# Spatio-Temporal Estimation of Rice Height Using Time Series Sentinel-1 Images

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Area and Datasets

## 3. Methodology

#### 3.1. Simplified Water Cloud Model

^{o}is the total backscattering coefficient; $\sigma $${}_{veg}$

^{o}and $\sigma $${}_{soil}$

^{o}are the backscatter coefficient of the vegetation cover and soil surface, respectively; $\theta $ is the angle of incidence; $\tau $${}^{2}$ is the two-way attenuation. In our study, A, B and $\sigma $${}_{soil}$

^{o}are regarded as constants. V${}_{1}$ and V${}_{2}$, as vegetation descriptors, describe the effect of canopy water content and its geometry on the backscatter [43,44]. Consequently, canopy height, as an important vegetation variable, was represented by both V${}_{1}$ and V${}_{2}$ in our study, and the Water Cloud Model was simplified as much as possible.

^{o}were determined by the minimization between the simulated and observed backscattering coefficient of rice [45]. (2) The look-up table (LUT), which was generated by SWCM with optimized parameters, contained rice height and the corresponding simulated backscattering coefficients. It was of great significance to rice height retrieval. (3) The nearest neighbor algorithm was used for rice height estimation based on LUT. Height estimation was obtained by finding the nearest $\sigma $${}^{o}$ in the LUT. Accuracy estimation was performed for test samples with R${}^{2}$ and RMSE.

