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Abstract: This research examines the simultaneous retrieval of surface soil moisture and salt
concentrations using hyperspectral reflectance data in an arid environment. We conducted laboratory
and outdoor field experiments in which we examined three key soil variables: soil moisture, salt
and texture (silty loam, clay and silty clay). The soil moisture content models for multiple textures
(M_SMC models) were based on selected hyperspectral reflectance data located around 1460, 1900
and 2010 nm and resulted in R2 values higher than 0.933. Meanwhile, the soil salt concentrations were
also accurately (R2 > 0.748) modeled (M_SSC models) based on wavebands located at 540, 1740, 2010
and 2350 nm. When the different texture samples were mixed (SL + C + SC models), soil moisture
was still accurately retrieved (R2 = 0.937) but the soil salt not as well (R2 = 0.47). After stratifying
the samples by retrieved soil moisture levels, the R2 of calibrated M_SSCSMC models for soil salt
concentrations improved to 0.951. This two-step method also showed applicability for analyzing
soil-salt samples in the field. The M_SSCSMC models resulted in R2 values equal to 0.912 when
moisture is lower than 0.15, and R2 values equal to 0.481 when soil moisture is between 0.15 and 0.2.
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1. Introduction

An irrigation monitoring program is often required to maintain soil moisture at a reasonable
range to grow crops while reducing salinity risks and ecological concerns. Remote sensing technology
is a tool that can provide geospatially extensive irrigation monitoring capabilities. Identification and
monitoring of Soil Moisture Content (SMC) and Soil Salt Concentration (SSC) are important for setting
up a sustainable and economically beneficial irrigation program. Precise and accurate measurements of
SMC and SSC can be performed in a laboratory. One robust SMC indicator is gravimetric water content
(GWC) [1], but it is restricted to a small volume of soil. For SSC measurements, electrical conductivity
(EC), total soluble salts (TSS) [2], sodium adsorption ratio (SAR) and exchangeable sodium percentage
(ESP) [3] are typical indicators. Some more practical in situ measurements of SMC and SSC, such as
time domain reflectometry (TDR), electromagnetic induction, e.g., EM38 [4], Hydra-probe [5] and
SCT-10, employ probes or sensors.

Remote sensing technology has the potential to measure soil moisture content (SMC) and soil salt
concentration (SSC) across wide swaths in a nondestructive manner with a high temporal sampling
frequency. Currently, there are three main remote sensing band widths applied to SMC and SSC
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monitoring: thermal infrared, microwave and optical (visible/near infrared/short wave infrared)
electromagnetic radiation. Land surface temperature monitored via thermal infrared (TIR) energy
(surface flux) is related to SMC conditions [6]. Coarse resolution SMC can be derived using the
Atmosphere Land Exchange Inverse (ALEXI) model [7]. TIR regions are sensitive to salt emissivity
properties and have been used to study SSC [8]. Microwave (MW) radiometers are suitable for
predicting SMC and SSC even in non-precipitating cloudy weather conditions because of the large
contrast between the dielectric properties of dry soil and water that result in variable microwave
emissivity responses [9]. The C-band (5.3 GHz) and L-band (1.44 GHz) have shown promising results
for SSC detection [10]. Nevertheless TIR and MW techniques often have the disadvantage of coarser
sensor spatial resolutions (i.e., pixel size), because the footprint size often increases with increasing
wavelength and decreasing signal levels. Passive optical remote sensing uses solar radiation as its
energy source. The optical signature is directly related to surface properties, and quickly attenuates
with soil depth. During the last few decades, much work has been done to characterize soil properties
using optical spectral signatures that are mainly governed by absorption and reflectance. Quantities
and mineralogy of salts, moisture content, color, and surface roughness [10–12] determine spectral
reflectance data acquired by spectroradiometers and allow for SMC or SSC estimation [13–16].

