L.; Burger, W.J.; Campana, D.; Carfora, L.; Casolino, M.; Castellini, G.; et al. Scientific Goals and In-orbit Performance of the High-energy Particle Detector on Board the CSES. Astrophys. J. Suppl. Ser. 2019, 243, 16. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Parrot, M. Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events. J. Geophys. Res. 1994, 99, 23339–23347. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res. Space Phys. 2006, 111, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Zhima, Z.; Xiong, C.; Shen, X.; Huang, J.; Guan, Y.; Zhu, X.; Liu, C. Comparison of Electron Density and Temperature from the CSES Satellite With Other Space-Borne and Ground-Based Observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027747. [Google Scholar] [CrossRef]
- Zhima, Z.; Hu, Y.; Shen, X.; Chu, W.; Piersanti, M.; Parmentier, A.; Zhang, Z.; Wang, Q.; Huang, J.; Zhao, S.; et al. Storm-Time Features of the Ionospheric ELF/VLF Waves and Energetic Electron Fluxes Revealed by the China Seismo-Electromagnetic Satellite. Appl. Sci. 2021, 11, 2617. [Google Scholar] [CrossRef]
- Cui, J.; Shen, X.; Zhang, J.; Ma, W.; Chu, W. Analysis of spatiotemporal variations in middle-tropospheric to upper-tropospheric methane during the Wenchuan M s = 8.0 earthquake by three indices. Nat. Hazards Earth Syst. Sci. 2019, 19, 2841–2854. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; De Santis, A.; Piscini, A.; Cianchini, G.; Ventura, G.; Shen, X. Multi-parametric climatological analysis reveals the involvement of fluids in the preparation phase of the 2008 Ms 8.0 wenchuan and 2013 Ms 7.0 lushan earthquakes. Remote Sens. 2020, 12, 1663. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the May 12 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar] [CrossRef]
- Zhu, K.; Zheng, L.; Yan, R.; Shen, X.; Zeren, Z.; Xu, S.; Chu, W.; Liu, D.; Zhou, N.; Guo, F. Statistical study on the variations of electron density and temperature related to seismic activities observed by CSES. Nat. Hazards Res. 2021, 1, 88–94. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, C.; Shen, X.; Zhima, Z. Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation. J. Geophys. Res. Space Phys. 2019, 124, 4697–4709. [Google Scholar] [CrossRef]
- Huang, Q.; Han, P.; Hattori, K.; Ren, H. Electromagnetic Signals Associated with Earthquakes. In Seismoelectric Exploration; Wiley: Hoboken, NJ, USA, 2020; pp. 415–436. [Google Scholar]
- Zhima, Z.; Zhou, B.; Zhao, S.; Wang, Q.; Huang, J.; Zeng, L.; Chen, J.L.Y.; Li, C.; Yang, D.; Sun, X.; et al. Cross-calibration on the electromagnetic field detection payloads of the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2022, 18. [Google Scholar]
- Yang, Y.; Zhou, B.; Hulot, G.; Olsen, N.; Wu, Y.; Xiong, C.; Stolle, C.; Zhima, Z.; Huang, J.; Zhu, X. CSES high precision magnetometer data products and example study of an intense geomagnetic storm. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028026. [Google Scholar] [CrossRef]
- Yan, R.; Guan, Y.; Miao, Y.; Zhima, Z.; Xiong, C.; Zhu, X.; Liu, C.; Shen, X.; Yuan, S.; Liu, D. The regular features recorded by the Langmuir probe onboard the low earth polar orbit satellite CSES. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029289. [Google Scholar] [CrossRef]
Detection Objectives | Payloads | Parameters |
---|---|---|
The geomagnetic field | High-Precision Magnetometer (HPM) | Including two tri-axial fluxgate magnetometers (FGMs) and one coupled dark-state magnetometer (CDSM) Detection band: DC to 15 Hz The vector and scalar values |
The electromagnetic field | Search-Coil Magnetometer (SCM) | The waveform or power spectral density values in the three frequency bands: ULF: 10 Hz–200 Hz, sampling rate 1024 Hz ELF: 200 Hz–2200 Hz, sampling rate 10.24 kHz, VLF: 1.8 kHz–20 kHz, sampling rate 50 kHz |
Electric field detector (EFD) | The waveform or power spectral density values in the four frequency bands: ULF: DC–16 Hz, sampling rate 128 Hz, ELF: 6 Hz–2.2 kHz, sampling rate 5 kHz VLF: 1.8 kHz–20 kHz, sampling rate 51.2 kHz HF: 18 kHz–3.5 MHz, sampling rate 10 MHz. | |
The in situ ionospheric parameters | Plasma analyzer package (PAP) | Ion density, ion temperature, ion contents (H+, O+, He+) Ion drift velocity (Vx, Vy, Vz) |
Langmuir probe (LAP) | Electron density/temperature, the plasma/the satellite floating potential | |
The profile ionospheric parameters | GNSS Occultation Receiver (GOR) | TEC, Ne profile, the profile of air temperature and pressure, HmF2, NmF2 |
Tri-Band Beacon (TBB) | Three bands: 50/400/1066 MHz, Physical values: relative TEC, Ne Profile, ionospheric scintillation index, and ionosphere tomography | |