#### 3.2. Particle Filter

## 4. Results

#### 4.1. Parameter Optimization

#### 4.2. Comparison of Rice Above-Ground Height Estimation by Two Methods

#### 4.3. The Spatio-Temporal Distribution of Above-Ground Height Estimation

## 5. Discussion

#### 5.1. Polarization Analysis

#### 5.2. Features for SWCM and PF

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Lee, S.-K.; Yoon, S.Y.; Won, J.-S. Vegetation height estimate in rice fields using single polarization TanDEM-X science phase data. Remote Sens.
**2018**, 10, 1702. [Google Scholar] [CrossRef] [Green Version] - Wassmann, R.; Lantin, R.; Neue, H.; Buendia, L.; Corton, T.; Lu, Y. Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr. Cycl. Agroecosyst.
**2000**, 58, 23–36. [Google Scholar] [CrossRef] - Le Toan, T.; Ribbes, F.; Wang, L.-F.; Floury, N.; Ding, K.-H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens.
**1997**, 35, 41–56. [Google Scholar] [CrossRef] - Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Fortuny-Guasch, J. Retrieval of Biophysical Parameters of Agricultural Crops Using Polarimetric Sar Interferometry. IEEE Trans. Geosci. Remote Sens.
**2005**, 43, 683–694. [Google Scholar] [CrossRef] - Yang, Z.; Li, K.; Shao, Y.; Brisco, B.; Liu, L. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images. Remote Sens.
**2016**, 8, 878. [Google Scholar] [CrossRef] [Green Version] - Ndikumana, E.; Ho Tong Minh, D.; Dang Nguyen, H.T.; Baghdadi, N.; Courault, D.; Hossard, L.; El Moussawi, I. Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sens.
**2018**, 10, 1394. [Google Scholar] [CrossRef] [Green Version] - Xie, Q.; Wang, J.; Lopez-Sanchez, J.M.; Peng, X.; Liao, C.; Shang, J.; Zhu, J.; Fu, H.; Ballester-Berman, J.D. Crop Height Estimation of Corn from Multi-Year RADARSAT-2 Polarimetric Observables Using Machine Learning. Remote Sens.
**2021**, 13, 392. [Google Scholar] [CrossRef] - Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J. Appl. Remote Sens.
**2014**, 8, 083671. [Google Scholar] [CrossRef] - Hoffmeister, D.; Waldhoff, G.; Korres, W.; Curdt, C.; Bareth, G. Crop height variability detection in a single field by multi-temporal terrestrial laser scanning. Precis. Agric.
**2016**, 17, 296–312. [Google Scholar] [CrossRef] - Rossi, C.; Erten, E. Paddy-rice monitoring using TanDEM-X. IEEE Trans. Geosci. Remote Sens.
**2014**, 53, 900–910. [Google Scholar] [CrossRef] [Green Version] - Erten, E.; Lopez-Sanchez, J.M.; Yuzugullu, O.; Hajnsek, I. Retrieval of agricultural crop height from space: A comparison of SAR techniques. Remote Sens. Environ.
**2016**, 187, 130–144. [Google Scholar] [CrossRef] [Green Version] - Yuzugullu, O.; Erten, E.; Hajnsek, I. Crop height estimation of rice fields by X-and C-Band PolSAR. In Proceedings of the 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016. [Google Scholar]
- Yuzugullu, O.; Erten, E.; Hajnsek, I. Estimation of rice crop height from X-and C-band PolSAR by metamodel-based optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2016**, 10, 194–204. [Google Scholar] [CrossRef] [Green Version] - Yuzugullu, O.; Erten, E.; Hajnsek, I. A multi-year study on rice morphological parameter estimation with X-band PolSAR data. Appl. Sci.
**2017**, 7, 602. [Google Scholar] [CrossRef] [Green Version] - Yuzugullu, O.; Erten, E.; Hajnsek, I. Assessment of paddy rice height: Sequential inversion of coherent and incoherent models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2018**, 11, 3001–3013. [Google Scholar] [CrossRef] - Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Marquez-Moreno, Y. Model limitations and parameter-estimation methods for agricultural applications of polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens.
**2007**, 45, 3481–3493. [Google Scholar] [CrossRef] [Green Version] - Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Erten, E.; Campos-Taberner, M.; Garcia-Haro, F.J. Retrieval of vegetation height in rice fields using polarimetric SAR interferometry with TanDEM-X data. Remote Sens. Environ.
**2017**, 192, 30–44. [Google Scholar] [CrossRef] [Green Version] - Lopez-Sanchez, J.M.; Hajnsek, I.; Ballester-Berman, J.D. First demonstration of agriculture height retrieval with PolInSAR airborne data. IEEE Geosci. Remote Sens. Lett.
**2011**, 9, 242–246. [Google Scholar] [CrossRef] - Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ.
**2017**, 199, 415–426. [Google Scholar] [CrossRef] - Ndikumana, E.; Minh, D.H.T.; Thu, D.N.H.; Baghdadi, N.; Courault, D.; Hossard, L.; El Moussawi, I. Rice height and biomass estimations using multitemporal SAR Sentinel-1: Camargue case study. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, Berlin, Germany, 10 October 2018. [Google Scholar]
- Sharifi, A.; Hosseingholizadeh, M. Application of sentinel-1 data to estimate height and biomass of rice crop in Astaneh-ye Ashrafiyeh, Iran. J. Indian Soc. Remote Sens.
**2020**, 48, 11–19. [Google Scholar] [CrossRef] - Phan, H.; Le Toan, T.; Bouvet, A. Understanding Dense Time Series of Sentinel-1 Backscatter from Rice Fields: Case Study in a Province of the Mekong Delta, Vietnam. Remote Sens.
**2021**, 13, 921. [Google Scholar] [CrossRef] - Zhang, Y.; Liu, X.; Su, S.; Wang, C. Retrieving canopy height and density of paddy rice from Radarsat-2 images with a canopy scattering model. Int. J. Appl. Earth Obs. Geoinf.
**2014**, 28, 170–180. [Google Scholar] [CrossRef] - Engdahl, M.E.; Borgeaud, M.; Rast, M. The use of ERS-1/2 tandem interferometric coherence in the estimation of agricultural crop heights. Int. J. Appl. Earth Obs. Geoinf.
**2001**, 39, 1799–1806. [Google Scholar] [CrossRef] - Wegmuller, U.; Werner, C. Retrieval of vegetation parameters with SAR interferometry. IEEE Trans. Geosci. Remote Sens.
**1997**, 35, 18–24. [Google Scholar] [CrossRef] - Erten, E.; Rossi, C.; Yüzügüllü, O. Polarization impact in TanDEM-X data over vertical-oriented vegetation: The paddy-rice case study. IEEE Geosci. Remote Sens. Lett.
