An Improved Exponential Model Considering a Spectrally Effective Moisture Threshold for Proximal Hyperspectral Reflectance Simulation and Soil Salinity Estimation
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Site Description
2.2. Data Collection
2.3. Hyperspectral Reflectance Data Preprocessing
2.4. Theoretical Approach
2.4.1. Description of SSREM
2.4.2. Establishment of MT-SSREM
2.5. Research Framework
2.6. Model Calibration and Validation
3. Results
3.1. SMC, SSC and Major Cation Concentrations
3.2. Soil Hyperspectral Reflectance at Different SSC Levels
3.3. Soil Hyperspectral Reflectance at Different SMC Levels
3.4. Suitable Bands for Estimating SSC
3.5. Determination of MT Based on the Relationship between Reflectance and SMC
3.6. Evaluation of Model Performance
3.6.1. Model Parameters
3.6.2. Results of the SSREM
3.6.3. Results of the MT-SSREM
3.6.4. SSC Estimation
4. Discussion
4.1. The MT-SSREM Parameters
4.2. Features of Suitable Bands for Estimating SSC
4.3. MT-SSREM Model Performance
4.4. Application and Limitations of MT-SSREM
5. Conclusions
- (1)
- The relationship of spectral reflectance and SMC can be fitted with a quadratic function, and the MT value of each waveband can be determined at the minimum point of the corresponding quadratic function.
- (2)
- SSREM is not suitable for simulating the spectral reflectance of saline soil with high SMC. An improved model, MT-SSREM has been proposed to incorporate the MT effect on saline soil spectral reflectance modelling.
- (3)
- MT-SSREM performed better than SSREM for hyperspectral reflectance simulation and SSC estimation in various SMC and SSC conditions.
- (4)
- SMC has greater influence on soil spectral reflectance than SSC, which make it difficult to eliminate SMC noise when estimating SSC from spectral reflectance. It is suggested to use spectral reflectance of 628~640 and 728~735 nm bands for estimating SMC, and that of 658~660, 671~685 and 938 nm for estimating SSC.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil Salinity: A Threat to Global Food Security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecol. Indic. 2015, 57, 128–130. [Google Scholar] [CrossRef]
- Mitran, T.; Ravisankar, T.; Fyzee, M.; Suresh, J.R.; Sujatha, G.; Sreenivas, K. Retrieval of soil physicochemical properties towards assessing salt-affected soils using Hyperspectral Data. Geocarto Int. 2015, 30, 701–721. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, B. Prediction of soil salinity with soil-reflected spectra: A comparison of two regression methods. Sci. Rep. 2019, 9, 5067. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, X.; Zhang, F.; Chan, N.W.; Kung, H.-T.; Liu, S.; Deng, L. Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecol. Indic. 2020, 119, 106869. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. Comparison on quantitative inversion of characteristic ions in salinized soils with hyperspectral based on support vector regression and partial least squares regression. Eur. J. Remote Sens. 2020, 53, 340–348. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Hurburgh, C.R. influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Sci. 2005, 170, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—A case study over clayey soils in Israel. Int. J. Remote Sens. 2002, 23, 1043–1062. [Google Scholar] [CrossRef]
- Ganjegunte, G.K.; Sheng, Z.; Clark, J.A. soil salinity and sodicity appraisal by electromagnetic induction in soils irrigated to grow cotton. Land Degrad. Dev. 2012, 25, 228–235. [Google Scholar] [CrossRef]
- Pessoa, L.G.M.; Dos Santos Freire, M.B.G.; Wilcox, B.P.; Green, C.H.M.; De Araújo, R.J.T.; De Araújo Filho, J.C. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels. Environ. Monit. Assess. 2016, 188, 616. [Google Scholar] [CrossRef] [PubMed]
- Musick, H.B.; Pelletier, R.E. Response to soil moisture of spectral indexes derived from bidirectional reflectance in thematic mapper wavebands. Remote Sens. Environ. 1988, 25, 167–184. [Google Scholar] [CrossRef]
- Liu, W.D.; Baret, F.; Gu, X.F.; Tong, Q.; Zheng, L.F.; Zhang, B. Relating soil surface moisture to reflectance. Remote Sens Environ. 2002, 81, 238–246. [Google Scholar]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Chen, X. Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application: A laboratory experiment. Geoderma 2012, 170, 103–111. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Schaepman, M.; Kooistra, L.; Stevens, A.; Hoogmoed, W.; Spaargaren, O. Spectral reflectance based indices for soil organic carbon quantification. Geoderma 2008, 145, 28–36. [Google Scholar] [CrossRef]
