Regulated Ecosystem Services Trade-Offs: Synergy Research and Driver Identification in the Vegetation Restoration Area of the Middle Stream of the Yellow River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
- Thirty-meter global land cover data from GlobeLand30: Global Geo-information Public Product land use data of the study area in 2000, 2010, and 2020, including farmland, woodland, grassland, shrubland, wetland, water, artificial surface, and bare land.
- China Meteorological Data Network provides the daily sunshine duration (h), temperature (°C), and precipitation (mm) data.
- The official website of the United States Geological Survey (USGS) provides MODIS data, including MOD13Q1 (Normalized Vegetation Index NDVI), MOD16A2 (Evapotranspiration and Potential Evapotranspiration data), and MOD44 (tree coverage rate and non-tree vegetation coverage rate). Geo-spatial Data Cloud provides the Digital Elevation Model (DEM) data of the study area.
- The official website of the National Qinghai-Tibet Plateau Science Data Center provides the soil data of the study area, including the sand content, silt content, clay content, and organic carbon content of the soil.
- Statistical Yearbooks issued by Shanxi Provincial Bureau of Statistics, the Shaanxi Provincial Bureau of Statistics, the Henan Provincial Bureau of Statistics, the Gansu Provincial Statistics Bureau, the Inner Mongolia Autonomous Region Statistics Bureau, and the Statistics Bureau of Ningxia Hui Autonomous Region provided GDP and population data of the counties and cities where the study area is located.
2.3. Land Use Change
2.4. Estimation of Ecosystem Services
2.4.1. Plant Net Primary Productivity
2.4.2. Soil Conservation
2.4.3. Water Yield (WY)
2.5. Evaluation Framework of Ecosystem Services in Vegetation Restoration Areas
2.6. Geo-Detectors
3. Results
3.1. The Impact of Vegetation Restoration on Land Use Types
3.2. Changes in Ecosystem Services
3.3. The Balance and Synergy Comparison between the New Vegetation and the Original Vegetation Ecological Service Function
3.3.1. NPP and SC
3.3.2. NPP and WY
3.3.3. SC and WY
3.4. Identification of Factors Affecting Ecosystem Services in Vegetation Restoration Areas
3.4.1. Identification of Factors Affecting Changes in Ecosystem Services in Vegetation Restoration Areas
3.4.2. Ecosystem Service Trade-Offs and the Identification of Synergistic Influence Factors in Vegetation Restoration Areas
4. Discussion
4.1. Differences in Restoration Rates among Ecosystem Services
4.2. The Impact of Trade-Offs on Vegetation Restoration as an Important Basis for Ecosystem Management
4.3. Prospects and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daily, G. What are ecosystem services. In Global Environmental Challenges for the Twenty-First Century: Resources, Consumption and Sustainable Solutions; Rowman & Littlefield Publishers: Lanham, MD, USA, 2003; pp. 227–231. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, S.; Volk, M.; Gruber, B.; Dormann, C.G. Quantifying ecosystem service trade-offs. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 5–8 July 2010. [Google Scholar]
- Cord, A.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Seppelt, R.; Dormann, C.F.; Eppink, F.V.; Lautenbach, S.; Schmidt, S. A quantitative review of ecosystem service studies: Approaches, shortcomings and the road ahead. J. Appl. Ecol. 2011, 48, 630–636. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z. Linking ecosystem characteristics to final ecosystem services for public policy. Ecol. Lett. 2015, 18, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Leh, M.D.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Egoh, B.; Reyers, B.; Rouget, M.; Bode, M.; Richardson, D.M. Spatial congruence between biodiversity and ecosystem services in South Africa. Biol. Conserv. 2009, 142, 553–562. [Google Scholar] [CrossRef]
- Shui, W.; Du, Y.; Wang, Y.N.; Yang, H.F.; Fu, Y.; Fan, B.X.; Huang, M.Y. Spatio—Temporal dynamics and scenarios simulation of trade—offs between ecosystem services in Min Delta urban agglomeration. Acta Ecol. Sin. 2019, 39, 518–5197. [Google Scholar]
