Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI
Abstract
:1. Introduction
2. Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI
2.1. Phase Mismatch Caused by APCF
2.2. Spatial Channel Co-Registration after Phase Mismatch Calibration
Algorithm 1 DPCA algorithm with proposed phase mismatch calibration |
Input: The raw two-channel dataset of sliding spotlight SAR ,, The SAR system parameters; Output: The moving target detection result R by CFAR;
|
3. Experimental Results and Analysis
3.1. Antenna Spacing Estimation
3.2. Ground Moving Target Indication
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, W.; Huang, P.; Wang, R.; Deng, Y. Processing of Multichannel Sliding Spotlight and TOPS Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4417–4429. [Google Scholar] [CrossRef]
- De Zan, F.; Monti Guarnieri, A. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Quegan, S. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. J. Atmos. Sol.-Terr. Phys. 1995, 59, 597–598. [Google Scholar] [CrossRef]
- Mittermayer, J.; Lord, R.; Borner, E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 3, pp. 1462–1464. [Google Scholar]
- Prats, P.; Scheiber, R.; Mittermayer, J.; Meta, A.; Moreira, A. Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling. IEEE Trans. Geosci. Remote Sens. 2010, 48, 770–780. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.C.; Xing, M.; Xia, X.G.; Wu, Y.; Huang, P.; Wu, Y.; Bao, Z. Multichannel Full-Aperture Azimuth Processing for Beam Steering SAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4761–4778. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, X.; Zhong, L.; Shang, M.; Ding, C. A Simultaneous Imaging Scheme of Stationary Clutter and Moving Targets for Maritime Scenarios with the First Chinese Dual-Channel Spaceborne SAR Sensor. Remote Sens. 2019, 11, 2275. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Hong, W.; Han, B.; Zhao, L.; Lin, Y.; Wang, Y.; Zhang, Q.; Yu, W.; Bi, H. First Result of Spaceborne Dual-Channel Spotlight SAR GMTI Experiment Using Chinese Gaofen-3 Satelite. In Proceedings of the EUSAR 2021: 13th European Conference on Synthetic Aperture Radar, Online Event, 29 March–1 April 2021; pp. 1–5. [Google Scholar]
- Sjoegren, T.; Vu, V.; Mats, P. Experimental result for SAR GMTI using monostatic pursuit mode of TerraSAR-X and TanDEM-X on Staring Spotlight images. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 1–4. [Google Scholar]
- Pastina, D.; Buratta, L.; Turin, F.; Cristallini, D. Exploiting COSMO-SkyMed spotlight SAR images for GMTI applications. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; Volume 2, pp. 1918–1921. [Google Scholar]
- Lightstone, L.; Faubert, D.; Rempel, G. Multiple phase centre DPCA for airborne radar. In Proceedings of the 1991 IEEE National Radar Conference, Los Angeles, CA, USA, 12–13 March 1991; pp. 36–40. [Google Scholar]
- Kim, S.W.; Won, J.S. Acceleration Compensation for Estimation of Along-Track Velocity of Ground Moving Target from Single-Channel SAR SLC Data. Remote Sens. 2020, 12, 1609. [Google Scholar] [CrossRef]
- Dudczyk, J.; Kawalec, A. Optimizing the minimum cost flow algorithm for the phase unwrapping process in SAR radar. Bull. Pol. Acad. Sci. 2014, 62, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zhang, Z.; Wang, R.; Zhang, H.; Wang, X.; Li, N. Robust phase mismatch calibration for Multichannel Sliding Spotlight SAR Imaging. Remote Sens. Lett. 2017, 8, 869–878. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, L.; Zhang, Z.; Yu, W.; Deng, Y. On the Processing of Gaofen-3 Spaceborne Dual-Channel Sliding Spotlight SAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Madsen, S. Estimating the Doppler centroid of SAR data. IEEE Trans. Aerosp. Electron. Syst. 1989, 25, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, W.; Zheng, M.; Zhou, Z.X. Doppler Centroid Estimation for Ground Moving Target in Multichannel HRWS SAR System. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Feng, J.; Gao, C.; Zhang, Y.; Wang, R. Phase Mismatch Calibration of the Multichannel SAR Based on Azimuth Cross Correlation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 903–907. [Google Scholar] [CrossRef]
- Eineder, M.; Adam, N.; Bamler, R.; Yague-Martinez, N.; Breit, H. Spaceborne Spotlight SAR Interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1524–1535. [Google Scholar] [CrossRef]
- Zamparelli, V.; Agram, P.S.; Fornaro, G. Estimation and Compensation of Phase Shifts in SAR Focusing of Spotlight Data Acquired With Discrete Antenna Steering. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1921–1925. [Google Scholar] [CrossRef]
- Shang, M.; Qiu, X.; Han, B.; Ding, C.; Hu, Y. Channel Imbalances and Along-Track Baseline Estimation for the GF-3 Azimuth Multichannel Mode. Remote Sens. 2019, 11, 1297. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, P.; Sciotti, M.; Kaplan, L.M. SAR prescreening using both target and shadow information. In Proceedings of the 2001 IEEE Radar Conference, Atlanta, GA, USA, 3 May 2001; pp. 147–152. [Google Scholar]
Parameter | Value |
---|---|
Carrier frequency | 5.40 GHz |
Platform velocity | 7565.87 m/s |
Number of channels | 2 |
Range bandwidth | 240 MHz |
PRF | 3129.89 Hz |
Scene center range | 1,067,889.22 m |
Scanning angle | −1.35∼1.35 |
Stepped-angle of scanning | 0.01 |
Receiving antenna length | 3.75 m |
The Moving Targets | /dB | /dB | IF/dB |
---|---|---|---|
I | 23.20 | 13.13 | 10.07 |
II | 20.69 | 9.27 | 11.42 |
III | 22.21 | 12.96 | 9.25 |
IV | 21.20 | 11.35 | 9.85 |
V | 28.77 | 38.33 | −9.56 |
VI | 27.29 | 16.20 | 11.09 |
VII | 21.25 | 11.60 | 9.65 |
VIII | 21.03 | 8.49 | 12.54 |
Algorithms | Computational Times |
---|---|
DPCA | 1.02 s |
DPCA with 2D-DB | 5.67 s |
The proposed method | 1.17 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yu, W.; Zheng, M.; Zhao, L.; Zhou, Z.-X. Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI. Remote Sens. 2022, 14, 617. https://doi.org/10.3390/rs14030617
Zhang Z, Yu W, Zheng M, Zhao L, Zhou Z-X. Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI. Remote Sensing. 2022; 14(3):617. https://doi.org/10.3390/rs14030617
Chicago/Turabian StyleZhang, Zhenning, Weidong Yu, Mingjie Zheng, Liangbo Zhao, and Zi-Xuan Zhou. 2022. "Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI" Remote Sensing 14, no. 3: 617. https://doi.org/10.3390/rs14030617
APA StyleZhang, Z., Yu, W., Zheng, M., Zhao, L., & Zhou, Z. -X. (2022). Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI. Remote Sensing, 14(3), 617. https://doi.org/10.3390/rs14030617