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Abstract: Change detection is one of the most important applications in the remote sensing
domain. More and more attention is focused on deep neural network based change detection
methods. However, many deep neural networks based methods did not take both the spectral
and spatial information into account. Moreover, the underlying information of fused features is
not fully explored. To address the above-mentioned problems, a Spectral-Spatial Joint Learning
Network (SSJLN) is proposed. SSJLN contains three parts: spectral-spatial joint representation,
feature fusion, and discrimination learning. First, the spectral-spatial joint representation is extracted
from the network similar to the Siamese CNN (S-CNN). Second, the above-extracted features are
fused to represent the difference information that proves to be effective for the change detection
task. Third, the discrimination learning is presented to explore the underlying information of
obtained fused features to better represent the discrimination. Moreover, we present a new loss
function that considers both the losses of the spectral-spatial joint representation procedure and the
discrimination learning procedure. The effectiveness of our proposed SSJLN is verified on four real
data sets. Extensive experimental results show that our proposed SSJLN can outperform the other
state-of-the-art change detection methods.

Keywords: multispectral imagery; spectral-spatial representation; Siamese CNN; feature fusion;
discrimination learning; change detection

1. Introduction

Change detection is the process of aiming at the identification of the differences in multitemporal
remote sensing data. The multitemporal data generally includes two or more multispectral images.
These images are usually taken in the same geographical region at two or more different times using the
same or different sensors [1,2]. The attention on change detection studies in the remote sensing domain
is focused on the geographical location and type of changes identification. It has been applied to many
fields, such as urban expansion monitoring [3–7], land cover change [8–10], damage assessment and
defoliation [11], resource management and forest mortality [12].

Recently, a large number of different change detection methods have been proposed and have
achieved very promising results. One important branch of the change detection method is based on
post-classification approaches. Post-classification methods first classify two images separately for
generating independent class maps and then label the changed pixels by comparing these two class
maps [9,13,14]. These methods do not consider the correlation between bi-temporal images, but the
correlation between bi-temporal images is very useful for the change detection task [15,16].

Image algebra based change detection methods fully consider the correlation between bi-temporal
images. Change vector analysis (CVA) [15] is a classic change detection method based on image
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algebra approaches. The change information is measured by the differences of Euclidean distance
between pixels, but it contains a lot of noise. Some image transformation based methods are proposed
to alleviate the impact of noise on the detection performance. These methods are primarily intended to
learn new transformed feature representation [17–19]. In the new learned feature space, the change
information is enlarged and unchanged information is suppressed. These transformation-based
models contain principal component analysis (PCA) [20], iteratively reweighed multivariate alteration
detection (IRMAD) [21], and slow feature analysis (SFA) [16].

Although the above-mentioned methods have made outstanding contributions to the
development of change detection domain and achieved good experimental results, most of these
traditional methods use hand-crafted features that are weak in the image representations [22]. It is
noteworthy that the good generalization ability of hierarchical features on the high level is very helpful
for human brains in the object recognition [23].

Fortunately, the deep neural network provides a new way to extract abstract, robust and high-level
features [24–26]. Deep neural networks have achieved great success in the remote sensing field.
Recently, researchers have shown the increasing interests in deep learning based approaches [24–29].
In general, deep learning based change detection methods consist of two steps: the first and also most
crucial one aims to extract effective feature representations via the deep neural network; the second
step is the discrimination procedure. Its purpose is to determine whether the areas are changed by
obtained features. The effectiveness of feature representation directly affects the change detection
accuracy. Good feature representations allow unchanged pairwise samples to be closer in the feature
space and changed pairwise samples to be farther [30]. Therefore, good feature representations can
help to improve the change detection accuracy. Liu et al. [31] propose a symmetric convolutional
coupling network (SCCN) that is verified on the optical and SAR images. The SCCN is based on Deep
Belief Network (DBN), so it is an unsupervised layerwise feature learning method. Zhan et al. [22]
present a novel supervised change detection method for optical aerial images. This method uses the
framework of the siamese convolutional network. The siamese convolutional network is trained by
the weighted contrastive loss function. Gong et al. [27] propose an unsupervised change detection
method that incorporates superpixel-based change features extraction and difference representation
learning model by neural networks. Although the superpixel-based extracted features contain spectral,
textual, and spatial information, but they are only used to obtain the labels of training samples and are
not employed to finally detect changed areas. The input of difference representation learning network
is the vectorization of the patch, it loses the spatial information. So the features used in determining
changed areas do not include spatial information. The above-mentioned methods are summarized in
Table 1.

Table 1. The change detection methods.