Generally, the radiation reflected from soil surfaces varies with changes in soil constituents
and wavelengths [17]. Most of the soil spectral variations occur in narrow wavelength regions that
gradually fade with coarser bandwidths, or a limited number of spectral bands [18]. Nevertheless,
conventional remote sensing data are commonly acquired by broad-band sensors such as Landsat TM
or SPOT which have limited capacity to assess drought or saline affected areas.

Hyperspectral remote sensing can capture subtle differences in spectral soil properties. For
example, Hyperion is a satellite based hyperspectral imager providing reflectance data at 10 nm
bandwidths from 400 nm to 2500 nm. The ground-based Analytical Spectral Device (ASD) spectrometer
(350–2500 nm) has the advantage of 1 nm spectral resolution. Hyperspectral data have great potential to
quantify SMC and SSC because the hydrogen bond with soil water and soil salt concentrations result in
subtle spectral changes [19]. Consequently, all the electronic processes and photon vibrational processes
in response to overtones and combinations of minerals, water, and carbonates among others, are
significant for the analysis of saline-soil using hyperspectral data. This is encouraging for monitoring
SMC and SSC in arid or semi-arid lands [20]. Metternicht and Zinck [16] discussed the potential and
constraints of salinity identification by remote sensing techniques, including hyperspectral technology.
Ben-Dor, et al. [21] successfully applied a Visible and Near Infrared Analysis (VNIRA) approach
to retrieve field soil moisture and salinity separately by using the hyperspectral airborne sensor
DAIS–7915. Weng, et al. [22] calibrated a salinity index based on 2052 nm and 2203 nm bands with the
ASD spectrometer (350–2500 nm), and evaluated its feasibility using the Hyperion reflectance image
which resulted in R2 value of 0.627 [23]. Nawar, et al. [24] applied partial least squares regression
(PLSR) and multivariate adaptive regression splines (MARS) to calibrate SSC models (R2 ě 0.87).
Haubrock, et al. [25] developed a surface soil moisture model by using a soil moisture index (NSMI)
resulting in a soil moisture map with R2 values of 0.82. Oltra-Carrió, et al. [26] further examined NSMI
using laboratory and in situ data, and achieved R2 values larger than 0.76.

However, some weaknesses have been identified that limit SMC and SSC characterizations,
especially in the field. First, most relations between reflectance measurements and salinity work best for
severely salt-affected soils, but are weaker for slightly and moderately salt-affected areas [20]. The latter
is the main challenge for salinity identification [27]. For cultivated farmland in arid and semi-arid
areas, the magnitude of salinity often remains relatively low. Secondly, reflectance measurements
are usually affected by soil texture [28], producing uncertainties in specific moisture or salt content
assessments. Thirdly, both salt and moisture content could potentially result in similar soil reflectance
or albedo data. In addition, increased moisture reduces albedo in a non-linear manner, and reduces the
absorption features of the salty minerals [29,30]. Generally, soil salinity is hard to assess in wet soils.
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The main objectives of this research are to: (1) examine the effect of soil moisture, salt and texture
on both laboratory and field based hyperspectral reflectance data; and (2) develop an improved
spectral methodology to quantify low and medium level soil moisture and salt levels. We pose that the
measured or simulated soil moisture will be a valuable parameter for improving the soil salinity model.

2. Materials and Methods

We analyzed hyperspectral data as a function of soil moisture, salinity and texture mixtures.
After examining the response of the hyperspectral reflectance measurements to surface soil and
different proportions and levels of soil moisture, salt and texture, the reflectance response variables
were expanded with three other transformations of the original reflectance data. Subsequently, their
eigenvectors were analyzed to select the wavebands that explained the most variance. We used soil
moisture information to stratify the samples to help with the modeling of soil salt concentrations.

2.1. Soil Preparation

To relate soil reflectance data with soil moisture, salt and texture, we conducted the following
experimental procedures on synthetic soil samples (Figure 1a):

(1) Soils were gathered from three study sites. Two of them are located in the Hetao Irrigation District,
Inner Mongolia, China (108.01˝E, 41.07˝N), while the other one is located in Changzhou, China
(119.97˝E, 31.81˝N).