- Bai, J.; Zhou, Z.; Zou, Y.; Pulatov, B.; Siddique, K.H. Watershed Drought and Ecosystem Services: Spatiotemporal Characteristics and Gray Relational Analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 43. [Google Scholar] [CrossRef]
- Choi, Y.D.; Temperton, V.M.; Allen, E.B.; Grootjans, A.P.; Halassy, M.; Hobbs, R.J.; Naeth, M.A.; Torok, K. Ecological restoration for future sustainability in a changing environment. Ecoscience 2008, 15, 53–64. [Google Scholar] [CrossRef]
- Wyant, J.G.; Meganck, R.A.; Ham, S.H. A planning and decision-making framework for ecological restoration. Environ. Manag. 1995, 19, 789–796. [Google Scholar] [CrossRef]
- Yin, R.; Rothstein, D.; Qi, J.; Liu, S. Methodology for an Integrative Assessment of China’s Ecological Restoration Programs. In An Integrated Assessment of China’s Ecological Restoration Programs; Springer: Dordrecht, The Netherlands, 2009; pp. 39–54. [Google Scholar]
- Zhang, B.; Yang, Y.; Zepp, H. Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China. Catena 2004, 57, 77–90. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhu, C. The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecol. Indic. 2012, 23, 88–94. [Google Scholar] [CrossRef]
- Xu, J.Y.; Chen, L.D.; Lu, Y.H.; Fu, B.J. Sustainability evaluation of the Grain for Green Project: From local people’s responses to ecological effectiveness in Wolong Nature Reserve. Environ. Manag. 2007, 40, 113. [Google Scholar] [CrossRef]
- Liu, Z.; Li, B. Spatial and temporal changes in grain production before and after implementation of Grain for Green project in Loess Plateau region. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–8. [Google Scholar]
- Wang, B.; Liu, G.B.; Zhang, G.H.; Yang, Y.F. Effects of Grain for Green Project on food security on Loess Plateau. Bull. Soil Water Conserv. 2013, 33, 241–245. [Google Scholar]
- Fan, X.; Ma, Z.; Yang, Q.; Han, Y.; Mahmood, R.; Zheng, Z. Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part I: Observational evidence. Clim. Chang. 2015, 129, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Chen, S.; Su, H.; Hao, G. Spatiotemporal variation of vegetation coverage and its response to climate change before and after implementation of Grain for Green Project in the Loess Plateau. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 9546–9549. [Google Scholar]
- Wang, T.; Yang, M.H. Land use and land cover change in China’s Loess Plateau: The impacts of climate change, urban expansion and grain for green project implementation. Appl. Ecol. Env. Res. 2018, 16, 4145–4163. [Google Scholar] [CrossRef]
- Wang, Y.; Brandt, M.; Zhao, M.; Xing, K.; Wang, L.; Tong, X.; Xue, F.; Kang, M.; Jiang, Y.; Fensholt, R. Do afforestation projects increase core forests? Evidence from the Chinese Loess Plateau. Ecol. Indic. 2020, 117, 106558. [Google Scholar] [CrossRef]
- Mayer, A.L.; Rietkerk, M. The dynamic regime concept for ecosystem management and restoration. BioScience 2004, 54, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Fleskens, L.; Schild, J.; Moolenaar, S.; Wang, F.; Ritsema, C. Using Ecosystem Service Bundles to Evaluate Spatial and Tmporal Impacts of Large-scale Landscape Restoration on Ecosystem Services on the Chinese Loess Plateau. Res. Sq. 2021. [Google Scholar]
- Feng, Q.; Zhao, W.; Hu, X.; Liu, Y.; Daryanto, S.; Cherubini, F. Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China. J. Clean. Prod. 2020, 257, 120469. [Google Scholar] [CrossRef]
- Sun, Q.; Qi, W.; Yu, X. Impacts of land use change on ecosystem services in the intensive agricultural area of North China based on Multi-scenario analysis. Alex. Eng. J. 2021, 60, 1703–1716. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Shao, M.A. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J. Arid. Environ. 2006, 64, 77–96. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, J.; Li, P.; Li, Z.; Lu, K.; Wang, X.; Wang, F.; Cheng, Y.; Wang, B. Vegetation restoration projects and their influence on runoff and sediment in China. Ecol. Indic. 2018, 95, 233–241. [Google Scholar] [CrossRef]