- Wang, Y.P.; Lee, C.K.; Dai, Y.H.; Shen, Y. Effect of wetting on the determination of soil organic matter content using visible and near-infrared spectrometer. Geoderma 2020, 376, 114528. [Google Scholar] [CrossRef]
- Haubrock, S.-N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface soil moisture quantification models from reflectance data under field conditions. Int. J. Remote Sens. 2008, 29, 3–29. [Google Scholar] [CrossRef]
- Lesaignoux, A.; Fabre, S.; Briottet, X. Influence of soil moisture content on spectral reflectance of bare soils in the 0.4–14 μm domain. Int. J. Remote Sens. 2012, 34, 2268–2285. [Google Scholar] [CrossRef]
- Baumgardner, M.F.; Silva, L.F.; Biehl, L.L.; Stoner, E.R. Reflectance Properties of Soils. Adv. Agron. 1986, 38, 1–44. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Anderson, K.; Croft, H. Remote sensing of soil surface properties. Prog. Phys. Geogr. Earth Environ. 2009, 33, 457–473. [Google Scholar] [CrossRef]
- Bablet, A.; Vu, P.; Jacquemoud, S.; Viallefont-Robinet, F.; Fabre, S.; Briottet, X.; Sadeghi, M.; Whiting, M.; Baret, F.; Tian, J. MARMIT: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm). Remote Sens. Environ. 2018, 217, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-J.; Zhang, Y.-Z.; Zhang, X.-L.; Zhang, B.; Song, K.-S.; Wang, Z.-M.; Tang, N. Quantitative Analysis of Moisture Effect on Black Soil Reflectance. Pedosphere 2009, 19, 532–540. [Google Scholar] [CrossRef]
- Wang, X.; Dou, X.; Zhang, X.; Liu, H.; Li, H.; Meng, X. Development of soil spectral allocation models considering the effect of soil moisture. Soil Tillage Res. 2019, 195, 104374. [Google Scholar] [CrossRef]
- Muller, E.; Décamps, H. Modeling soil moisture–reflectance. Remote Sens Environ. 2001, 76, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Hapke, B. Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering. Icarus 2002, 157, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tan, K.; Wang, X.; Chen, Y. Retrieval of Soil Moisture Content Based on a Modified Hapke Photometric Model: A Novel Method Applied to Laboratory Hyperspectral and Sentinel-2 MSI Data. Remote Sens. 2020, 12, 2239. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, X.; Yan, C.-X.; Wang, S.-R.; Ju, X.-P.; Li, Y. Soil Moisture Retrieval Model for Remote Sensing Using Reflected Hyperspectral Information. Remote Sens. 2019, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Vargas, W.E.; Niklasson, G. Applicability conditions of the Kubelka–Munk theory. Appl. Opt. 1997, 36, 5580–5586. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y. Estimating Soil Salinity Under Various Moisture Conditions: An Experimental Study. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2525–2533. [Google Scholar] [CrossRef]
- Bannari, A.; Musa, N.H.M.; Abuelgasim, A.; El-Battay, A. Sentinel-MSI and Landsat-OLI Data Quality Characterization for High Temporal Frequency Monitoring of Soil Salinity Dynamic in an Arid Landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2434–2450. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Li, H.; Yin, C.; Liu, W.; Wang, T.; Zhang, H. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sens. 2021, 13, 305. [Google Scholar] [CrossRef]
- Rao, B.R.M.; Sharma, R.C.; Sankar, T.R.; Das, S.; Dwivedi, R.S.; Thammappa, S.S.; Venkataratnam, L. Spectral behavior of salt-affected soils. Int. J. Remote Sens. 1995, 16, 2125–2136. [Google Scholar] [CrossRef]
- Mirzaei, S.; Boloorani, A.D.; Bahrami, H.A.; Alavipanah, S.K.; Mousivand, A.; Mouazen, A.M. Minimising the effect of moisture on soil property prediction accuracy using external parameter orthogonalization. Soil Tillage Res. 2021, 215, 105225. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J. Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Mashimbye, Z.; Cho, M.; Nell, J.; DE Clercq, W.; VAN Niekerk, A.; Turner, D. Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils. Pedosphere 2012, 22, 640–649. [Google Scholar] [CrossRef]