(2) Sand, silt, and clay proportions of the collected soil samples were quantified using the pipette
method [31]. Results exhibited three textures: silty loam (SL, collected in Changzhou), clay and
silty clay (C and SC, both were collected in the Hetao Irrigation District).

(3) Salt from these soils were washed out and the soils air dried.
(4) Salts were mixed using MgCl2, CaCl2, Na2CO3, NaHCO3, and Na2SO4 with molar concentration

ratios of 11.74:8.54:1.00:15.39:20.83. These represent the average salt constitution in the Hetao
Irrigation District.

(5) Salty water solutions were made by mixing salt in certain amounts of water. We added these
solutions to the air-dried soil to maintain the initial gravimetric soil moisture close to 0.3.
Meanwhile, the nine different salt concentrations (g/g) were controlled to range from 0.1%
to 1% (Table 1).

(6) We filled the cylindrical container with soil and aimed (20 cm height and 15 cm diameter) to keep
the soil bulk density at 1.4 g/cm3.

(7) Time-series of surface hyperspectral reflectance data were measured while measuring the weight
for these containers. Measurements continued until the container weights became constant.
In total, there were nine measurements for the silty loam, ten measurements for clay and twelve
measurements for silty clay.

2.2. Hyperspectral Measurements

We used the Analytical Spectral Device (ASD) AgriSpec (ASD, USA) spectrometer covering
wavelengths from 400 to 2500 nm at an interval of one nm for spectral reflectance measurements. Soils
were scanned with an ASD contact probe connected to the AgriSpec with a fiber-optic cable, having a
2 cm diameter circular viewing area and built-in halogen light source [32]. Relative reflectance is the
quantity actually measured by the instrument, which is computed by dividing the energy reflected
from the soil sample by the energy reflected off a calibrated white spectralon panel. The contact probe
had full perpendicular contact with the soil surface. Twenty-five repetitive readings were averaged for
each soil sample in order to minimize random noise. The dark current was also taken into account.
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2.2.1. Laboratory Measurements

We conducted laboratory experiments by simultaneously weighing containers and measuring
hyperspectral data for three sets of soil samples (SL, C and SC) during a two to four week
period, depending on the decline of soil moisture in the containers (Table 1). To be more specific,
the evaporation rate is mainly controlled by ambient conditions and soil texture. We paid close
attention to the soil moisture content during the hyperspectral measurements. Each consecutive
hyperspectral measurement was made after soil moisture changed between about 0.005 g/g and
0.05 g/g. The measurements and procedures for each group of soil texture samples lasted two to four
weeks during which the soils dried out. Consequently, we measured hyperspectral soil reflectance
values for different values and ratios of soil moisture, salinity and texture.

Table 1. Soil moisture, salt and texture characteristics of synthetic laboratory and field soil samples.
(S.D. = standard deviation)

Laboratory Samples

Sampling Site
Moisture (g/g)

Salt (g/g) Soil TextureMinimum Maximum S.D.

Changzhou 0.040 0.250 0.058 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1.0 (%) silty loam (SL)
Inner Mongolia 0.032 0.352 0.096 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1.0 (%) Clay (C )
Inner Mongolia 0.053 0.364 0.095 0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1.0 (%) silty clay (SC)

Field Samples

Sampling Site
Moisture (g/g) Salt (g/g)

Minimum Maximum S.D. Minimum Maximum S.D.

Field 0.132 0.238 0.023 0.060% 0.930% 0.180%

2.2.2. Field Measurements

We conducted field experiments in Inner Mongolia, China in April of 2013 (Figure 1b). A total
of 212 topsoil samples (up to a depth < 5 cm) were collected for analysis of soil and salt properties
after in situ field spectral measurements were made using an ASD. The soil samples were measured
for gravimetric soil moisture content (g/g) and soil salt concentration (g/g).

