Temperature Variation and Climate Resilience Action within a Changing Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Conditions
2.2. Remote Sensing and Image Processing
2.3. Climate Data
2.4. Ground Points and Regression Analysis
2.5. Interviews and Analysis
3. Results
3.1. LST and NDVI Maps
3.2. People and Temperature Dynamics
I like to live here because it is easy to breathe, and the weather is good. I can sleep very well at night, and I have energy when I get up in the morning. If I sleep at the lower area, I have no energy. I don’t know how to live there.
The crop yield last year (2018) was better than this year (2019). The temperature is much hotter, and the animals died because they don’t have enough water to drink.
3.3. Climate-Land Interactions
It is because we lost the forests. The climate is changed, and the water is decreased because of what has happened with the forests.
This year we have less rain and less water in the canals meaning we have less water to use for the rice farms.
4. Discussion
4.1. Interpreting Spatial Temperature
4.2. Mobilizing Climate Resilience Action
4.3. Consistency and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Managing Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019; In press. [Google Scholar]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijioka, Y.; Lin, E.; Pereira, J.J.; Corlett, R.T.; Cui, X.; Insarov, G.E.; Lasco, R.D.; Lindren, E.; Surjan, A.A. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1327–1370. [Google Scholar]
- Loza, A.R.A.; Fidélis, T. Literature review on the analysis of climate change risks in the environmental impact assessment of dams. Impact Assess. Proj. Apprais. 2021, 39, 277–289. [Google Scholar] [CrossRef]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Bounoua, L.; Zhang, P.; Mostovoy, G.; Thome, K.; Masek, J.; Imhoff, M.; Shepherd, M.; Quattrochi, D.; Santanello, J.; Silva, J.; et al. Impact of urbanization on US surface climate. Environ. Res. Lett. 2015, 10, 084010. [Google Scholar] [CrossRef] [Green Version]
- Wolff, N.H.; Masuda, Y.J.; Meijaard, E.; Wells, J.A.; Game, E.T. Impacts of tropical deforestation on local temperature and human well-being perceptions. Glob. Environ. Change 2018, 52, 181–189. [Google Scholar] [CrossRef]
- ADB. The Economics of Climate Change in Southeast Asia: A Regional Review; Asian Development Bank: Manila, Philippines, 2009. [Google Scholar]
- FAO. The State of Food and Agriculture: Climate Change Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- National Research Council. Our Common Journey: A Transition Toward Sustainability; The National Academies Press: Washington DC, USA, 1999. [Google Scholar]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Dearing, J.A. Human-Environment Interactions: Learning from the Past. In Sustainability or Collapse: An Integrated History and Future of People on Earth; Constanza, R., Graumlich, L.J., Steffen, W., Eds.; The MIT Press: Cambridge, MA, USA, 2007; pp. 19–37. [Google Scholar]
- Howe, P.D.; Markowitz, E.M.; Lee, T.M.; Ko, C.-Y.; Leiserowitz, A. Global perceptions of local temperature change. Nat. Clim. Chang. 2012, 3, 352–356. [Google Scholar] [CrossRef]
- Guo, J.; Ren, H.; Zheng, Y.; Lu, S.; Dong, J. Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset. Remote Sens. 2020, 12, 1023. [Google Scholar] [CrossRef] [Green Version]
- Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval form Landsat 5,7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S.N.; Hik, D.S.; Gamon, J.A.; Kavanaugh, J.L.; Flowers, G.E. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment. Remote Sens. 2014, 6, 946–963. [Google Scholar] [CrossRef] [Green Version]