Branch Category Method

Conventional methods

Post-classification based methods Demir et al. [9], Muñoz-Marí et al. [13],
Volpi et al. [14]

Image algebra based methods Image difference, Image ratio, CVA [15]

Image trasnformation based methods SFA [16], PCA [20], IRMAD [21]

Deep learning based methods Deep neural network based methods Zhan et al. [22], Gong et al. [27],
Liu et al. [31]

Although the aforementioned methods have got promising results, they do not take the
spectal-spatial information into account and explore the underlying information of their corresponding
fusion features at the same time. To address the above-mentioned problems, we propose a
Spectral-Spatial Joint Learning Network (SSJLN). The proposed network is an end-to-end deep neural
network. As shown in Figure 1, our proposed network contains three parts: spectral-spatial joint
representation, feature fusion, and discrimination learning.



Remote Sens. 2019, 11, 240 3 of 17

�

�

�

�

conv1

conv1

conv2

conv2

pool1

pool1

fc1

fc1

changed

feature fusion spectral-spatial joint representation discrimination learning

sigmoid

prediction

fc3

fc4

fc2

. . . 

. . . 

1I

2I

1P

2P
unchanged

Figure 1. Flowchart of our proposed spectral-spatial joint learning network.

First, the spectral-spatial joint representation is learned from the deep network that is similar
to Siamese Convolutional Neural Network (S-CNN). Second, the spectral-spatial features are fused
to represent the difference information, which will help to recognize the changed areas. Third,
the discrimination learning part is proposed to further explore the underlying information of fused
features, which is implemented by several fully connected layers.

The contributions of our paper can be summarized as follows:

1. We propose an end-to-end network that jointly learns spectral-spatial representations for the
change detection task, named spectral-spatial joint learning network (SSJLN).

2. We present the discrimination learning part that uses the fused features obtained from the
spectral-spatial joint representation part as input. The discriminative learning can further explore
and analyze the underlying information of fused features.

3. We build a new loss function that integrates the loss of the spectral-spatial joint representation
part and the loss of the discriminative learning part to better learn spectral-spatial representations.

The organization of this paper is as follows. Section 2 will briefly discuss the related work of
S-CNN. In Section 3, our proposed spectral-spatial joint learning network will be described in detail,
which consists of the network architecture, how to train the network and how to predict the testing
samples by the trained model. In Section 4, the effectiveness of our proposed method is verified on
four real data sets. Section 5 is the conclusion.

2. Background

Recently, S-CNN is widely used to extract patch-pairwise features and applied to many fields,
such as hyperspectral image classification [32], image patch comparison [33], change detection [22],
object tracking [34] and person re-identification [35].

S-CNN has two branch networks and the two branches have the same architecture and weights.
Each branch includes a series of convolutional, Rectified Linear Unit (ReLU) and max-pooling layers.
Each patch in the patch pair is used as input for each branch. Then, the features provided by two
branches are fed to the contrastive loss function defined in Equation (2).

p1 and p2 stand for the pairwise patch. f (p1) and f (p2) represent features provided by the two
CNN branches. The Euclidean distance between features f (p1) and f (p2) corresponding to the input
patch p1 and p2 are computed as

D = ‖ f (p1)− f (p2)‖2. (1)

The margin-based contrastive loss function is defined as follows:

L =
1
2
(1− l)D2 +

1
2

lmax(m− D, 0)2, (2)

where l denotes a binary label that means whether the input pairwise patch p1 and p2 is dissimilar
(l = 1) or similar (l = 0). m > 0 is the margin for dissimilar pairs. D represents the distance between
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features f (p1) and f (p2). When the loss function L obtains the minimum value, the value of D is
small for similar pairs and large for dissimilar pairs [36]. When the distance between dissimilar pairs is
smaller than the margin m, dissimilar pairs can affect the value of the loss function L. Moreover, when
the distance between dissimilar pairs is larger than the margin m, dissimilar pairs will not contribute
to the loss function [22,30]. Hence, the purpose of this loss function is to make similar pairs closer in
the feature space and push dissimilar pairs apart.

3. Our Method

The network architecture will be first described in detail in this section. Then, the presented new
loss function will be discussed. Finally, we will give more details of training and prediction.

3.1. Network Architecture

As shown in Figure 1, the proposed SSJLN is an end-to-end deep network architecture, which uses
the supervised information to directly guide both the spectral-spatial joint representation procedure
and the discrimination learning procedure. The extracted features from the spectral-spatial joint
representation part are fused, then fused features are fed to the discrimination learning part to explore
the underlying information. SSJLN contains several types of layers that are commonly used in deep
learning network for computer vision.

SSJLN contains three parts: spectral-spatial joint representation, feature fusion, and discrimination
learning as shown in Figure 1. We will discuss the spectral-spatial joint representation, feature fusion,
and discrimination learning separately in the following.

3.1.1. Spectral-Spatial Joint Representation Part

The spectral-spatial joint representation part is similar to S-CNN using two tower structure
sharing the same parameters.