In the following content, SL, C, and SC are referring to the lab samples with soil texture of silty
loam, clay and silty clay, respectively; ”SL + C + SC“ represents all three of the texture lab samples
together; “Field” is specified for the field samples which have several soil textures including silty loam,
clay, silty clay, silty clay loam, loam, silt, and clay loam.
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Figure 1. (a) Prepared soil samples for laboratory measurements and (b) in situ field experiment using
the Analytical Spectral Device (ASD) AgriSpec (ASD, USA) spectrometer.

2.3. Spectral Transforms

After the soil surface hyperspectral reflectance values were measured by the ASD instrument,
two spectral ranges, 350–400 nm and 2450–2500 nm, were discarded due to their low signal-to-noise
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ratio [29]. The retained 400–2450 nm reflectance values with one nm spectral resolution were converted
to 10 nm by averaging every contiguous ten reflectance values. The majority of information was
retained after these conversions. In addition, the 10 nm spectral resolution is consistent with the EO–1
Hyperion sensor [22].

It is difficult to extract a specific spectral signal solely from reflectance spectra (R) [33].
Consequently, we applied three other manipulations to the reflectance spectra to enhance the spectral
information. The first spectral manipulation was the normalization (N) of reflectance spectra by the
highest reflectance in that spectrum, which reduced the variation due to the intrinsic reflectance values
of a soil [15]; the second and third spectral manipulations were the first (A1) and second derivative (A”)
of apparent absorption (A) [A = log(1/R)] [33]. Consequently, reflectance (R), normalized reflectance
spectra (N), first derivative (A1) and second derivative (A”) of apparent absorption were included in
the modeling efforts (Figure 2). In order to standardize the scales of A1 and A”, we first normalized
them to zero mean and unit variance.
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Figure 2. Mean hyperspectral reflectance values of (a) Reflectance (R); (b) Normalized Reflectance (N);
(c) First Derivative of log(1/R) (A1) and (d) Second Derivative of log(1/R) (A”) for silty loam (blue), clay
(red), silty clay (black) and Field samples (purple). Dash lines indicate positive or negative standard
deviation values from the mean value. The hyperspectral data in figure c and d is standardized to
unit variance.

2.4. Waveband Selection of Sensitive Bands

According to William of Ockham, among competing hypotheses, the one with the fewest
assumptions should be selected. To calibrate a parsimonious model, sensitive wavebands were
selected according to the Principal Component Analysis (PCA) based ranking system (PCAr) [34]. PCA
provides a multivariate overview to extract key variables that summarize and represent the variation
in the hyperspectral reflectance signatures. The processes of PCA create two sets of outputs, the first
are principal component coefficients (also known as loadings) and the second are principal component
variances (also known as eigenvalues). The PCA based ranking system (PCAr) identifies the sensitive



Remote Sens. 2016, 8, 42 6 of 20

wavebands by the scoring values, which are the multiplication of the loadings and eigenvalues. Large
scoring values for certain wavebands indicate the large contribution of these key variables.

2.5. Soil Moisture and Salt Model Calibration and Evaluation

We used a stepwise multiple linear regression [35] to relate reflectance to SMC and/or SSC.
The p-values for each waveband we added to the model are 0.05 or smaller. After the predictors
were selected by the scoring values of PCAr, stepwise regression analysis subsequently selected the
most efficient predictors to build parsimonious M_SMC and M_SSC models. Since SMC is easier to
interpret in salty wet soils than SSC, we also primarily derived SMCs from hyperspectral reflectance
data, and subsequently used SMC as a parameter to enhance SSC inversion to build the M_SSCSMC

model (Table 2).
We assessed both model calibration and evaluation for each dataset by separating the dataset into

two groups by sorting them according to an ascending order of soil moisture content; then choosing
the odd numbered samples for calibration, and using the rest of the samples for evaluation.

Table 2. Hyperspectral inversion models of soil moisture content and salt concentration.