- Jiang, H.; Rusuli, Y.; Amuti, T.; He, Q. Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network. Int. J. Remote Sens. 2018, 40, 284–306. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative Estimation of Soil Salinity Using UAV-Borne Hyperspectral and Satellite Multispectral Images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.; Cozzolino, D. Wet or dry? The effect of sample characteristics on the determination of soil properties by near infrared spectroscopy. TrAC Trends Anal. Chem. 2016, 83, 25–30. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Moreira, L.C.J.; Teixeira, A.D.S.; Galvao, L. Laboratory Salinization of Brazilian Alluvial Soils and the Spectral Effects of Gypsum. Remote Sens. 2014, 6, 2647–2663. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Xia, S.; Shen, Q.; Yang, B.; Song, Q.; Xu, Y.; Zhang, S.; Zhou, X.; Zhou, Y. Moisture spectral characteristics and hyperspectral inversion of fly ash-filled reconstructed soil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119590. [Google Scholar] [CrossRef] [PubMed]
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.-M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167-168, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Deng, C.; Lu, Y.; Shen, Q.; Zhao, H.; Tao, Y.; Pan, X. Evaluating the characteristics of soil vis-NIR spectra after the removal of moisture effect using external parameter orthogonalization. Geoderma 2020, 376, 114568. [Google Scholar] [CrossRef]
- Nawar, S.; Munnaf, M.A.; Mouazen, A.M. Machine Learning Based On-Line Prediction of Soil Organic Carbon after Removal of Soil Moisture Effect. Remote Sens. 2020, 12, 1308. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Jiang, Q.; Yu, L.; Liu, H.; Zhang, B. Reducing the Moisture Effect and Improving the Prediction of Soil Organic Matter With VIS-NIR Spectroscopy in Black Soil Area. IEEE Access 2021, 9, 5895–5905. [Google Scholar] [CrossRef]
- Ogen, Y.; Faigenbaum-Golovin, S.; Granot, A.; Shkolnisky, Y.; Goldshleger, N.; Ben-Dor, E. Removing Moisture Effect on Soil Reflectance Properties: A Case Study of Clay Content Prediction. Pedosphere 2019, 29, 421–431. [Google Scholar] [CrossRef]
- Philips-Invernizzi, B.; Dupont, D.; Caze, C. Bibliographical review for reflectance of diffusing media. Opt. Eng. 2001, 40, 1082–1092. [Google Scholar] [CrossRef]
- Farifteh, J. Interference of salt and moisture on soil reflectance spectra. Int. J. Remote Sens. 2011, 32, 8711–8724. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Du, R.Q.; Yang, S.; Yang, N.; Wei, G.F.; Yao, Z.H.; Qiu, Y.L. Effects of water-salt interaction on soil spectral characteristics in Hetao Irrigation Areas of Inner Mongolia, China. Trans. CSAE 2020, 36, 153–164. [Google Scholar]
- Du, R.Q.; Chen, J.Y.; Zhang, Z.T.; Chen, Y.W.; He, Y.J.; Yin, H.Y. Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model. Agric. Water Manag. 2022, 265, 107538. [Google Scholar] [CrossRef]
- Qin, S.; Li, S.; Kang, S.; Du, T.; Tong, L.; Ding, R.; Wang, Y.; Guo, H. Transpiration of female and male parents of seed maize in northwest China. Agric. Water Manag. 2018, 213, 397–409. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Shukla, M.K. A modified SWAP model for soil water and heat dynamics and seed–maize growth under film mulching. Agric. For. Meteorol. 2020, 292-293, 108127. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.; Wong, F.-L.; Qin, S.; Wang, Y.; Yang, D.; Lam, H.-M. Drivers of carbon flux in drip irrigation maize fields in northwest China. Carbon Balance Manag. 2021, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Mao, X.M.; Chen, S.; Bo, L.Y. Experiments and simulation of soil moisture, temperature and salinity dynamics and oil sunflower growth in saline border irrigated farmland. Trans. CSAE 2021, 37, 76–86. [Google Scholar]
- Lao, C.; Chen, J.; Zhang, Z.; Chen, Y.; Ma, Y.; Chen, H.; Gu, X.; Ning, J.; Jin, J.; Li, X. Predicting the contents of soil salt and major water-soluble ions with fractional-order derivative spectral indices and variable selection. Comput. Electron. Agric. 2021, 182, 106031. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Wang, M.; Zhao, Y.; Li, J. SPA-Based Methods for the Quantitative Estimation of the Soil Salt Content in Saline-Alkali Land from Field Spectroscopy Data: A Case Study from the Yellow River Irrigation Regions. Remote Sens. 2019, 11, 967. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, T.; Luo, L.; He, Q.; Zhang, S.; Li, M.; Cui, X.; Li, H. Rapid estimation of leaf nitrogen content in apple-trees based on canopy hyperspectral reflectance using multivariate methods. Infrared Phys. Technol. 2020, 111, 103542. [Google Scholar] [CrossRef]
