Application of Complex Geophysical Methods for the Detection of Unconsolidated Zones in Flood Dikes
Abstract
:1. Introduction
2. Study Area
- Stage I (with few substages)—between 2014–2018—preliminary geophysical surveys, with the application of the GPR, ERT, and EMP methods, as well as DPL (dynamic penetration light) soundings and geological drillings, were carried out, mainly north of flood gate no. 1 (Figure 1C—over leakages no. III, IV, and V); the selected results, obtained at this stage, were presented in various scientific conferences [6,9].
- Stage II—2019—detailed geophysical surveys, with application of the GPR, ERT, CCR, and seismic methods, as well as DPL soundings and geological drillings, were performed, mainly south of flood gate no. 1 (Figure 1C—over leakages no. I and II); the results of numerical modelling, carried out for the GPR and ERT methods, were presented at a scientific conference [9].
3. Results of Geophysical Investigations
3.1. GPR Surveys
3.1.1. WARR Measurments
3.1.2. GPR Reflection Surveys with Standard Co-Pole Antennae Orientation
3.1.3. GPR Reflection Surveys with Different Antennae Orientations
3.2. ERT Surveys
3.3. CCR Surveys
3.4. Seismic Surveys
3.4.1. The 100 Hz Profile
3.4.2. The 26 Hz Profile
4. Global Interpretation
4.1. Geological Model of Inspect Dike
4.2. Zones of Leakage Risk (Hazard Zones)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gąsiorowski, S. Budowa Ziemnych Wałów Przeciwpowodziowych, a Stablizacja Gruntu; Technika; Kwartalnik kosztorysanta: Warszawa, Poland, 2012. [Google Scholar]
- Gołębiowski, T. Velocity Analysis in the GPR Method for Loose Zones Detection in the River Embankments. In Proceedings of the International GPR Conference, Lecce, Italy, 21–25 June 2010. [Google Scholar]
- Gołębiowski, T. Changeable-offset GPR Profiling for Loose Zones Detection in the Levees. In Proceedings of the Near Surface Conference, Cracow, Poland, 15–17 September 2008. [Google Scholar]
- Gołębiowski, T. Application of the GPR Method for Detection and Monitoring of Objects with Sochastical Distribution in the Geological Medium; AGH-UST: Kraków, Poland, 2012. [Google Scholar]
- Gołębiowski, T.; Małysa, T. The Application of GPR Method for Detection of Loose Zones in Flood Levee. In Proceedings of the E3S Web of Conferences, Cracow, Poland, 7–8 June 2018; Volume 30. [Google Scholar]
- Gołębiowski, T.; Małysa, T. The Application of Non-standard GPR Techniques for the Examination of River Dikes. Czas. Tech. 2018, 7, 121–138. [Google Scholar]
- Gołębiowski, T.; Ostrowski, T. Application of Geoelectrical Techniques form Examination of Subsoil of Hydrotechnical Constructions. In Proceedings of the Scientific and Technical Conference on Application of Computer Methods for Designing and Analysis of Hydrotechnical Constructions, Korbielów, Poland, 27 February–1 March 2017. [Google Scholar]
- Gołębiowski, T.; Pasierb, B.C.R. Complex Detection of Loose Zone in Flood Dikes. In Proceedings of the Scientific and Technical Conference on Application of Computer Methods for Designing and Analysis of Hydrotechnical Constructions, Korbielów, Poland, 2015. [Google Scholar]
- Gołębiowski, T.; Piwakowski, B.; Ćwiklik, M. Application of the GPR and ERT Methods for Non-invasive Examination of Flood Dike. In Proceedings of the Scientific and Technical Conference MATBUD, Cracow, Poland, 19–24 October 2020. [Google Scholar]
- Gołębiowski, T.; Tomecka-Suchoń, S.; Farbisz, J. Application of Complex Geophysical Metods for Non-invasive Examination of Technical Conditions of Flood Dikes. In Proceedings of the European Symposium on Anti-flood Defences, Paris/Orleans, France, 28–30 March 2012. [Google Scholar]