- Hu, P.L.; Liu, S.J.; Ye, Y.Y.; Zhang, W.; Wang, K.L.; Su, Y. R Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degrad. Dev. 2018, 29, 387–397. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Tatarko, J.; Tan, X. Influence of vegetation restoration on soil physical properties in the Loess Plateau, China. J. Soils Sediments 2019, 19, 716–728. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.; Zha, X.; Su, H.; Jia, Y. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China. Quat. Sci. Rev. 2011, 30, 460–468. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Tian, P.; Mu, X.; Jiao, J.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, L.; Zhang, X.; Cheng, L.; Potter, N.; Cowan, T.; Cai, W. Long-term streamflow trends in the middle reaches of the Yellow River Basin: Detecting drivers of change. Hydrol. Process. 2016, 30, 1315–1329. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Gan, Z.T.; Shangguan, Z.P.; Dong, Z.B. China’s Grain for Green Program has reduced soil erosion in the upper reaches of the Yangtze River and the middle reaches of the Yellow River. Int. J. Sustain. Dev. World Ecol. 2009, 16, 234–239. [Google Scholar] [CrossRef]
- Yue, X.; Mu, X.; Zhao, G.; Shao, H.; Gao, P. Dynamic changes of sediment load in the middle reaches of the Yellow River basin, China and implications for eco-restoration. Ecol. Eng. 2014, 73, 64–72. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau: From degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, J.; She, D. Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960–2013. Theor. Appl. Climatol. 2019, 135, 391–408. [Google Scholar] [CrossRef]
- Gao, Z.L.; Fu, Y.L.; Li, Y.H.; Liu, J.X.; Chen, N.; Zhang, X.P. Trends of streamflow, sediment load and their dynamic relation for the catchments in the middle reaches of the Yellow River over the past five decades. Hydrol. Earth Syst. Sci. 2012, 16, 3219–3231. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Feng, H.; Chen, J.; Zheng, X.; Du, Q. The Effect of a Sand Interlayer on Soil Evaporation during the Seasonal Freeze–Thaw Period in the Middle Reaches of the Yellow River. Water 2020, 12, 2092. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Dong, P. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 2010, 83, 135–147. [Google Scholar] [CrossRef]
- She, D.-X.; Xia, J.; Zhang, D.; Ye, A.-Z.; Sood, A. Regional extreme-dry-spell frequency analysis using the L-moments method in the middle reaches of the Yellow River Basin, China. Hydrol. Process. 2014, 28, 4694–4707. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.G.; Xi, J.C.; Yang, D.Y.; Tian, C. Spatial Differentiation of Rural Touristization and Its Determinants in China: A Geo-detector-based Case Studyof Yesanpo Scenic Area. J. Resour. Ecol. 2016, 7, 464–471. [Google Scholar]
- Lin, G.C.S.; Ho, S.P.S. China’s land resources and land-use change: Insights from the 1996 land survey. Land Use Policy 2003, 20, 87–107. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, C.; Jiang, H.; Tian, D.; Lei, X.; Zhou, X. Land use change in Asia and the ecological consequences. Ecol. Res. 2006, 21, 890–896. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, N.G.; Jeong, S.R. Stock-index invest model using news big data opinion mining. J. Intell. Inf. Syst. 2012, 18, 143–156. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Han, M.; Niu, X.; Tang, M.; Zhang, B.T.; Wang, G.; Yue, W.; Zhu, J. Distribution of microplastics in surface water of the lower Yellow River near estuary. Sci. Total Environ. 2020, 707, 135601. [Google Scholar] [CrossRef]
- Goulden, M.L.; McMillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B.P. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Chang. Biol. 2011, 17, 855–871. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Gallichand, J.; Wang, Z.; Goulet, M. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China. Hydrol. Process. Int. J. 2006, 20, 579–589. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Daryanto, S.; Fu, B.; Wang, S.; Liu, Y. Metacoupling supply and demand for soil conservation service. Curr. Opin. Environ. Sustain. 2018, 33, 136–141. [Google Scholar] [CrossRef]
- Lal, M.; Mishra, S.K.; Pandey, A.; Pandey, R.P.; Meena, P.K.; Chaudhary, A.; Jha, R.K.; Shreevastava, A.K.; Kumar, Y. Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots. Hydrogeol. J. 2017, 25, 151–167. [Google Scholar] [CrossRef]