Obviously, the input of the spectral-spatial joint representation part is a series of corresponding
pairwise patches p1,i and p2,i, i = 1, . . . , N with the size of 5× 5, where p1,i and p2,i are taken from I1

and I2, respectively. N represents the number of pixels in the image I1 or I2. There are two reasons to
use the patch as input. First, the isolated pixel is very sensitive to the noise [31]. Second, the patch
considers both the spectral information of the pixel to be detected and its’ adjacent pixels [37]. In other
word, using the patch as input takes both the spectral and spatial information into account. The patch
size selected by users is an important factor affecting the detection performance, which will be verified
in Section 4.4.1. Using the patch as input is based on the assumption that the adjacent pixels generally
belong to the same class in the spatial space.

More specifically, the spectral-spatial joint representation part contains 2 convolutional layers
(conv1 and conv2) and 1 pooling layer (pool1) and 1 fully-connected layer (FC1). Both the convolution
and fully-connected layers use ReLU as the activation function [38]. The aim of this part is to learn
spectral-spatial joint representations.

3.1.2. Feature Fusion Part

Generally, the learned pairwise features are fused to detect changes because the correlation
between the pairwise features is very useful for the change detection task [15,16]. There are many
fusion strategies, but the most common ones are only two strategies: stack and difference. In [27],
the stacked strategy is employed. In [15,39], the difference strategy is used.

The difference features carry useful information for the change detection problem [39,40].
The pixel with small value is likely to be unchanged and with large value tends to be changed.
Therefore, the difference features are very informative [39]. Moreover, in the feature space that learned
from the spectral-spatial joint representation part, the distance between two learned features is smaller
for unchanged pairs and larger for changed pairs. Hence, the difference strategy is used as the feature
fusion strategy in our paper.
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Suppose that f1 and f2 are the transforming functions for p1 and p2, respectively, where p1 is from
I1 and p2 is from I2. The difference feature (DF) can be calculated as:

DF = F(p1, p2) = f1(p1)	 f2(p2), (3)

where 	 is the difference operator. f1(p1) and f2(p2) represent the extracted features. Since the
difference feature is informative, the difference feature can better represent the changed areas.
The difference feature with small value is prone to be unchanged and this with high value is likely to
be changed.

Since the deep neural network can better represent the nonlinear relationship between input and
output, S-CNN in which the two branches share with the same parameters is adopted to transform p1

and p2 into features f1(p1) and f2(p2), respectively in our paper. In other words, p1 and p2 are fed to
the two branches of S-CNN to obtain spectral-spatial joint representations f1(p1) and f2(p2).

3.1.3. Discrimination Learning Part

Although fused features are very useful to detect changed areas, the underlying information of
fused features can also improve the discrimination of fused features. Hence, the discrimination learning
part uses fused features as input to learn underlying information of fused features. Hence, the abstract
features are extracted by the discrimination learning part, which is helpful for classification [41].
The effectiveness of the discrimination learning is verified and demonstrated in Section 4.4.3.

The discrimination learning part is modeled by two fully-connected layers with ReLU nonlinearity
(FC2-FC3) and one fully-connected layer with sigmoid nonlinearity and cross-entropy (FC4).
The output value of FC4 is in [0, 1]. These values are non-negative and can be added up to one.
Hence, they can be seen as the probability estimation of the network that the pairwise patches are
changed or unchanged, respectively.

3.2. Loss Function

We present a new loss function that takes both the losses of the spectral-spatial joint representation
part and the discrimination part into account. Hence, the overall loss function Loverall contains two
parts: L1 and L2, which is defined as follows:

Loverall = ω1L1 + ω2L2, (4)

where ω1 and L1 are the weight and the loss of the spectral-spatial joint representation part in SSJLN.
ω2 and L2 represent the weight and the loss of the discrimination learning part in SSJLN.

L1 is calculated by the contrastive loss function as shown in Equation (5). The aim of the
contrastive loss function is to make similar pairs closer in the feature space and push dissimilar
pairs apart.

L1 =
1
2
(1− l)D2 +

1
2

lmax(m− D, 0)2, (5)

where l denotes a binary label that means whether the input pairwise patch p1 and p2 is dissimilar
(l = 1) or similar (l = 0). D represents the distance between feature vectors f (p1) and f (p2). m > 0 is
the margin for dissimilar pairs.

L2 is computed by the cross-entropy loss function that is defined as follows:

E = − 1
n

n

∑
i=1

[yilogŷi + (1− yi)log(1− ŷi)], (6)

where the value of yi is 0 or 1, which represents the label information of input pair. 1 indicates that the
input pair is changed. ŷi indicates the probability that the prediction of the input patch pair is positive.
ŷi is calculated by the sigmoid function.
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Since the input of the discrimination learning part is obtained by fusing the spectral-spatial
joint features, the intermediate features acquired from FC2 is also important for classification [42].
However, many methods only focus on the final output features and ignore the important effect of the
intermediate features. The extra information provided by the intermediate features can enhance the
classification performance [42]. Hence, L2 contains two part: EFC3 and EFC2. EFC3 is the cross-entropy
loss computed on the FC3 layer. EFC2 is also the cross-entropy loss that is calculated on the FC2 layer.
L2 is defined as follows:

L2 = EFC3 + λEFC2, (7)

where λ is a parameter that trades off the EFC3 term and the EFC2 term. The value of λ indicates that
which term gives a more contribution to the loss L2. Generally, features obtained from FC3 is more
abstract than those of FC2, therefore, λ should not be larger than 1. The effectiveness of the proposed
new loss function is verified and demonstrated in Section 4.4.4.