**2015**, 12, 1501–1505. [Google Scholar] [CrossRef] [Green Version] - Cloude, S.; Papathanassiou, K. Three-stage inversion process for polarimetric SAR interferometry. IEEE Proc.-Radar Sonar Navig.
**2003**, 150, 125–134. [Google Scholar] [CrossRef] [Green Version] - Hajnsek, I.; Kugler, F.; Lee, S.-K.; Papathanassiou, K.P. Tropical-forest-parameter estimation by means of Pol-InSAR: The INDREX-II campaign. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 481–493. [Google Scholar] [CrossRef] [Green Version] - Kugler, F.; Schulze, D.; Hajnsek, I.; Pretzsch, H.; Papathanassiou, K.P. TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Trans. Geosci. Remote Sens.
**2014**, 52, 6404–6422. [Google Scholar] [CrossRef] - Jörg, H.; Pardini, M.; Hajnsek, I.; Papathanassiou, K.P. First multi-frequency investigation of SAR tomography for vertical structure of agricultural crops. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014. [Google Scholar]
- Pichierri, M.; Hajnsek, I. Comparing performances of crop height inversion schemes from multifrequency pol-InSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2017**, 10, 1727–1741. [Google Scholar] [CrossRef] - Romero-Puig, N.; Lopez-Sanchez, J.M. Comparing Insar Methodologies for the Retrieval of Paddy Rice Height with TanDEM-X Data. In Proceedings of the IGARSS 2020 -IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Yuzugullu, O.; Marelli, S.; Erten, E.; Sudret, B.; Hajnsek, I. Determining rice growth stage with X-band SAR: A metamodel based inversion. Remote Sens.
**2017**, 9, 460. [Google Scholar] [CrossRef] [Green Version] - Chen, H.; Cloude, S.R.; Goodenough, D.G. Forest canopy height estimation using Tandem-X coherence data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2016**, 9, 3177–3188. [Google Scholar] [CrossRef] - Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens.
**1998**, 36, 1551–1565. [Google Scholar] [CrossRef] - Managhebi, T.; Maghsoudi, Y.; Zoej, M.J.V. An improved three-stage inversion algorithm in forest height estimation using single-baseline polarimetric sar interferometry data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2018**, 15, 887–891. [Google Scholar] [CrossRef] - Simard, M.; Denbina, M. An assessment of temporal decorrelation compensation methods for forest canopy height estimation using airborne L-band same-day repeat-pass polarimetric SAR interferometry. IEEE Geosci. Remote Sens. Lett.
**2017**, 11, 95–111. [Google Scholar] [CrossRef] - Chauhan, S.; Srivastava, H.S.; Patel, P. Crop Height Estimation Using RISAT-1 Hybrid-Polarized Synthetic Aperture Radar Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2019**, 12, 2928–2933. [Google Scholar] [CrossRef] - Mandal, D.; Kumar, V.; Lopez-Sanchez, J.M.; Bhattacharya, A.; McNairn, H.; Rao, Y. Crop biophysical parameter retrieval from Sentinel-1 SAR data with a multi-target inversion of Water Cloud Model. Int. J. Remote Sens.
**2020**, 41, 5503–5524. [Google Scholar] [CrossRef] - De Bernardis, C.G.; Vicente-Guijalba, F.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Estimation of key dates and stages in rice crops using dual-polarization SAR time series and a particle filtering approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2014**, 8, 1008–1018. [Google Scholar] [CrossRef] [Green Version] - Yang, H.; Pan, B.; Li, N.; Wang, W.; Zhang, J.; Zhang, X. A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images. Remote Sens. Environ.
**2021**, 259, 112394. [Google Scholar] [CrossRef] - Yang, H.; Pan, B.; Wu, W.; Tai, J. Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data. Int. J. Appl. Earth Obs. Geoinf.
**2018**, 69, 226–236. [Google Scholar] [CrossRef] - Attema, E.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci.
**1978**, 13, 357–364. [Google Scholar] [CrossRef] - Yadav, V.P.; Prasad, R.; Bala, R.; Vishwakarma, A.K. An improved inversion algorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using C-band Sentinel-1A SAR data. Comput. Electron. Agric.
**2020**, 173, 105447. [Google Scholar] [CrossRef] - Richards, F. A flexible growth function for empirical use. J. Exp. Bot.
**1959**, 10, 290–301. [Google Scholar] [CrossRef] - Phung, H.P.; Nguyen, L.D.; Thong, N.H.; Thuy, L.T.; Apan, A.A. Monitoring rice growth status in the mekong delta, vietnam using multitemporal sentinel-1 data. J. Appl. Remote Sens.
**2020**, 14, 014518. [Google Scholar] [CrossRef] [Green Version] - Galán, C.; García-Mozo, H.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Int. J. Biometeorol.
**2001**, 45, 8–12. [Google Scholar] [CrossRef] [PubMed] - De Bernardis, C.; Vicente-Guijalba, F.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Contribution to real-time estimation of crop phenological states in a dynamical framework based on NDVI time series: Data fusion with SAR and temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2016**, 9, 3512–3523. [Google Scholar] [CrossRef] [Green Version] - Canisius, F.; Shang, J.; Liu, J.; Huang, X.; Ma, B.; Jiao, X.; Geng, X.; Kovacs, J.M.; Walters, D. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sens. Environ.
**2018**, 210, 508–518. [Google Scholar] [CrossRef] - Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ.
**2020**, 247, 111954. [Google Scholar] [CrossRef] - Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Appl. Sci.
**2019**, 9, 655. [Google Scholar] [CrossRef] [Green Version] - Jia, M.; Tong, L.; Zhang, Y.; Chen, Y.; Chopra, R. Multi-temporal radar backscattering measurements and modelling of rice fields using a multi-frequency (L, S, C, and X) scatterometer. Int. J. Remote Sens.
**2014**, 35, 1253–1271. [Google Scholar] [CrossRef] - De Bernardis, C.; Vicente-Guijalba, F.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Particle filter approach for crop phenological stage estimation using time series of NDVI images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Milano, Italy, 26–31 July 2015. [Google Scholar]