- Pandit, A.; Heck, H.H. Estimations of soil conservation service curve numbers for concrete and asphalt. J. Hydrol. Eng. 2009, 14, 335–345. [Google Scholar] [CrossRef]
- Kong, L.; Zheng, H.; Rao, E.; Xiao, Y.; Ouyang, Z.; Li, C. Evaluating indirect and direct effects of eco-restoration policy on soil conservation service in Yangtze River Basin. Sci. Total Environ. 2018, 631, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zhou, Z.; Zou, Y.; Pulatov, B.; Biswas, A. Analysis of Spatial and Temporal Characteristics and Spatial Flow Process of Soil Conservation Service in Jinghe Basin of China. Sustainability 2021, 13, 1794. [Google Scholar] [CrossRef]
- Gahrizsangi, H.S.; Eslamian, S.; Dalezios, N.R.; Blanta, A.; Madadi, M. Vegetation Advantages for Water and Soil Conservation. In Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 321–336. [Google Scholar]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiaohua, W.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L.; et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; McNulty, S.; Lu, J.; Amatya, D.; Liang, Y.; Kolka, R. Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States. J. Hydrol. 2005, 308, 258–268. [Google Scholar] [CrossRef]
- Nicosia, K.; Daaram, S.; Edelman, B.; Gedrich, L.; He, E.; McNeilly, S.; Shenoy, V.; Velagapudi, A.; Wu, W.; Zhang, L.; et al. Determining the willingness to pay for ecosystem service restoration in a degraded coastal watershed: A ninth grade investigation. Ecol. Econ. 2014, 104, 145–151. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Yang, J.; Song, C.; Yang, Y.; Xu, C.; Guo, F.; Xie, L. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China. Geomorphology 2019, 324, 62–71. [Google Scholar] [CrossRef]
- Shrestha, A.; Luo, W. Assessment of groundwater nitrate pollution potential in Central Valley aquifer using Geodetector-Based Frequency Ratio (GFR) and optimized-DRASTIC methods. ISPRS Int. J. Geo-Inf. 2018, 7, 211. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ge, W.; Zhang, Y. Evaluating the vegetation restoration sustainability of ecological projects: A case study of Wuqi County in China. J. Clean. Prod. 2020, 264, 121751. [Google Scholar] [CrossRef]
- Jiang, L.; Guli·jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Jewitt, G. Can integrated water resources management sustain the provision of ecosystem goods and services? Phys. Chem. Earth Parts A/B/C 2002, 27, 887–895. [Google Scholar] [CrossRef]
- Rapport, D.J.; Gaudet, C.; Karr, J.R.; Baron, J.S.; Bohlen, C.; Jackson, W.; Jones, B.; Naiman, R.J.; Norton, B.; Pollock, M.M. Evaluating landscape health: Integrating societal goals and biophysical process. J. Environ. Manag. 1998, 53, 1–15. [Google Scholar] [CrossRef]
- Tognetti, A.; Grosse-Ruyken, P.T.; Wagner, S.M. Green supply chain network optimization and the trade-off between environmental and economic objectives. Int. J. Prod. Econ. 2015, 170, 385–392. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Fan, Y.; Ren, J.; Zhang, X.; Zhou, Y. Spatial coupling differentiation and development zoning trade-off of land space utilization efficiency in eastern China. Land Use Policy 2019, 85, 310–327. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; Sun, Y.; An, Y.; Zhao, S.; Liu, Y.; Li, M. Ecological network construction of the heterogeneous agro-pastoral areas in the upper Yellow River basin. Agric. Ecosyst. Environ. 2020, 302, 107069. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, D.; Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 2021, 75, 103341. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Li, Z.; Tang, J.; Caldwell, P.; Zhang, W. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 2011, 402, 388–400. [Google Scholar] [CrossRef]
- Zheng, Z.; Fu, B.; Hu, H.; Sun, G. A method to identify the variable ecosystem services relationship across time: A case study on Yanhe Basin, China. Landsc. Ecol. 2014, 29, 1689–1696. [Google Scholar] [CrossRef]