3.3. Training and Prediction

The SSJLN is trained in a supervised manner, as shown in Figure 1. Since the training data set
may be quite large, a stochastic approximation of this objective is employed in practice. Training
data is randomly divided into several mini-batches. The forward propagation is performed on the
current mini-batch, and then the output and loss are calculated. Back propagation is then employed
to calculate the gradients on this batch, and the network weights are updated [6]. The weights are
updated by the stochastic gradient descent (SGD) strategy.

Although our proposed SSJLN contains three parts: spectral-spatial joint representation, feature
fusion, and discrimination learning, the proposed SSJLN is trained in the unified framework. So it is
very easy to predict the testing pairs in our proposed SSJLN. The testing pairwise patches are directly
fed to the trained SSJLN. The obtained prediction is the detection result.

4. Experiments

In this section, several experiments are performed on the four multispectral data sets to prove the
effectiveness of our proposed SSJLN. First, we give a detailed description of four real multispectral data
sets. Second, comparison methods and evaluation metrics are described in detail. Third, the influence of
important parameters or steps on the detection results will be analyzed. Finally, we show experimental
results on four data sets and analyze the experimental results in detail.

4.1. Datasets

• ETM+ Data : Taizhou and Kunshan data sets are collected by the Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) sensor. The images acquired by ETM+ detectors have 6 spectral bands
(including bands 1–5 and 7), and its spatial resolution is 30 m. The ground truth of Taizhou and
Kunshan data sets are obtained from [43].

The Taizhou date set consisting of two images with the size of 400× 400 is acquired from Taizhou
city, China. One of two images is collected on 17 March 2000, and the other is collected on 6
February 2003. The types of change included in the Taizhou data set is mainly the urban expansion.
Figure 2a shows the pseudocolor images and ground truth of the Taizhou date set.

The Kunshan date set containing two images with the size of 800× 800 is acquired from Kunshan
city in 2000 and 2003 at the same time. Figure 2b shows the pseudocolor images and ground truth
of the Kunshan data set. Compared with Taizhou data set, it can be clearly seen that Kunshan
data has more complex texture because the main change types of Kunshan data set contain both
urban expansion and farmland changes.

• GF-1 Data: The Minfeng and Hongqi Canal data sets are both acquired by GF-1 satellite. Both of
them consist of two images, one of which is collected on 9 December 2013, and the other one is
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collected on 16 October 2015. The spatial resolution of the acquired images is 2 m, and the images
include 4 spectral bands.

The pseudocolor images and ground truth of Minfeng data set shown in Figure 3a display the
changes of buildings around Minfeng lake. The size of images in Minfeng data set is 651× 461.
The pseudocolor images and ground truth of Hongqi Canal data set show the changes of Hongqi
Canal riverway near the Xijiu village, as shown in Figure 3b. The size of images in Hongqi data
set is 539× 543.

    (1)                                                             (2)                                                             (3)

(a) Taizhou
  (1)                                                             (2)                                                              (3)

(b) Kunshan

Figure 2. Pseudocolor images of Taizhou and Kunshan data sets in (1) 2000. (2) 2003. (3) ground truth.
The background is black, the unchanged samples are gray, and the changed samples are white.

(1)                                                (2)                                                (3)

(a) Minfeng

(1)                                                 (2)                                                 (3)

(b) Hongqi

Figure 3. Pseudocolor images of Minfeng and Hongqi data sets in (1) 2013. (2) 2015. (3) ground truth.
The unchanged samples is black, and the changed samples are white.

4.2. Competitors

The proposed SSJLN is compared with the state-of-the-art methods as follows:

• CVA [15] is a classic unsupervised change detection algorithm in the field of remote sensing.
CVA detects the changed areas by using the magnitude of the difference vectors.

• Iteratively reweighed MAD (IRMAD) [21] gives high weights to the observations that vary little
with time through an iterative strategy compared with multivariate alteration detection (MAD)
and is widely used in the change detection domain.

• SCCN [31] projects the two input images into a feature space with an unsupervised deep
network including one convolutional layer and several coupling layers, which has two sides.
By calculating the distance in the learned feature space, the difference map is generated to detect
the changed areas.

• S-CNN+Threshold [22] uses S-CNN to extract abstract and robust features with the weighted
contrastive loss. The distance between pairwise features is calculated and then is used by the
threshold strategy to generate the changed map.

• S-CNN+SVM [32] uses S-CNN to learn the deep learning features which can separate different
classes. Then features extracted from S-CNN are employed to train a linear SVM classifier.