- Hulley, G.C.; Ghent, D.; Gottsche, F.M.; Guillevic, P.C.; Mildrexler, D.J.; Coll, C. Land Surface Temperature. In Taking the Temperature of the Earth: Steps Towards Integrated Understanding of Variability and Change; Hulley, G.C., Ghent, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–127. [Google Scholar]
- Pitman, A.J.; Avila, F.B.; Abramowitz, G.; Wang, Y.P.; Phipps, S.J.; de Noblet-Ducoudre, N. Importance of background climate in determining impact of land-cover change on regional climate. Nat. Clim. Change 2011, 1, 472–475. [Google Scholar] [CrossRef]
- Das, N.; Mondal, P.; Sutradhar, S.; Ghosh, R. Assessment of variation of land use/land cover and its impact on land surface temperature of Asansol subdivision. Egypt. J. Remote Sens. Space Sci. 2021, 24, 131–149. [Google Scholar] [CrossRef]
- Gohain, K.J.; Mohammad, P.; Goswami, A. Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quat. Int. 2021, 575–576, 259–269. [Google Scholar] [CrossRef]
- Al Kafy, A.; Faisal, A.-A.; Rakib, A.A.; Fattah, M.d.A.; Rahaman, Z.A.; Sattar, G.S. Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh. Build. Environ. 2022, 208, 108573. [Google Scholar] [CrossRef]
- Reyes-Garcia, V.; Fernandez-Llamazares, A.; Gueze, M.; Garces, A.; Mallo, M.; Vila-Gomez, M.; Vilaseca, M. Local indicators of climate change: The potential contribution of local knowledge to climate research. WIREs Clim. Chang. 2016, 7, 109–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denton, F.; Wilbanks, T.J.; Abeysinghe, A.C.; Burton, I.; Gao, Q.; Lemos, M.C.; Masui, T.; O’Brien, K.L.; Warner, K. Climate-resilient pathways: Adaptation, mitigations, and sustainable development. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1101–1131. [Google Scholar]
- Berkes, F. Understanding Uncertainty and Reducing Vulnerability: Lessons from Resilience Thinking. Nat. Hazards 2007, 41, 283–295. [Google Scholar] [CrossRef]
- Holling, C.S. Understanding the Complexity of Economic, Ecological, and Social Systems. Ecosystems 2001, 4, 390–405. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Thinking; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Tyler, S.; Moench, M. A framework for urban climate resilience. Clim. Dev. 2012, 4, 311–326. [Google Scholar] [CrossRef]
- Mikulewicz, M. Thwarting adaptation’s potential? A critique of resilience and climate-resilient development. Geoforum 2019, 104, 267–282. [Google Scholar]
- Prakash, A. Boiling Point. Financ. Dev. 2018, 55, 22–26. [Google Scholar]
- Sok, C.; Choup, S. Climate change and groundwater resources in Cambodia. J. Groundw. Sci. Eng. 2017, 5, 31–34. [Google Scholar]
- GSSD. National Adaptation Plan Process in Cambodia; General Secretariat of National Council for Sustainable Development/Ministry of Environment: Phnom Penh, Cambodia, 2017. [Google Scholar]
- National Climate Change Committee. Cambodia Climate Change Stategic Plan 2014–2023; National Climate Change Committee: Phnom Penh, Cambodia, 2013. [Google Scholar]
- Chim, K.; Tunnicliffe, J.; Shamseldin, A.; Chan, K. Identifying future climate change and drought detection using CanESM2 in the upper Siem Reap River, Cambodia. Dyn. Atmos. Ocean. 2021, 94, 101182. [Google Scholar] [CrossRef]
- Chim, K.; Tunnicliffe Shamseldin, A.; Bun, H. Assessment of land use and climate change effects on hydrology in the upper Siem Reap River and Angkor Temple Complex, Cambodia. Environ. Dev. 2021, 39, 100615. [Google Scholar] [CrossRef]
- Perur, S. What the Collapse of Ancient Capitals Can Teach Us about the Cities of Today. The Guardian. 2015. Available online: https://www.theguardian.com/cities/2015/jan/14/what-the-collapse-of-ancient-capitals-can-teach-us-about-the-cities-of-today (accessed on 12 May 2017).
- Lovgren, S. Angkor Wat’s Collapse from Climate Change has Lessons for Today. National Geographic. 2017. Available online: https://www.nationalgeographic.com/science/article/angkor-wat-civilization-collapsed-floods-drought-climate-change (accessed on 12 May 2017).