**Figure 1.**(

**a**) The location of Guangdong Province in China; (

**b**) Location of the study area in Taishan County, Guangdong Province.

**Figure 2.**Acquisition dates of ground campaigns and Sentinel-1A images. Crosses denote a lack of images, and black circles denote acquired data. The backscattering coefficients of the missing image were the mean value of two adjacent images.

**Figure 4.**(

**a**) Relation between the age (days after transplanting) and the reference above-ground height (black circle); the model was obtained from the fitting of the Sigmoidal Richards model (red line). (

**b**) Relation between the reference above-ground height and VH backscatter (black circle); the model was obtained from the fitting of a polynomial curve (red line).

**Figure 5.**Flow diagram of the methodology for rice above-ground height estimation. Rice was harvested when the growing duration from transplanting to harvest was larger than 100 days.

**Figure 6.**RMSE and R${}^{2}$ of estimated rice above-ground height (

**a**) for SWCM with optimized parameters and (

**b**) for PF with initial height. The red line is a fitted line.

**Figure 7.**Estimation of rice above-ground height for field 9 by two methods. (

**A**) represents DoY and (

**B**) represents the ground truth of rice above-ground height. (

**C**,

**D**) are the results calculated using the SWCM and PF, respectively.

**Figure 9.**Relationships between the rice above-ground height and (

**a**) VV backscatter, (

**b**) backscattering coefficients for VH, (

**c**) the $\sigma $${}_{vh}$${}^{o}$/$\sigma $${}_{vv}$${}^{0}$ ratio and (

**d**) RVI.

Parameters | Sentinel-1A | Parameters | Sentinel-1A |
---|---|---|---|

Product type | GRD | Center frequency | 5.4 GHz |

Mode | IW | Look direction | Right |

Polarization | VV, VH | Pass direction | Ascending |

Incidence angle | 30.8°–46.2° | Range/Azimuth looks | 5/1 |

Band | C | Resolution | 10 m |

Model | Input Parameters | Output Parameters |
---|---|---|

SWCM | $\sigma $${}^{o}$, the observed height of rice | height estimation |

PF | $\sigma $${}^{o}$, the observed height of rice, days after transplanting | height estimation |

Polarization | A | B | ${\mathit{\sigma}}_{\mathit{soil}}$${}^{\mathit{o}}$ | RMSE | R${}^{2}$ |
---|---|---|---|---|---|

VH | 0.001 | −0.08 | 0.014 | 0.789488 | 0.824267 |

VV | 0.015 | −0.12 | 0.065 | 1.366691 | 0.229191 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yang, H.; Li, H.; Wang, W.; Li, N.; Zhao, J.; Pan, B.
Spatio-Temporal Estimation of Rice Height Using Time Series Sentinel-1 Images. *Remote Sens.* **2022**, *14*, 546.
https://doi.org/10.3390/rs14030546

**AMA Style**

Yang H, Li H, Wang W, Li N, Zhao J, Pan B.
Spatio-Temporal Estimation of Rice Height Using Time Series Sentinel-1 Images. *Remote Sensing*. 2022; 14(3):546.
https://doi.org/10.3390/rs14030546

**Chicago/Turabian Style**

Yang, Huijin, Heping Li, Wei Wang, Ning Li, Jianhui Zhao, and Bin Pan.
2022. "Spatio-Temporal Estimation of Rice Height Using Time Series Sentinel-1 Images" *Remote Sensing* 14, no. 3: 546.
https://doi.org/10.3390/rs14030546