- Guy, E.; Daniels, J.J.; Radzevicius, S.; Vendl, M. Demonstration of Using Crossed Dipole GPR Antenna for Site Characterization. Geophys. Res. Lett. 1999, 26, 3421–3424. [Google Scholar] [CrossRef]
- Marcak, H.; Gołębiowski, T. The Use of GPR Attributes to Map a Weak Zone in a River Dike. Explor. Geophys. 2014, 45, 123–133. [Google Scholar] [CrossRef]
- Marcak, H.; Gołębiowski, T.; Tomecka-Suchoń, S. Analysis of Possibility of Using the GPR Refraction for Location Changes in River Embankments. Geology 2005, 31, 3–4. [Google Scholar]
- Cygal, A.; Borecka, A.; Stefaniuk, M.; Sada, M.; Ważny, J. Multivariate interpretation geophysical data for evaluation of geotechnical condition of part embankment Vistula river. In Proceedings of the CAGG AGH Conference, Kraków, Poland, 10–13 September 2019. [Google Scholar]
- Cygal, A.; Stefaniuk, M.; Kret, E.; Klityński, W. Zastosowanie metody konduktometrycznej do typowania stref o zmiennych parametrach filtracyjnych w obrębie podstawy wału przeciwpowodziowego. Przegląd Geol. 2015, 63, 652–656. (In Polish) [Google Scholar]
- Cygal, A.; Stefaniuk, M.; Kret, E.; Kurowska, M. The application of electrical resistivity tomography (ERT), induced polarization (IP) and electromagnetic conductivity (EMC) methods for the evaluation of technical condition of flood embankment corpus. Geol. Geophys. Environ. 2016, 42, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, T.; Löfroth, H.; Schälin, D.; Suer, P. Mapping of quick clay using geoelectrical imaging and CPTU-resistivity. Near Surf. Geophys. 2013, 11, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, T.; Zhou, B.A. Numerical Comparison of 2D Resistivity Imaging with Ten Electrode Arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, J.B.; Smullen, S.; Stefanov, J.E. The Use of Geophysics in Levee Assessment. In Symposium on the Application of Geophysics to Engineering and Environmental; Environmental & Engineering Geophysical Society: Denver, CO, USA, 2007. [Google Scholar]
- Hayashi, K.; Abe, T.; Tanaka, T.; Konishi, C. Application of integrated geophysical method to levee evaluation. In Proceedings of the Fourth International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 295–301. [Google Scholar]
- Hayashi, K.; Konishi, C. Joint Use of a Surface-Wave Method and a Resistivity Method for Safety Assessment of Levee Systems. In Proceedings of the GeoFlorida 2010: Advances in Analysis, Modeling & Design, Orlando, FL, USA, 20–24 February 2010. [Google Scholar]
- Oh, S. Safety Consideration of Embankment by Conditional Analysis of Electrical Resistivity. In Proceedings of the Near Surface 2008, 14th European Meeting of Environmental and Engineering Geophysics, Kraków, Poland, 15–17 September 2008. [Google Scholar]
- Sjödahl, P.; Dahlin, T.; Johansson, S. Using the resistivity method for leakage detection in a blind test at the Røssvatn embankment dam test facility in Norway. Bull. Eng. Geol. Environ. 2010, 69, 643–658. [Google Scholar] [CrossRef] [Green Version]
- Oryński, S.Z.; Foltyn, N. Flooded zones recognition with the use of Ground Conductivity Meters. In Proceedings of the 77th EAGE Conference & Exhibition, Madrid, Spain, 1–4 June 2015. [Google Scholar]
- Niederleithinger, E.; Weller, A.; Lewis, R. Evaluation of Geophysical Techniques for Dike Inspection. J. Environ. Eng. Geophys. 2012, 17, 185–195. [Google Scholar] [CrossRef]