- Whiting, M.L.; Li, L.; Ustin, S. Predicting water content using Gaussian model on soil spectra. Remote Sens. Environ. 2004, 89, 535–552. [Google Scholar] [CrossRef]
- Somers, B.; Gysels, V.; Verstraeten, W.W.; Delalieux, S.; Coppin, P. Modelling moisture-induced soil reflectance changes in cultivated sandy soils: A case study in citrus orchards. Eur. J. Soil Sci. 2010, 61, 1091–1105. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zeng, S.-L.; Gao, Y.; Ouyang, Z.-T.; Li, B.; Fang, C.-M.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, G.; Sun, L.; Wang, R.; Liu, Y. Prediction of Soil Salinity Using Near-Infrared Reflectance Spectroscopy with Nonnegative Matrix Factorization. Appl. Spectrosc. 2016, 70, 1589–1597. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Li, S.; Tedesco, L.; Hall, B.; Li, Z. Hyperspectral retrieval of phycocyanin in potable water sources using genetic algorithm–partial least squares (GA–PLS) modeling. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 368–385. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Q. Selection of Informative Spectral Bands for PLS Models to Estimate Foliar Chlorophyll Content Using Hyperspectral Reflectance. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3064–3072. [Google Scholar] [CrossRef]
- Chen, X.; Dong, Z.; Liu, J.; Wang, H.; Zhang, Y.; Chen, T.; Du, Y.; Shao, L.; Xie, J. Hyperspectral characteristics and quantitative analysis of leaf chlorophyll by reflectance spectroscopy based on a genetic algorithm in combination with partial least squares regression. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 243, 118786. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, H.; Pizurica, A. Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Xu, L.; Guo, F.; Lee, J.; Yan, B. A Local-Density Based Spatial Clustering Algorithm with Noise. Inf. Syst. 2007, 32, 978–986. [Google Scholar] [CrossRef]
Properties | Mean | Standard Deviation (SD) | |
---|---|---|---|
Soil particle-size distribution (%) | Sand (2~0.05 mm) | 4.91 | 0.054 |
Silt (0.05~0.002 mm) | 36.54 | 0.13 | |
Clay (<0.002 mm) | 58.55 | 4.57 |
Calibration Dataset | Validation Dataset | ||
---|---|---|---|
n | 276 | 183 | |
SMC (g g−1) | Max | 0.27 | 0.29 |
Min | 0.050 | 0.070 | |
Average | 0.10 | 0.12 | |
SD | 0.048 | 0.052 | |
SSC (dS m−1) | Max | 2.84 | 3.29 |
Min | 0.10 | 0.095 | |
Average | 0.41 | 0.42 | |
SD | 0.43 | 0.50 |
R2 | Range | Mean | SD | Proportion (%) | ||
---|---|---|---|---|---|---|
≤0.53 | 0.53 < R2 < 0.75 | ≥0.75 | ||||
SSREM-cal | 0~0.98 | 0.75 | 0.28 | 18.48 | 11.59 | 69.93 |
SSREM-val | 0~0.98 | 0.77 | 0.24 | 14.21 | 14.75 | 71.04 |
MT-SSREM-cal | 0.53~0.98 | 0.92 | 0.062 | 0 | 2.17 | 97.83 |
MT-SSREM-val | 0.75~0.98 | 0.94 | 0.035 | 0 | 0 | 100 |
RMSE | Range | Mean | SD | Proportion (%) | ||
≤0.05 | 0.05 < RMSE < 0.1 | ≥0.1 | ||||
SSREM-cal | 0.014~0.23 | 0.081 | 0.039 | 26.09 | 46.01 | 27.90 |
SSREM-val | 0.018~0.22 | 0.079 | 0.037 | 25.68 | 47.54 | 26.78 |
MT-SSREM-cal | 0.014~0.16 | 0.069 | 0.034 | 36.96 | 43.84 | 19.20 |
MT-SSREM-val | 0.016~0.17 | 0.068 | 0.035 | 37.71 | 42.62 | 19.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Bai, T.; Guan, H.; Wei, X.; Wang, Y.; Mao, X. An Improved Exponential Model Considering a Spectrally Effective Moisture Threshold for Proximal Hyperspectral Reflectance Simulation and Soil Salinity Estimation. Remote Sens. 2022, 14, 6396. https://doi.org/10.3390/rs14246396
Huang X, Bai T, Guan H, Wei X, Wang Y, Mao X. An Improved Exponential Model Considering a Spectrally Effective Moisture Threshold for Proximal Hyperspectral Reflectance Simulation and Soil Salinity Estimation. Remote Sensing. 2022; 14(24):6396. https://doi.org/10.3390/rs14246396
Chicago/Turabian StyleHuang, Xi, Tiecheng Bai, Huade Guan, Xiayong Wei, Yali Wang, and Xiaomin Mao. 2022. "An Improved Exponential Model Considering a Spectrally Effective Moisture Threshold for Proximal Hyperspectral Reflectance Simulation and Soil Salinity Estimation" Remote Sensing 14, no. 24: 6396. https://doi.org/10.3390/rs14246396