Comparative Analysis of Several Typical Landsat 8 OLI Cloud Detection Methods
Abstract
:1. Introduction
2. Typical Landsat 8 OLI Cloud Detection Algorithm
2.1. Fmask Cloud Detection Algorithm
2.2. Automatic Threshold Generation Cloud Detection Technology Based on Hyperspectral Data
2.3. Dynamic Threshold Cloud Detection Method Supported by Surface Reflectance Products
2.4. Dynamic Threshold Cloud Detection Algorithm Supported by Surface Type Products
2.5. Deep Learning Cloud Detection Algorithm Supported by Hyperspectral Data
3. Analysis of Cloud Detection Results by Different Methods
3.1. Cloud Detection over Vegetation
3.2. Cloud Detection over Water
3.3. Cloud Detection over Bare Land
3.4. Cloud Detection over Artificial Surface
3.5. Quantitative Analysis
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Li, B.; Xin, X.Z.; Zhang, H.L.; Hu, J.C. Algorithm for cloud shadow identification on complex terrains. Int J. Remote Sens. 2017, 21, 263–272. [Google Scholar] [CrossRef]
- Randall, D.A.; Corsetti, T.G. Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci. 1989, 46, 1922–1942. [Google Scholar] [CrossRef]
- Jedlovec, G.J.; Haines, S.L.; LaFontaine, F.J. Spatial and temporal varying thresholds for cloud detection in GOES imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.Q.; Thomas, N.; Goward, S.N.; Masek, J.G.; Zhu, Z.L. Automated masking of cloud and cloud shadow for forest change analysis using Landsat images. Int J. Remote Sens. 2010, 31, 5449–5464. [Google Scholar] [CrossRef]
- Liang, D.; Kong, J.; Hu, G.S.; Huang, L.S. The Removal of Thick Cloud and Cloud Shadow of Remote Sensing Image Based on Support Vector Machine. Acta Geod. Cartogr. Sin. 2012, 41, 225–231. [Google Scholar]
- Hu, C.M.; Bai, Y.; Tang, P. Automatic cloud detection for GF-4 series images. J. Remote Sens. 2018, 22, 132–142. [Google Scholar] [CrossRef]
- Xu, H.Q.; Tang, F. Analysis of new characteristics of the first Landsat 8 image and their ecoenvironmental significance. Acta Ecol. Sinica 2013, 33, 9. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Chen, X.D.; Zhang, X.; Liu, L.Y.; Wang, X.F. Enhanced multi-temporal cloud detection algorithm for optical remote sensing images. J. Remote Sens. 2019, 23, 280–290. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4-8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Sun, L.; Mi, X.T.; Wei, J.; Wang, J.; Tian, X.P.; Yu, H.; Gan, P. A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths. ISPRS J. Photogramm. 2016, 124, 70–88. [Google Scholar] [CrossRef]
- Green, R.O.; Shimada, M. On-orbit calibration of a multi-spectral satellite sensor using a high altitude airborne imaging spectrometer. Adv. Space Res. 1997, 19, 1387–1398. [Google Scholar] [CrossRef]
- Zanoni, V.; Davis, B.; Ryan, R.; Gasser, G.; Blonski, S. Remote sensing requirements development: A simulation-based approach. Mid-Term Symposium in Conjunction with Pecora 15/Land Satellite Information IV Conference Integrated Remote Sensing at the Global, Regional and Local Scale, Denver, CO, USA, 10–15 November 2002; 10, p. 419. [Google Scholar]
- Sun, L.; Wei, J.; Wang, J.; Mi, X.T.; Guo, Y.M.; Yang, Y.K.; Gan, P.; Zhou, X.Y.; Jia, C.; Tian, X.P.A. Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) with a prior surface reflectance database support. J. Geophys. Res. Atmos. 2016, 121, 7172–7196. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Q.; Zhou, X.Y.; Wei, J.; Yang, X.; Zhang, W.; Ma, N. A Priori Surface Reflectance-Based Cloud Shadow Detection Algorithm for Landsat 8 OLI. IEEE Geosci. Remote Sens. 2018, 15, 1610–1614. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, X.Y.; Wei, J. A New Cloud Detection Method Supported by GlobeLand30 Data Set. IEEE J. Stars. 2018, 11, 3628–3645. [Google Scholar] [CrossRef]
- Liu, C.L.; Wu, B.F. Application of Cloud Detection Algorithm for the AVHRR Data. J. Remote Sens. 2004, 8, 677–687. [Google Scholar] [CrossRef]
- Sun, L.; Xu, Y.; Jia, S.F.; Wang, Q.; Liu, X.Y.; Wei, J.; Zhou, X.Y. Satellite data cloud detection using deep learning supported by hyperspectral data. Int. J. Remote Sens. 2020, 4, 1349–1371. [Google Scholar] [CrossRef] [Green Version]
Surface Type | Algorithm | PA (%) | UA (%) |
---|---|---|---|
Vegetation | CDAG | 89.26 | 95.71 |
UDTCDA | 55.38 | 96.27 | |
LCCD | 91.52 | 92.51 | |
HDLCDA | 90.78 | 94.64 | |
Fmask | 98.43 | 81.76 | |
CDAG | 53.47 | 96.94 | |
UDTCDA | 49.88 | 96.46 | |
Water | LCCD | 66.74 | 95.82 |
HDLCDA | 88.31 | 85.59 | |
Fmask | 46.55 | 96.18 | |
Bare land | CDAG | 86.99 | 62.675 |
UDTCDA | 58.05 | 94.53 | |
LCCD | 64.83 | 93.37 | |
HDLCDA | 90.46 | 91.76 | |
Fmask | 86.22 | 84.89 | |
Artificial surface | CDAG | 63.00 | 77.76 |
UDTCDA | 66.98 | 95.97 | |
LCCD | 76.03 | 74.58 | |
HDLCDA | 92.27 | 74.09 | |
Fmask | 74.04 | 87.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, S.; Sun, L. Comparative Analysis of Several Typical Landsat 8 OLI Cloud Detection Methods. Remote Sens. 2022, 14, 719. https://doi.org/10.3390/rs14030719
Sui S, Sun L. Comparative Analysis of Several Typical Landsat 8 OLI Cloud Detection Methods. Remote Sensing. 2022; 14(3):719. https://doi.org/10.3390/rs14030719
Chicago/Turabian StyleSui, Songman, and Lin Sun. 2022. "Comparative Analysis of Several Typical Landsat 8 OLI Cloud Detection Methods" Remote Sensing 14, no. 3: 719. https://doi.org/10.3390/rs14030719
APA StyleSui, S., & Sun, L. (2022). Comparative Analysis of Several Typical Landsat 8 OLI Cloud Detection Methods. Remote Sensing, 14(3), 719. https://doi.org/10.3390/rs14030719