- Lundström, K.; Larsson, R.; Dahlin, T. Mapping of quick clay formations using geotechnical and geophysical methods. Landslides 2009, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Karl, L.; Fechner, T.; Schevenels, M.; François, S.; Degrande, G. Geotechnical characterization of a river dyke by surface waves. Near Surf. Geophys. 2011, 9, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Cichostępski, K.; Dec, J.; Kwietniak, A. Relative amplitude preservation in high-resolution shallow reflection seismic: A case study from Fore-Sudetic Monocline, Poland. Acta Geophys. 2019, 67, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Cichostępski, K.; Dec, J.; Kwietniak, A. Simultaneous Inversion of Shallow Seismic Data for Imaging of Sulfurized Carbonates. Minerals 2019, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Cichostępski, K.; Dec, J. Estimation of Shallow Sulphur Deposit Resources Based on Reflection Seismic Studies and Well Logging. Energies 2021, 14, 5323. [Google Scholar] [CrossRef]
- Branham, K.L.; Steeples, D.W. Cavity detection using high-resolution seismic reflection methods. Min. Eng. 1988, 40, 115–119. [Google Scholar]
- Brouwer, J.; Helbig, K. Shallow High-Resolution Reflection Seismics; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Cook, J.C. Seismic mapping of underground cavities using reflection amplitude. Geophysics 1965, 30, 527–538. [Google Scholar] [CrossRef]
- Łój, M.; Porzucek, S.; Gołębiowski, T.; Everett, M.E. Microgravimetric and GPR Surveys for Detection of Unconsolidated Zones in a Levee. In Proceedings of the E3S Web of Conferences, Cracow, Poland, 7–8 June 2018; Volume 66. [Google Scholar]
- Ball, L.B. Capacitively Coupled Average Resistivity of the Interstate and Tri-State Canals; Scientific Investigations Report; U.S. Geological Survey Lincoln: Lincoln, NE, USA, 2006.
- Garman, K.M.; Purcell, S.F. Applications for capacitively coupled resistivity surveys in Florida. In Proceedings of the 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Colorado Springs, CO, USA, 22–26 February 2004; Volume 23, pp. 697–698. [Google Scholar]
- Kuras, O.; Beamish, D.; Meldrum, P.I.; Ogilvy, R.D. Fundamentals of the capacitive resistivity technique. Geophysics 2006, 71, G135–G152. [Google Scholar] [CrossRef] [Green Version]
- Timofeev, V.M.; Rogozinski, A.W.; Hunter, J.A.; Douma, M. A new ground resistivity method for engineering and environmental geophysics. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 1994; Environmental & Engineering Geophysical Society: Denver, CO, USA, 1994; pp. 701–715. [Google Scholar]
- Fauchard, C.; Mériaux, P. Geophysical and Geotechnical Methods for Diagnosing of Flood Protection Dikes; éditions Quae: Versailles, France, 2007. [Google Scholar]
- Royet, R.; Palma-Lopes, S.; Fauchard, C.; Mériaux, P.; Auriau, L. Reliability of Urban Flood Defences—Rapid and Cost-Effective Dike Condition Assessment Methods: Geophysics and Remote Rensing; FloodProBE—Project report of grant agreement no: 243401; FloodProBE: Orleans, France, 2013. [Google Scholar]
- Kot, A. Expertise of Technical Condition of Flood Gate No. 1 Located in the Left Flood Dike of the Vistula River in the Village of Wawrzeńczyce; Aquin firm Ed.: Auschwitz, Poland, 2013. [Google Scholar]
- Annan, A.P. Ground Penetrating Radar; Sensor & Software: Mississauga, ON, Canada, 2005. [Google Scholar]
- ReflexW. User Guide; Sandmeier Geophysical Research: Karlsruhe, Germany, 2019. [Google Scholar]
- Robert, R.L.; Daniels, J.J. Analysis of GPR polarization phenomena. J. Environ. Eng. Geophys. 1996, 1, 139–157. [Google Scholar] [CrossRef]
- Szalai, S. About The Depth of Investigation of Different D.C. Dipole-Dipole Arrays. Acta Geod. Geophys. Hung. 2000, 35, 63–73. [Google Scholar]
- Szalai, S.; Szarka, L. An approximate analytical approach to compute geoelectric dipole-dipole responses due to a small buried cube. Geophys. Prospect. 2000, 48, 871–885. [Google Scholar] [CrossRef]
- Loke, M.H. 2-D and 3-D Electrical Imaging Surveys. Tutorial Geotomo Software, 2003. Available online: www.geotomosoft.com/downloads.php (accessed on 1 January 2022).