• Superpixel-Based Difference Representation Learning (SDRL) [27] is an unsupervised change
detection method that incorporates superpixel-based change features extraction and difference
representation learning model by neural networks. The network is trained to learn the
difference representations.
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4.3. Evaluation Criteria

In order to testify the robustness and validity of our proposed SSJLN, some quantitative analysis
is essential. First, overall accuracy (OA) is used to assess the overall effectiveness of the change
detection methods.

OA = (TP + TN)/(TP + TN + FP + FN), (8)

where TP refers to true positive, TN stands for true negative, FP stands for false positive and FN
represents false negative.

Second, Kappa Coefficient (KC) is used to measure the classification accuracy, which is
calculated by

KC = (OA− PRE)/(1− PRE), (9)

where

PRE =
(TP + FP) ˙(TP + FN) + (FN + TN) ˙(FP + TN)

(TP + TN + FP + FN)2 . (10)

Finally, the AUC value (the area under the receiver operating characteristics (ROC) curves)
provides a numerical accuracy measure. The true positive rate (TPR) represents sensitivity. The false
positive rate (FPR) stands for the probability of false alarm. With TPR as Y-axis and FPR as X-axis,
the ROC curve can be drawn at various threshold settings. The TPR and FPR are calculated by

TPR = TP/(TP + FN), FPR = FP/(FP + TN). (11)

The AUC value is 1, which represents the perfect test.
The larger values of OA, Kappa and AUC mean the better detection performance.

4.4. Parameter Settings

First, we describe the parameter settings related to the SSJLN structure, such as the number of
neurons, the kernel size and the stride of each layer. The detailed layer parameter settings of our
proposed SSJLN are illustrated in Table 2.

Table 2. Layer parameters of SSJLN.

Names Types Input Dim. Output Dim. KS S

conv1 C 5*5*BN 4*4*32 2*2 1
conv2 C 4*4*32 4*4*64 2*2 1
pool1 MP 4*4*64 2*2*64 2*2 2
FC1 FC 2*2*64 128 - -

FC2 FC 128 128 - -
FC3 FC 128 128/96 - -
FC4 FC 128/96 1 - -

Table 2 shows the detailed configuration of the layers, where the dimensions of the input and
output are expressed by height*width*depth. KS: kernel size for convolution and pooling layers. BN:
band number, it is 6 for ETM+ data and 4 for GF-1 data. S: stride. Layer types: C: convolution, MP:
max-pooling, FC: fully-connected. The number of neurons in FC3 is 128 for EMT+ data and 96 for
GF-1 data.

Then, the parameters used in the training and testing phases are described and discussed. In the
training phase, the equal number of changed and unchanged pairwise samples are used to address
the problem of bias towards the unchanged decision because the number of unchanged pairwise
samples is very large in the changed detection domain. The number of changed pairwise patches
is 1000, and the number of unchanged pairwise patches is also 1000 for our proposed SSJLN and
the other comparison methods such as SCCN and SDRL. All remaining samples are used for testing.
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The mini-batch strategy is employed in the training phase and the batch size is set to 32 empirically.
The value of the learning rate in our proposed method is 10−4 experimentally. The model can achieve
the optimal results for four real data sets after running 400 iterations or convergence.

For the proposed new loss function, four parameters ω1, ω2 in Equation (4), m in Equation (5)
and λ in Equation (7) should be considered. The weights ω1 and ω2 are set to 1 empirically. In our
experiment, m is set to 0.5. λ is set to 0.5 experimentally. We perform 20 iterations on EMT+ and GF-1
data sets. The changed and unchanged pairwise patches are randomly selected from the changed
and unchanged sample set, respectively for each iteration. The best detection result of 20 iterations is
selected as the final detection result. For instance, the batch size is 32, and 16 positive and 16 negative
pairwise patches are fed to stochastic gradient descent in each training iteration.

Finally, the effects of the key parameter like the patch size and important steps such as the
difference strategy, the discrimination learning and the loss function are discussed in detail.

4.4.1. Effect of Patch Size

The patch is treated as the basic unit in our proposed SSJLN because the patch not only considers
the spectral information of the pixel to be detected but also the spectral information of the pixels
surrounding to the pixel to be detected. The value of the patch size n determines how much local
information the patch can contain. Hence, the parameter n is an important factor affecting the detection
accuracy, which is determined by users.

The spatial resolution of multispectral images is generally not too high. If the value of n selected
by users is too large, the types of land cover contained in the same patch will probably not be the same.
We do the experiment to verify this conclusion. In the experiment, the values of patch size n we select
are 3, 5, 7, 9, respectively. Figure 4 shows the effect of different patch size n on OA, Kappa coefficient
and AUC values of the detection result for four different data sets. For the sake of simplicity, we only
use EFC3 to calculate the loss.