- Fletcher, R.; Buckey, B.M.; Pottier, C.; Wang, S.-Y.S. Fourteenth to Sixteenth Centuries AD: The Case of Angkor and Monsoon Extremes in Mainland Southeast Asia. In Megadrought and Collapse: From Early Agriculture to Angkor; Weiss, H., Ed.; Oxford University Press: New York, NY, USA, 2017; pp. 275–314. [Google Scholar]
- Lieberman, V.; Buckley, B. The Impact of Climate on Southeast Asia, circa 950–1820: New Findings. Mod. Asian Stud. 2012, 46, 1049–1096. [Google Scholar] [CrossRef] [Green Version]
- Buckley, B.M.; Fletcher, R.; Wang, S.-Y.S.; Zottoli, B.; Pottier, C. Monsoon extremes and society over the past millennium on mainland Southeast Asia. Quat. Sci. Rev. 2014, 95, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Acker, R. New Geographical Tests of the Hydraulic Thesis at Angkor. S. E. Asia Res. 1998, 6, 5–47. [Google Scholar] [CrossRef]
- Evans, D.; Pottier, C.; Fletcher, R.; Hensley, S.; Tapley, I.; Milne, A.; Barbetti, M. A Comprehensive Archaeological Map of the World’s Largest Preindustrial Settlement Complex at Angkor, Cambodia. Proc. Natl. Acad. Sci. USA 2007, 104, 14277–14282. [Google Scholar] [CrossRef] [Green Version]
- Heikkila, E.J.; Peycam, P. Economic Development in the Shadow of Angkor Wat: Meaning, Legitimation, and Myth. J. Plan. Educ. Res. 2010, 29, 294–309. [Google Scholar] [CrossRef]
- Esposito, A. Planning Urban Development from an Outsider’s Perspective: Siem Reap, the Backdrop of Changing Urban Representations. Antropologia 2014, 1, 143–154. [Google Scholar]
- Penny, D.; Chevance, J.B.; Tang, D.; De Greef, S. The Environmental Impact of Cambodia’s Ancient City of Mehendraparvata (Phnom Kulen). PLoS ONE 2014, 9, e84252. [Google Scholar]
- Chevance, J.B.; Evans, D.; Hofer, N.; Sakhoeun, S.; Chhean, R. Mahendraparvata: An early Angkor-period capital defined through airborne laser scanning at Phnom Kulen. Antiquity 2019, 93, 1303–1321. [Google Scholar] [CrossRef] [Green Version]
- UNDP. Restoring Landscape in Steung Siem Reap Watershed Area; Country Landscape Program Strategy: Phnom Penh, Cambodia, 2012. [Google Scholar]
- Kummu, M. Water Management in Angkor: Human Impacts on Hydrology and Sediment Transportation. J. Environ. Manag. 2009, 90, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, A.E.; Binford, M.W.; Southwort, J. Tourism, Forest Conversion, and Land Transformations in the Angkor Basin, Cambodia. Appl. Geogr. 2009, 29, 212–223. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Manta, V.; Gottsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Ministry of Water Resources and Meteorology. Climate Data for Siem Reap Weather Station; Ministry of Water Resources and Meteorology: Phnom Penh, Cambodia, 2019.
- Siem Reap Provincial Department of Water Resources and Meteorology. Climate Data for Siem Reap Weather Station; Siem Reap Provincial Department of Water Resources and Meteorology: Siem Reap, Cambodia, 2019. [Google Scholar]
- Ministry of Environment. Management Programme Kulen Mountain National Park 2018–2027; General Directorate of Administration for Nature Conservation and Protection, the Ministry of Environment: Phnom Penh, Cambodia, 2017.
- Siem Reap Provincial Department of Planning. Siem Reap Profile on Economic and Social in Year 2019; Siem Reap Provincial Department of Planning: Siem Reap, Cambodia, 2019. [Google Scholar]
- Trabucco, A.; Zomer, R.J.; Bossio, D.A.; van Straaten, O.; Verchot, L.V. Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 2008, 126, 81–97. [Google Scholar] [CrossRef]
- Ramdani, F.; Moffiet, T.; Hino, M. Local Surface Temperature Change Due to Expansion of Oil Palm Plantation in Indonesia. Clim. Change 2014, 123, 189–200. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
1998 | 2009 | 2019 | ||||
---|---|---|---|---|---|---|
# of Points | % of Points | # of Points | % of Points | # of Points | % of Points | |
Densely Vegetated Areas | 60 | 40.8% | 53 | 36.1% | 43 | 29.3% |
Sparsely Vegetated Areas | 36 | 24.5% | 25 | 17.0% | 18 | 12.2% |
Seasonal Agriculture | 28 | 19.0% | 33 | 22.4% | 46 | 31.3% |
Impervious Areas (Urban) | 23 | 15.6% | 36 | 24.5% | 40 | 27.2% |
Interview Topics | Detailed Responses | Minimal Responses |
---|---|---|
Climate | 59 | 6 |
Environmental Change | 51 | 14 |
Climate-Environment Impacts | 51 | 14 |
Knowledge & Support | 52 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marajh, L.; He, Y. Temperature Variation and Climate Resilience Action within a Changing Landscape. Remote Sens. 2022, 14, 701. https://doi.org/10.3390/rs14030701
Marajh L, He Y. Temperature Variation and Climate Resilience Action within a Changing Landscape. Remote Sensing. 2022; 14(3):701. https://doi.org/10.3390/rs14030701
Chicago/Turabian StyleMarajh, Leah, and Yuhong He. 2022. "Temperature Variation and Climate Resilience Action within a Changing Landscape" Remote Sensing 14, no. 3: 701. https://doi.org/10.3390/rs14030701
APA StyleMarajh, L., & He, Y. (2022). Temperature Variation and Climate Resilience Action within a Changing Landscape. Remote Sensing, 14(3), 701. https://doi.org/10.3390/rs14030701