- Loke, M.H. Rapid 2D Resistivity & IP Inversion Using Least-Squares Method. Tutorial Geotomo Software, 2010. Available online: www.geotomosoft.com/downloads.php. (accessed on 1 January 2022).
- Loke, M.H.; Ackworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef]
- Papadopoulos, N.G.; Tsourlos, P.; Tsokas, G.N.; Sarris, A. Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation. Archaeol. Prospect. 2006, 13, 163–181. [Google Scholar] [CrossRef]
- Aspinall, A.; Saunders, M.K. Experiments with the square array. Archaeol. Prospect. 2005, 12, 115–129. [Google Scholar] [CrossRef]
- Keller, G.V. Electrical properties of rocks and minerals. In Handbook of Physical Constants; CRC Press: Boca Raton, FL, USA, 1966; pp. 283–292. [Google Scholar]
- Kobranova, V.N. Petrophysics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- OhmImager Manual. OhmImager Software for Data Analysis of the OhmMapper; Version 1.1; GEOMATRICS: San Jose, CA, USA, 2014. [Google Scholar]
- Ghosh, D.P. The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophys. Prospect. 1971, 19, 192–217. [Google Scholar] [CrossRef]
- Foti, S.; Lai, C.G.; Glenn, J.; Strobbia, C. Surface Wave Methods for Near-Surface Site Characterization; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Moody, T.A. Geophysical Assessment of Kinion Lake Dam. Graduate Thesis, University of Arkansas, Fayetteville, AR, USA, 2017; p. 2470. Available online: http://scholarworks.uark.edu/etd/2470 (accessed on 1 December 2021).
- Knapp, R.W.; Steeples, D.W. High resolution common-depth-point seismic reflection profilling: Field acquisition parameter design. Geophysics 1986, 51, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Kourkafas, P.; Goulty, N.R. Seismic reflection imaging of gypsum mine working at Sherburn-in-Elmet. Eur. J. Environ. Eng. Geophys. 1996, 1, 53–63. [Google Scholar]
- Ghose, R.; Nijhof, V.; Brouwer, J.; Matsubara, Y.; Kaida, Y.; Takahashi, T. Shallow to very shallow high-resolution reflection seismic using a portable vibrator system. Geophysics 1998, 63, 1295–1309. [Google Scholar] [CrossRef]
- Piwakowski, B. From high resolution land seismic imaging to very high resolution: State of the art, limits and field examples. Invited paper special HRS session. In Proceedings of the International Symposium of European Association of Exploration Geophysicists, Paris, French, 6–10 June 2004. [Google Scholar]
- Doll, W.E.; Miller, R.D.; Xia, J. A non-invasive shallow seismic source comparison on the Oak Ridge Reservation, Tennessee. Geophysics 1998, 63, 1318–1331. [Google Scholar] [CrossRef]
- Kosecki, A.; Piwakowski, B.; Driad-Lebeau, L.; Safinowski, P. High Resolution Seismic Investigation in Salt Mining Context Part I: Comparison of Seismic Sources; EAEG: Helsinki, Finland, 2006. [Google Scholar]
- Miller, R.D.; Pullan, S.E.; Waldner, J.S.; Haeni, F.P. Field comparison of seismic sources. Geophysics 1986, 51, 2067–2092. [Google Scholar] [CrossRef]
- Available online: www.kgs.ku.edu/software/winseis/index.html (accessed on 1 January 2022).