The energetic particles | Energetic particle detector (HEPP), including three detectors, HEPP-H, HEPP-L, and HEPP-X. | HEPP-L: Electron: 0.1–3 MeV, Proton: 2–20 MeV HEPP-H: Electron: 1.5–50 MeV, Proton: 2–20 MeV HEPP-X: Solar X-ray: 0.9–35 keV |
Italian Energetic particle detector (HEPD) | Proton flux: 30–100 MeV Electron flux: 30–200 MeV |
No. | Place | UTC | Latitude (°) | Longitude (°) | Magnitude (M) | Depth (km) | The Possible Seismo-Ionospheric Perturbation |
---|---|---|---|---|---|---|---|
1 | Mexico | 16 February 2018 23:39:38 | 16.6 | −97.75 | 7.1 | 10 | The abnormal emissions at frequencies 155.5 Hz and 1.405 kHz. The electron density and ion (O+) density increased two days before the mainshock. |
2 | Papua New Guinea | 25 February 2018 17:44:42 | −6.19 | 142.77 | 7.5 | 20 | The magnetic field enhancement at the frequency of 155 Hz nearest the epicenter 7 and 3 days before the mainshock. The electron/ion disturbed 7, 6, 5, and 2 days before the mainshock. |
3 | Loyalty Islands Region | 29 August 2018 03:51:54 | −21.95 | 170.1 | 7.1 | 20 | The electron density increased; the PSD values of the electromagnetic field at the ELF frequency increased; the energetic particle flux within 0.1–3 MeV increased during the mainshock. |
4 | Indonesia | 28 September 2018 10:02:44 | −0.25 | 119.9 | 7.4 | 10 | The electron density significantly increased 12 and 2 days before the mainshock. |
5 | Papua New Guinea | 10 October 2018 20:48:18 | −5.70 | 151.25 | 7.1 | 20 | The abnormal emissions at ULF/ELF/VLF frequencies 9 and 4 days before the mainshock. The electron density and energetic particle flux disturbed 5 and 2 days before and on the mainshock day. |
6 | Kmadek islands, New Zealand | 15 June 2019 22:55:00 | −30.80 | −178.10 | 7.2 | 20 | The in situ and occultation electron density abnormally increased within one week before the mainshock. |
7 | Southern waters of Cuba | 28 Janarury 2020 19:10:22 | 19.46 | −78.79 | 7.7 | 10 | The electron density increased over the conjugate area on January 27 and the epicenter area on January 28. |
8 | Mexico | 23 June 2020 15:29:04 | 16.14 | −95.75 | 7.4 | 10 | The electron density became disturbed 3 days before the mainshock. |
9 | Sumatra island, Indonesia | 18 August 2020 22:29:21 | −4.31 | 101.15 | 7.0 | 10 | The electron density significantly increased 10 days before the mainshock. |
10 | Maduo County, Qinghai, China | 21 May 2021 18:04:11 | 34.59 | 98.34 | 7.4 | 17 | The electron density and the electromagnetic field in the ULF/ELF band observed a simultaneous increase 8 days before the mainshock. Energetic electrons at energy levels 0.1 to 3 MeV increased 7 days and 6 days before the mainshock. The electric field intensity in the VLF band increased one day before the mainshock. |
11 | Near Alaska Peninsula | 29 July 2021 06:15:46 | 55.40 | −158.00 | 8.1 | 10 | An abnormal ULF wave appeared 10 and 2 days before the mainshock. The infrared hyperspectral methane, OLR, aerosol, and other long-term observation data observed anomalies more than a month before the earthquake. |
12 | South water of Alaska | 14 August 2021 11:57:42 | 55.30 | −157.75 | 7.0 | 10 | The abnormal ULF emissions occurred 12 and 4 days before and on the mainshock day. |
13 | Haiti region | 14 August 2021 12:29:07 | 18.35 | −73.45 | 7.3 | 10 | The electromagnetic field intensity in the ULF/ELF band increased on 4 days, and one day before the mainshock. The energetic particle flux from 100 to 200 keV increased 4 and 3 days before the mainshock. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhima, Z.; Yan, R.; Lin, J.; Wang, Q.; Yang, Y.; Lv, F.; Huang, J.; Cui, J.; Liu, Q.; Zhao, S.; et al. The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sens. 2022, 14, 905. https://doi.org/10.3390/rs14040905
Zhima Z, Yan R, Lin J, Wang Q, Yang Y, Lv F, Huang J, Cui J, Liu Q, Zhao S, et al. The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sensing. 2022; 14(4):905. https://doi.org/10.3390/rs14040905
Chicago/Turabian StyleZhima, Zeren, Rui Yan, Jian Lin, Qiao Wang, Yanyan Yang, Fangxian Lv, Jianping Huang, Jing Cui, Qinqin Liu, Shufan Zhao, and et al. 2022. "The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite" Remote Sensing 14, no. 4: 905. https://doi.org/10.3390/rs14040905
APA StyleZhima, Z., Yan, R., Lin, J., Wang, Q., Yang, Y., Lv, F., Huang, J., Cui, J., Liu, Q., Zhao, S., Zhang, Z., Xu, S., Liu, D., Chu, W., Zhu, K., Sun, X., Lu, H., Guo, F., Tan, Q., ... Shen, X. (2022). The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sensing, 14(4), 905. https://doi.org/10.3390/rs14040905