Model Name Function Inputs and Outputs

M_SMC SMC = f(Rλ, T) SMC—soil moisture content; SSC—soil salt concentration;
Rλ or Nλ or Aλ

1 or Aλ”—Spectral Reflectance & Transforms
T—exture

M_SSC SSC = f(Rλ, T)
M_SSCSMC SSC = f(Rλ, SMC)

2.6. Model Performance Indicators

Coefficient of determination (R2), relative Root Mean-Square Error (rRMSE) and Mean Error
(ME) were the three statistical variables to test model performances. R2 values indicate how well the
regression line approximates the measured data [36], rRMSE is the ratio between Root Mean-Square
Error and the mean of the measured data, which indicates the relative estimated error [37]. The ME
variable measures the bias between measured and predicted data.

3. Results and Discussion

3.1. Waveband Selections Sensitive to Soil Moisture and Salt

In order to calibrate and develop parsimonious models, a PCA based ranking system (PCAr) was
applied to the SL + C + SC data set for R, N, A1 and A”. Sensitive wavebands were selected according to
the scoring values of PCAr [34]. Specifically, most of the variance (sum of eigenvalues) was explained
by the first three components (Figure 3) and was 99.8%, 98.5%, 95.1% and 90.5%, respectively for R, N,
A1 and A”. The scoring values of the first principal component were larger than the second and third
scoring values for the whole range of wavelengths. We thus mainly focused on the first scoring values
of PCAr.
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The scoring value curves have clear patterns with some clear peaks, which are located in several
sub-ranges: 400–600 nm, 1300–1550 nm, 1690–1800 nm, 1810–2200 nm and 2200–2450 nm (Figure 3).
We subsequently refer to these spectral ranges as Zone 1, Zone 2, Zone 3, Zone 4 and Zone 5 here.
Sensitive wavebands are selected for each zone based on simultaneous large first scoring values for
R, N, A1 and A”. Finally, the fourteen selected wavebands (Table 3) represent the key bands that are
sensitive to a range of different chemical and physical mechanisms. Each zone has a clear physical
meaning in terms of photon absorption.

Table 3. Selected wavebands based on hyperspectral PCAr results along with reported corresponding
active groups with physical mechanisms [38].

Zone Ranges Selected Wavebands Physical Mechanism Active Groups and Wavelength
in Soil Spectrum

1 400–600 nm 440 nm, 540 nm, 570 nm
Crystal-field effects Fe3+, Fe2+, Cr3+, Mn2+

Charge transfer Fe-O, B-O

2 1300–1550 nm 1390 nm, 1430 nm, 1460 nm

Crystal-field effects Fe2+, Ni2+

Vibrational processes

2υ(OH-Al), 2υ3+υ2(H2O)
2υ(OH-Fe)

υ1+2υ3(H2O)

3 1690–1800 nm 1740 nm
Crystal-field effects Fe2+

Vibrational processes -

4 1810–2200 nm
1870 nm, 1900 nm,
1940 nm, 2010 nm

Crystal-field effects Fe2+

Vibrational processes

2υ+δ (OH-P)
υ1+3υ3 (CO3)
υ1+υ3(H2O)

2υ1+3υ3 (CO3)
υ1+2υ3 (CO3)
3υ1+2υ1(CO3)
υ+2δ (OH-P)

5 2200–2450 nm 2270 nm, 2350 nm, 2410 nm

Crystal-field effects Fe2+

Vibrational processes

υ+δ (OH-Al)
υ+δ (OH-Fe)
υ3 (CO3)

υ+δ (OH-Mg)

υ+δ (OH-P)
υ(H2O)

υ1+2υ3 (CO3)