- Leblanc, G.; Lee, M.; Morris, W. A simple adaptable data fusion methodology for geophysical exploration. Explor. Geophys. 2012, 43, 190–197. [Google Scholar] [CrossRef]
Measuring Series | Rx3 [m] | Rx2 [m] | Rx1 [m] | S [m] | Tx [m] | Receivers Number |
---|---|---|---|---|---|---|
1 | - | - | 5 | 5 | 5 | 1 |
2 | - | - | 5 | 10 | 5 | 1 |
3 | - | - | 5 | 15 | 5 | 1 |
4 | - | - | 10 | 10 | 10 | 1 |
5 | - | - | 10 | 15 | 10 | 1 |
6 | - | 7.5 | 5 | 5 | 5 | 2 |
7 | - | 7.5 | 5 | 10 | 5 | 2 |
8 | - | 7.5 | 5 | 15 | 5 | 2 |
9 | 10 | 7.5 | 5 | 5 | 5 | 3 |
10 | 10 | 7.5 | 5 | 10 | 5 | 3 |
Profile Name | Geophones Used | Source | Number of Shots | Profile Limits xmin/xmax (m) | Minimum Source Receive Offset (m) | Geophone Spacing (m) | CDP Spacing (m) | Dominating Frequency in Stacked Section | Dominating Wavelength in the First Layer (m) | Depth Resolution in the First Layer (m) | Lateral Resolution at m Depth of Marker A |
---|---|---|---|---|---|---|---|---|---|---|---|
100 Hz | 100 Hz | Sledgehammer 5 kg | 194 | 0/100 | 1 | 0.5 | 0.25 | 100 | 3 | 0.75 | 2.1 |
26 Hz | 26 Hz | Sledgehammer 5 kg | 139 | 0/125 | 6 | 1 | 0.5 | 120 |
Obtained from HRSR x = 5 m | Obtained from Refraction | ||||
---|---|---|---|---|---|
Layer | Material | Depth (m) | Interval P Velocity (m/s) | Depth (m) | Velocity (m/s) |
I | sand | 4 | 282 | 3.0–3.5 | 280 |
II | clay | 6 | 520 | 8.2–9.0 | 550 |
III | Saturated ground | - | - | - | 1500–1550 |
Method | Reference Figure | Interpreted Symptoms | Examined Dike Zone x(m) | Detected Hazard Zones x(m) |
---|---|---|---|---|
GPR 200 MHz Polarization co-pole | Figure 6 | Method does not provide any information about hazard zones | 0–200 | - |
GPR 200 MHz Mixed polarisation | Figure 8b,c Figure 9 | Abnormal stronger reflection level from reflector ‘A’ | 0–150 | 25–65 135–145 |
ERT | Figure 10b | High resistivity anomalies—sands with the extremely high-water permeability | 0–75 | 22–40, 50–75 |
CCR | Figure 13 | Method does not provide any information about hazard zones | 0–75 | - |
HRS 100 Hz | Figure 12a | Unusual decrease or total loss of reflection from marker ‘A’ | 5–98 | 16–30 48–57 60–77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołębiowski, T.; Piwakowski, B.; Ćwiklik, M. Application of Complex Geophysical Methods for the Detection of Unconsolidated Zones in Flood Dikes. Remote Sens. 2022, 14, 538. https://doi.org/10.3390/rs14030538
Gołębiowski T, Piwakowski B, Ćwiklik M. Application of Complex Geophysical Methods for the Detection of Unconsolidated Zones in Flood Dikes. Remote Sensing. 2022; 14(3):538. https://doi.org/10.3390/rs14030538
Chicago/Turabian StyleGołębiowski, Tomisław, Bogdan Piwakowski, and Michał Ćwiklik. 2022. "Application of Complex Geophysical Methods for the Detection of Unconsolidated Zones in Flood Dikes" Remote Sensing 14, no. 3: 538. https://doi.org/10.3390/rs14030538
APA StyleGołębiowski, T., Piwakowski, B., & Ćwiklik, M. (2022). Application of Complex Geophysical Methods for the Detection of Unconsolidated Zones in Flood Dikes. Remote Sensing, 14(3), 538. https://doi.org/10.3390/rs14030538