It can be clearly observed from Figure 4 that the values of all the quantitative indicator, especially
OA and Kappa for Taizhou and Kunshan date sets are the highest when n = 5. When n = 3, the local
information included in the patch is not sufficient. However, the detection accuracy of n > 5 does
not exceed that of n = 5, because the impact of the newly included pixels in the 7× 7 patch are
no contribution or negative contribution to the detection accuracy compared with the 5× 5 patch.
However, for Minfeng and Hongqi canal date sets, the detection performance changes with the
accompanying changes in the value of n, but it does not show the regular distribution. Although n = 3
is the best selection for Minfeng and Hongqi canal date sets, for the sake of simplicity, we still select
n = 5 as the value of the patch size.
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Figure 4. OA, Kappa and AUC values comparision of difference patch sizes on the four different data
sets. Green, blue, red and sky blue colors denote patch size 3× 3, 5× 5, 7× 7 and 9× 9, respectively.

4.4.2. Effect of Difference Strategy

In the feature fusion procedure, the difference strategy is adopted to fuse extracted features from
the spectral-spatial joint representation part. The contrast experiment is exploited to compare the
difference strategy and stacked strategy. The stacked strategy based method has the same network
architecture as our proposed SSJLN. The only difference is that the fusion strategy is replaced by stack
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strategy. In other words, the output dimension after the feature fusion part is 128, while the output
dimension of the stacked strategy based method is 256. For the sake of simplicity, EFC3 is only used to
calculate the loss in this comparative experiment.

The change detection accuracy on four difference data sets is illustrated in Figure 5, where green
color denotes stacked strategy based method and red color denotes our proposed SSJLN. All OA,
Kappa and AUC values in Figure 5 acquired from SSJLN are higher than those acquired from stacked
strategy based method for four different data sets. Especially, the increase in kappa coefficients is
much higher than that of AUC value on all four data sets. This can prove that the difference features
have better discriminative ability compared with stacked features.

     
     Taizhou                                                 Kunshan                                                  Minfeng                                                 Hongqi           

OA               Kappa            AUC OA              Kappa             AUC OA               Kappa            AUC OA               Kappa           AUC

Stacked
strategy 

Difference
strategy

Figure 5. OA, Kappa and AUC values comparision of four different data sets. Green color
denotes the stacked strategy based method and red color denotes our proposed SSJLN that uses
the difference strategy.

4.4.3. Effect of Discrimination Learning

The aim of the discrimination learning part is to explore the underlying information of fused
features for better discrimination. We do a comparative experiment to better verify the effect of the
discrimination learning part on detection accuracy. SSJLN-NDL means SSJLN does not contain the
discrimination learning part. For the sake of simplicity, the cross-entropy loss is only used in this
comparative experiment.

Figure 6 shows the OA, Kappa and AUC values of SSJLN-NDL and SSJLN, where green color
denotes SSJLN-NDL and red color denotes SSJLN. All OA, Kappa and AUC values in Figure 6 acquired
from SSJLN are higher than those acquired from SSJLN-NDL on four different data sets, especially
Kunshan data set. This is because the discrimination learning part in the SSJLN can better explore the
underlying information of fused features that can enhance the discrimination. Therefore, it can prove
that the underlying information learned from the discrimination learning part can indeed improve the
detection accuracy.

     
     Taizhou                                                       Kunshan                                                   Minfeng                                                 Hongqi           

OA               Kappa            AUC OA              Kappa             AUC OA               Kappa            AUC OA               Kappa           AUC

SSJLN-NDL 

SSJLN 

Figure 6. OA, Kappa and AUC values comparision of four different data sets. Green color denotes
SSJLN-NDL method that does not contain the discrimination learning part and red color denotes SSJLN.

4.4.4. Effect of Loss Function

We do a comparative experiment to verify the effect of the losses of final output features EFC3,
the intermediate features EFC2 and the spectral-spatial joint representation part L1 on the detection
accuracy for four different data sets.
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The OA, Kappa coefficient and AUC values of the detection result for four different data sets are
shown in Figure 7, where green color denotes EFC3, blue color represents L2 = EFC3 + 0.5 ∗ EFC2 and
red color denotes Loverall = L1 + L2. It can be obviously seen that EFC2 and L1 have a positive effect on
improving the detection accuracy.

     
     Taizhou                                                         Kunshan                                                       Minfeng                                                  Hongqi           

OA                Kappa              AUC OA                Kappa             AUC OA                Kappa            AUC OA               Kappa           AUC

Figure 7. OA, Kappa and AUC values comparision of four different data sets. Green, blue and red
colors denote EFC3, L2 and Loverall , respectively.

4.5. Detection Performance

4.5.1. Results of EMT+ Data

The EMT+ data includes Taizhou and Kunshan data sets. We will analyze the results of Taizhou
and Kunshan data sets from qualitative and quantitative aspects.