In the range of 400–600 nm (Zone 1), the main process is occupied by crystal-field effects of
transitional metal ions such as Cr, Fe and Mn [38]. At the same time, some charge-transfer, or
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inter-element electron transition produced by Fe-O, or B-O pairs also has influence [38]. In addition,
some periodic minerals in soil, such as sulphur and cinnabar, have “conduction” electrons that show
well-defined absorptions. Apart from that, soil organic matter has spectral activity in this visible
region. In the other four zones (1300–2450 nm), spectral chromophores, which are defined as a
parameter or substance that affects the shape and nature of a soil spectrum, are mostly produced by
clay minerals, carbonates, water and soil salinity. Clay minerals and especially the hydroxide group
(OH) are associated with overtones and combinations of fundamental vibrations in the NIR-SWIR
range. For a general representative clay mineral like Ca-montmorillonite, a 2:1 layer silicate with a
calcium saturated interlayer, has OH groups that absorb at 1410 nm and 2206 nm, whereas adsorbed
OH features of free water are found at 1456 nm, 1910 nm and 1978 nm [39]. Carbonate ions exhibit
features of overtones or combinations of the internal vibration between 1600 nm and 2500 nm [38].
Liquid water has overtones or combination features occurring at 1875, 1454, 1380, 1135 and 942 nm [38].
The spectral signature of saline soils can be a result of the salt itself or some other chromophores.
The latter is indirectly related to the presence of the salt, such as water molecules, organic matter or
particle size distribution [40]. Actually, these assigned positions are not constant, because they change
slightly with actual chemical composition and surface activity [39]. The most common active groups
and mechanisms affecting the soil spectrum are summarized in Table 3.

3.2. Soil Moisture Characterization

3.2.1. Relationship between Hyperspectral Reflectance and Soil Moisture

To discover the influence of moisture on hyperspectral reflectance values, we examined reflectance
variations affected by various moisture contents for all selected wavebands (Figure 4, we only selected
1900 nm as a representative waveband). An obvious inflection point is always located around
0.3 gravimetric moisture content. R, N and A” decrease as moisture increases from 0 to 0.3 SMC, while
above 0.3 SMC, these variables do not change much. A1 increases with SMC as more radiation gets
absorbed by soil moisture. In addition, for most arid and semi-arid farmland soil, the moisture content
is generally lower than 0.3, hence we only examined the soil samples with moisture levels lower than
0.3 in the remaining presentation of the results and discussion.
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3.2.2. Calibration and Evaluation of M_SMC Models (SMC = f(Rλ, T)) for Soil Moisture Content

We used multi-linear stepwise regression for calibration and evaluation of the M_SMC models
with the SL, S, SC, SL + C + SC and “Field” datasets. Generally, two to eight independent variables
were selected to build these models. The statistical results showed that the (Table 4), SL, C, SC and
SL + C + SC samples exhibit excellent fitting accuracy with small rRMSE (<0.115) for the model
calibration, and also preserve very low rRMSE for the model evaluation with the independent data.
The R2 is close to 1, which shows that the variance of measured soil moisture is modeled very well.
This suggests that hyperspectral signatures can accurately derive SMC. Some uncertainty in the soil
moisture quantification is attributed to soil texture (see M_SMC model for SL + C + SC) and salinity.
Although the M_SMC model run with “Field” data also maintains the low fitting error (rRMSE = 0.085
for calibration, and rRMSE = 0.104 for evaluation), it does not simulate the measured soil moisture
variance as well since the coefficient of determination (R2) is 0.529 for the calibrated model. Some of
the reasons could be related to organic matter and soil porosity in the field [16]. All these calibrated
and evaluated M_SMC models provide un-biased soil moisture estimates, since the mean error for all
models is close to zero (i.e., ME Table 4). Among the five M_SMC models, the C model appears to be
statistically the best, followed by the SC model. Meanwhile, it is also the most parsimonious model
with just two independent variables.

Table 4. Statistical results for the calibration and evaluation of multi-textured soil moisture content
models (M_SMC). The number of samples is shown for each calibration dataset. The evaluation dataset
has the same number of samples or one less. The number of variables are indicated for each of the
stepwise regression equations. Not included is the constant term.