- Bryan, B.A. Incentives, land use, and ecosystem services: Synthesizing complex linkages. Environ. Sci. Policy 2013, 27, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, I.J.; Bennett, E.M.; Gergel, S.E. Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. For. Ecol. Manag. 2016, 374, 61–70. [Google Scholar] [CrossRef]
- Chee, Y.E. An ecological perspective on the valuation of ecosystem services. Biol. Conserv. 2004, 120, 549–565. [Google Scholar] [CrossRef]
- Schneiders, A.; Van Daele, T.; Van Landuyt, W.; Van Reeth, W. Biodiversity and ecosystem services: Complementary approaches for ecosystem management? Ecol. Indic. 2012, 21, 123–133. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhen, L.M.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Jackson, S.T.; Hobbs, R.J. Ecological restoration in the light of ecological history. Science 2009, 325, 567–569. [Google Scholar] [CrossRef] [Green Version]
Data | Time Resolution | Spatial Resolution | Unit |
---|---|---|---|
Land-Use and Land-Cover Change (LUCC) | 1 year | 30 m × 30 m | |
Sunshine duration | 1 day | H | |
Air temperature | 1 day | °C | |
precipitation | 1 day | mm | |
Normalized vegetation index NDVI | 8 day | 250 m × 250 m | |
Evapotranspiration and potential evapotranspiration | 16 day | 500 m × 500 m | |
Tree coverage and non-tree Vegetation coverage | 1 year | 1000 m × 1000 m | |
DEM | 30 m × 30 m | m | |
Sand content, silt content and clay content | 1000 m × 1000 m | % | |
GDP | 1 year | 10,000 yuan | |
Population | 1 year | One people |
2010 | 2000 | |||||||
---|---|---|---|---|---|---|---|---|
Farmland | Woodland | Grassland | Shrubland | Wetland | Water | Artificial Surface | Bare Land | |
farmland | 141,766.75 | 839.02 | 2352.48 | 26.13 | 199.08 | 292.42 | 1299.86 | 10.02 |
woodland | 1356.81 | 80,750.66 | 3446.87 | 10.03 | 17.85 | 41.07 | 30.32 | 6.43 |
grassland | 2744.91 | 1004.63 | 92,568.19 | 70.06 | 40.32 | 92.14 | 73.91 | 82.54 |
shrubland | 30.22 | 6.72 | 263.44 | 999.33 | 1.11 | 4.54 | 0.66 | 0.36 |
wetland | 145.40 | 4.40 | 34.53 | 0.12 | 157.91 | 92.37 | 0.91 | 0.07 |
water | 390.21 | 28.41 | 86.17 | 2.11 | 119.93 | 735.19 | 5.72 | 0.22 |
artificial surface | 3500.53 | 31.53 | 273.09 | 1.18 | 3.54 | 11.00 | 6375.82 | 7.61 |
bare land | 31.05 | 5.95 | 81.49 | 1.73 | 0.20 | 2.29 | 0.57 | 2783.74 |
2020 | 2010 | |||||||
---|---|---|---|---|---|---|---|---|
Farmland | Woodland | Grassland | Shrubland | Wetland | Water | Artificial Surface | Bare Land | |
farmland | 134,152.10 | 1873.18 | 6047.11 | 88.15 | 85.12 | 250.38 | 1250.41 | 94.64 |
woodland | 1887.63 | 78,446.67 | 4958.33 | 122.94 | 2.16 | 12.68 | 21.90 | 48.95 |
grassland | 5085.63 | 4955.56 | 82,945.44 | 534.21 | 11.35 | 48.11 | 72.13 | 671.50 |
shrubland | 76.16 | 111.83 | 524.70 | 524.24 | 0.08 | 0.94 | 0.28 | 6.02 |
wetland | 72.07 | 16.76 | 22.26 | 0.05 | 264.31 | 151.54 | 0.52 | 0.33 |
water | 298.95 | 55.01 | 116.72 | 5.69 | 66.47 | 887.38 | 10.69 | 2.48 |
artificial surface | 5185.97 | 146.99 | 1371.84 | 13.09 | 2.92 | 11.57 | 8847.94 | 60.38 |
bare land | 27.23 | 54.04 | 690.30 | 17.99 | 3.30 | 5.37 | 0.42 | 2022.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yue, D.; Niu, T.; Yu, Q. Regulated Ecosystem Services Trade-Offs: Synergy Research and Driver Identification in the Vegetation Restoration Area of the Middle Stream of the Yellow River. Remote Sens. 2022, 14, 718. https://doi.org/10.3390/rs14030718
Wang G, Yue D, Niu T, Yu Q. Regulated Ecosystem Services Trade-Offs: Synergy Research and Driver Identification in the Vegetation Restoration Area of the Middle Stream of the Yellow River. Remote Sensing. 2022; 14(3):718. https://doi.org/10.3390/rs14030718
Chicago/Turabian StyleWang, Ge, Depeng Yue, Teng Niu, and Qiang Yu. 2022. "Regulated Ecosystem Services Trade-Offs: Synergy Research and Driver Identification in the Vegetation Restoration Area of the Middle Stream of the Yellow River" Remote Sensing 14, no. 3: 718. https://doi.org/10.3390/rs14030718
APA StyleWang, G., Yue, D., Niu, T., & Yu, Q. (2022). Regulated Ecosystem Services Trade-Offs: Synergy Research and Driver Identification in the Vegetation Restoration Area of the Middle Stream of the Yellow River. Remote Sensing, 14(3), 718. https://doi.org/10.3390/rs14030718