The binary change maps of our proposed SSJLN and all other comparison methods on Taizhou
and Kunshan data sets are shown in Figures 8 and 9, respectively. It can be clearly observed that the
detection results from CVA and IRMAD methods shown in (a) and (b) of Figures 8 and 9 are very
poor, and many unchanged pixels are incorrectly labeled as changed pixels. That’s because these two
methods use manual features that rely on data and prior information and are unsupervised.

                               

     (a)                                                       (b)                                                       (c)                                                       (d)                                        

(e)                                                    (f)                                                        (g)                                                      (h)

Figure 8. Binary change maps of Taizhou data set. (a) CVA. (b) IRMAD. (c) SCCN. (d) S-CNN+Threhold.
(e) S-CNN+SVM. (f) SRDL. (g) Our proposed SSJLN. (h) Ground truth. The background is black,
unchanged samples are gray, and changed samples are white.
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     (a)                                                       (b)                                                       (c)                                                       (d)                                        

(e)                                                      (f)                                                        (g)                                                      (h)

(a) (b)

(f)(e)(d)

(c)(a) (b)

(

Figure 9. Binary change maps of Kunshan data set. (a) CVA. (b) IRMAD. (c) SCCN. (d)
S-CNN+Threhold. (e) S-CNN+SVM. (f) SRDL. (g) Our proposed SSJLN. (h) Ground truth.
The background is black, unchanged samples are gray, and changed samples are white.

The binary change maps obtained from SCCN, S-CNN+Threshold, S-CNN+SVM, SDRL and
our proposed SSJLN are much better than those of CVA and IRMAD methods visually because
of using deep learning network to extract deep features, as shown in (c), (d), (e), (f) and (g) of
Figures 8 and 9. SCCN is an unsupervised method that does not use the label information of pixels,
and S-CNN+Threshold and S-CNN+SVM are supervised methods. The number of unchanged pixels
detected as changed pixels in Figures 8e and 9e is much less than those in (c) and (d) of Figures 8
and 9. Hence, S-CNN+SVM can surpass SCCN and S-CNN+Threshold because SVM is more robust
and effective than the threshold strategy.

Different from the comparison methods, SDRL and our proposed SSJLN use fused features to
better represent changes. SDRL adopts the stacked strategy, while our proposed SSJLN uses the
difference strategy. As shown in Figure 5, the difference strategy is better than the stacked strategy.
Moreover, our proposed SSJLN can extract spectral-spatial joint representation, while SDRL loses
the spatial information because of using the vectorization of the patch as input. From Figures 8g
and 9g, we can observe that the result obtained from our proposed SSJLN virtually eliminates the false
positives from the changed areas.

For the quantitative comparison, OA, Kappa coefficients and AUC values are computed and
summarized in Table 3. Our proposed SSJLN can get the highest detection accuracy compared with
those of CVA, IRMAD, SCCN, S-CNN+Threshold, S-CNN+SVM and SDRL. The OA, Kappa coefficients
and AUC values obtained by SSJLN on Taizhou data set are 0.9875, 0.9570 and 0.9897, respectively.
The OA, Kappa coefficients and AUC values obtained by SSJLN on Kunshan data set are 0.9907, 0.9753
and 0.9799, respectively. The qualitative analysis shown in Figures 8 and 9 are consistent with the
quantitative analysis presented in Table 3.
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Table 3. Over accuracy, Kappa coefficients, and AUC value over state-of-the-art methods on Taizhou,
Kunshan, Minfeng and Hongqi data sets.

Data Metric CVA IRMAD SCCN SCCN+Threshold SCCN+SVM SDRL Ours

OA 0.8123 0.9654 0.9714 0.9724 0.9826 0.9854 0.9875
Taizhou KAPPA 0.7804 0.9549 0.9061 0.9089 0.9412 0.9501 0.9570

AUC 0.7213 0.9019 0.9463 0.9424 0.9559 0.9799 0.9897

OA 0.7021 0.9327 0.9654 0.9412 0.9759 0.9830 0.9907
Kunshan KAPPA 0.6711 0.9196 0.9103 0.9163 0.9369 0.9553 0.9753

AUC 0.5852 0.8506 0.9299 0.9298 0.9439 0.9607 0.9799

OA 0.7381 0.8376 0.8683 0.8720 0.8914 0.9551 0.9494
Minfeng KAPPA 0.2253 0.5221 0.5108 0.5130 0.5401 0.6577 0.6506

AUC 0.7023 0.7411 0.7551 0.7603 0.8393 0.9710 0.9705

OA 0.7307 0.9419 0.9468 0.9422 0.9555 0.9741 0.9746
Hongqi KAPPA 0.2344 0.6902 0.7282 0.7124 0.7632 0.8464 0.8490

AUC 0.8022 0.8627 0.8796 0.8788 0.8969 0.9881 0.9889

4.5.2. Results of GF-1 Data

The GF-1 data includes Minfeng and Hongqi data sets. The qualitative and quantitative analysis
of GF-1 data will be described in detail below.