Data set
Lab

FieldSL C SC SL + C + SC

Number of samples 41 35 33 109 106
Number of variables 8 2 6 8 4

Calibration
R2 0.933 0.973 0.979 0.937 0.529
rRMSE 0.115 0.079 0.061 0.115 0.085
ME 0.000 0.000 0.000 0.000 0.000

Evaluation
R2 0.758 0.940 0.913 0.842 0.309
rRMSE 0.213 0.117 0.121 0.181 0.104
ME 0.001 ´0.002 ´0.001 0.000 ´0.001

When comparing the coefficients of the independent variables of the M_SMC models (Figure 5a),
the transformed hyperspectral data (N, A1 and A”) emerges more frequently than the reflectance
data(R), especially for the “Field” model and SL + C + SC model, where none of the independent
response variables is spectral reflectance. In addition, for the SC model and SL model, just one
independent reflectance variable is selected, which is R440 for the SL model and R2410 for the SC model.
These findings support the advantages of transforming the original reflectance data to bring out some
subtle signature differences contained in the intrinsic hyperspectral reflectance data (N), A1 and A”.
However, reflectance data of just two wavebands are enough to calibrate a precise model (C model) for
clay data, which further illustrates that clay texture samples provide for easier retrieval of soil moisture.

Some of the selected wavebands exhibit auto-correlation, the wavebands extracted by the stepwise
selection criteria [41] for model calibration are not consistent for the five M_SMC models.
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Nevertheless, all the selected wavebands are related to water molecules and hydroxyl spectral
interactions. Among the fourteen wavebands, ten of them: 440, 570, 1430, 1740, 1870, 1900, 2010, 2270,
2350 and 2410 nm appear in these models (Figure 5b), among which, 440 (visible range), 1430, 1900,
2010, 2270 and 2350 are (SWIR range) selected as independent variables more than three times. This
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implies that the SWIR range is significant for moisture identification. Similarly, Ben-Dor, et al. [42]
suggested 2362 and 2120 nm are useful for prediction of arid and semiarid hygroscopic moisture;
Dalal and Henry [43] recommended 1926, 1954 and 2150 nm for hygroscopic moisture estimation; Tian
and Philpot [44] suggested that the spectral absorption features at 1440 and 1930 nm were strongly
related to SMC during an entire drying period. These wavebands have clear physical mechanisms.
For example, moisture absorption features located at 440 and 570 nm are possibly caused by the
lattice water of minerals, such as chrysocolla and almandine. 1430 and 1900 nm have very strong
absorption features (2υ1 + υ3 and υ2 + υ3) due to the vibrational process introduced by overtones and
combinations by the fundamental vibrational modes. The other three sensitive wavebands, 2010, 2270
and 2350 nm are related with the hydroxyl (´OH) group, which are usually attached to Mg and Al,
and produced the first overtone of the OH stretch near 1400 nm (the fundamental OH-stretching mode
lie outside the SWIR range), or other bands in the 2000 nm region. The hygroscopic moisture (lattice
water) attached in gypsum also displays some absorption features near these wavebands (See Table 3).

In order to build a more consistent and parsimonious model across all response variables, just
one variable is selected for each of the hyperspectral R, N, A1 and A” data transforms. Finally, four
variables are chosen as the independent variables. Multi-linear regression is applied to calibrate the
model. In total there are 144 kinds of possibilities for selecting independent variables, but the best
prediction model, which has the largest sum of R2 for the five models of SL, C, SC, SL + C + SC and
Field, is retained. In these simple consistent models, the combination of 1460, 1900 and 2010 nm is the
best set of independent variables that make the best predictable model. Due to the high correlation
between 1430 and 1460 nm, either one can represent the relative absorption features mentioned above.
The simple models further demonstrate that the wavebands near 1400, 1900 and 2000 nm are sensitive
to soil moisture.