The binary change maps of all the methods on Minfeng and Hongqi Canal data sets are shown
in Figures 10 and 11, respectively. Unsupervised CVA and IRMAD methods perform poorly on both
Minfeng and Hongqi Canal data sets, as shown in (a) and (b) of Figures 10 and 11. The CVA method has
a high false positive rate for these two data sets, which means many unchanged pixels are incorrectly
labeled as changed pixels. On the contrary, the IRMAD method has a high false negative rate for these
two data sets, which shows changed pixels are detected as unchanged pixels by mistake.

 (a)                                             (b)                                                  (c)                                                (d)

(e)                                             (f)                                                   (g)                                                 (h)                                 

Figure 10. Binary change maps of Minfeng data set. (a) CVA. (b) IRMAD. (c) SCCN. (d) S-CNN+Threhold.
(e) S-CNN+SVM. (f) SRDL. (g) Our proposed SSJLN. (h) Ground truth. The unchanged samples are black
and changed samples are white.

Although SCCN and S-CNN+Threshold detect most of the changed areas, as shown in (c) and
(d) of Figures 10 and 11, there are a lot of noise spots, especially on the left half of the binary change
map for Minfeng data set and the farmland along the riverway for Hongqi Canal data set. Since SVM
is more robust and effective than the threshold strategy, the detection result from the S-CNN+SVM
shown in Figures 10e and 11e is better than those from SCCN and S-CNN+Threshold. The detection
result of SRDL shown in Figures 10f and 11f is better than S-CNN+SVM, but it detects many changed
pixels as unchanged pixels by mistake.
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    (a)                                                (b)                                                (c)                                                (d)

(e)                                                 (f)                                                 (g)                                               (h)

Figure 11. Binary change maps of Hongqi data set. (a) CVA. (b) IRMAD. (c) SCCN. (d) S-CNN+Threhold.
(e) S-CNN+SVM. (f) SRDL. (g) Our proposed SSJLN. (h) Ground truth. The unchanged samples are black
and changed samples are white.

It is noteworthy that our proposed SSJLN achieves the better results than those of SRDL.
The number of noise spots on the areas at the bottom and top-right corners of the change detection
map on Minfeng data set is reduced, as shown in Figure 10g. The number of isolated pixels on the
farmland along the riverway significantly decreases, as shown in Figure 11g. It can be clearly seen that
the binary change map obtained from our proposed SSJLN is more consistent with the ground truth
compared with other comparison methods.

The quantitative analysis is applied to our proposed SSJLN and other comparison algorithms by
calculating the OA, Kappa coefficients and AUC values as listed in Table 3. Our proposed SSJLN can
obtain a higher OA, Kappa coefficients and AUC values than other comparison methods on the Hongqi
Canal data set. But SSJLN has poorer performance than SRDL on the Minfeng data set. The reason
is that the training samples of SRDL are more discriminative than those of our proposed SSJLN.
We randomly select the changed and unchanged pairwise patches from the changed and unchanged
sample set, while SRDL applies a voting rule in the process of selecting samples to obtain the changed
and unchanged pairwise patches with discriminative properties. In addition, the pre-classification
results of SDRL are acquired from features that consider spectral, texture and spatial information,
which will result in more accurate classification results. Furthermore, Minfeng data set has more
complex texture than Hongqi data set. The OA, Kappa coefficients and AUC values of the proposed
method and all comparison methods on the Minfeng data set are worse than those on the Hongqi
data set. Minfeng data set is more challenging for the change detection task. However, the difference
between OA, Kappa coefficient and AUC values of SDRL and our proposed SSJLN on Minfeng data
set is very small. Our proposed SSJLN outperforms SDRL on three other data sets.

The OA, Kappa coefficients and AUC values obtained by SSJLN on Minfeng data set are 0.9494,
0.6506 and 0.9705, respectively. The OA, Kappa coefficients and AUC values obtained by SSJLN on
Hongqi Canal data set are 0.9746, 0.8490 and 0.9889, respectively. It can be concluded that our proposed
SSJLN can surpass other comparison methods based on qualitative and quantitative analysis.

5. Conclusions

In this paper, we propose a spectral-spatial joint learning network to not only consider the spatial
information but also explore the underlying information of the fused features, which contains three
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parts: spectral-spatial joint representation, feature fusion, and discrimination learning. Moreover, we
present a new loss function that both consider the losses of the spectral-spatial joint representation
part and the discrimination learning part. The effectiveness of the proposed SSJLN is verified on four
real data sets in multispectral images. Our proposed SSJLN can exhibits better performance compared
with other methods. Although using the patch as input can both consider the spectral and spatial
information, the contributions of all pixels in the patch are the same. In fact, the pixel under test at the
center of the patch should give more contributions than other surrounding pixels during the procedure
of feature extraction. Hence, we plan to focus on the influence of the central pixel in the patch when
learning deep features in the future work. We will pay more attention to the influence of the sample
imbalance on the supervised changed detection model as well as the generalization ability from the
long-term perspective.
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