3.3. Soil Salt Characterization

3.3.1. Calibration and Evaluation of Soil Salt Concentration Models (SSC = f(Rλ, T))

Four to six independent variables were chosen by the stepwise significance criteria, upon which
soil salt inversion models (M_SSC) were established (Table 5). For the SSC models with three different
soil textures, the SL SSC model explains the largest proportion of variance in soil salt that is estimated
by the hyperspectral data (R2 = 0.874 for calibration, R2 = 0.730 for evaluation). The SC model is
second best, with R2 = 0.822 for the model calibration, and R2 = 0.639 for the model evaluation. The C
model has the lowest explained variation for the calibration (R2 = 0.748) and in particular for the
evaluation (R2 = 0.282) model results. This implies that clay reduces the accuracy of the SSC inversion,
while the silt component has less of an impact. The SSC is harder to predict when the three textures
of the soil samples were mixed together in the SL + C + SC model (R2 = 0.47, rRMSE = 0.380), and
confirms that soil texture is another important factor that influences the SSC inversion [45]. When we
applied the M_SSC model to the field samples, the results did not compare well with the laboratory
results. The evaluation of the calibrated M_SSC models shows some biases (i.e., ME Table 5) that are
not observed in the M_SMC models (i.e., ME Table 4). Consequently, soil salt models are susceptible to
soil texture and moisture and are therefore harder to develop compared to soil moisture models. This
is especially true for arid-land field samples in our study area (R2 = 0.333, rRMSE = 0.526), where most
areas maintain slight to moderate level soil salinity conditions [27].
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Table 5. Statistics for calibration and evaluation of the soil salt concentration models (M_SSC).
The number of samples is shown for each calibration dataset. The Evaluation dataset has the same
number of samples or one less. The number of variables are indicated for each of the stepwise regression
equations. The constant term is not included in this table.

Data set
Lab

FieldSL C SC SL + C + SC

Number of samples 41 35 33 109 106
Number of variables 5 6 5 4 4

Calibration
R2 0.874 0.748 0.828 0.470 0.333
rRMSE 0.206 0.243 0.200 0.380 0.526
ME 0.000 0.000 0.000 0.000 0.000

Evaluation
R2 0.730 0.282 0.639 0.543 0.306
rRMSE 0.304 0.530 0.344 0.368 0.529
ME ´0.090 0.016 ´0.006 ´0.026 ´0.020

When we compare the use frequency of the independent variables by the stepwise regression
models, it is obvious that the N, A1 and A” transforms appear more frequently than the reflectance
(R) variables (Figure 6a). Among the five models, the “Field” model and C model do not select
any reflectance bands as independent variables. Nevertheless, the hyperspectral manipulations,
especially the A” transform, which appears up to nine times in these five models, is always used as an
independent variable. Therefore, including soil moisture conditions and transforms of the original
hyperspectral data are important for optimizing soil salt retrievals.

Ten of the originally chosen fourteen wavebands, 540, 570, 1430, 1460, 1740, 1870, 1940, 2010,
2350 and 2410 nm are selected as significant (p ď 0.05) independent variables to model soil salt
concentrations (Figure 6b). This also implies that these wavebands are related to the reflectance and
absorption features of soil salt. Because some similar wavebands can be retrieved from the Advanced
Land Imager (ALI) to make good quality (R2 > 0.689) soil salinity predictions [46], the calibrated
models have good application prospects. Among the wavebands, 540, 1740, 2010 and 2350 nm appear
more than three times as the independent variables in the stepwise regression models. These four
regions have more intense electronic and vibrational processes directly connected with the spectral
signature of salt, or indirectly connected with other chromophores, such as water, due to the presence
of salt. The main cations and anions that constitute the soil salt of the study area are Mg, Ca, Na, and
Cl, CO3, HCO3, respectively. These ions constitute some typical minerals which have characteristic
absorption features. For example, Farifteh, et al. [47] reported that Bischofite (MgCl2¨6H2O) has
absorption features located around 758, 985, 1190, 1451, 1556, 1824 and 1952 nm, similar to the 1451,
1824 and 1952 nm bands we identified.
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We found a high correlation between similar wavebands at 1430, 1870 and 1940 nm. Halite (NaCl)
has absorption features located at 1440 and 1933 nm, and Epsomite (MgSO4¨7H2O) has absorption
features at 793, 999, 1240, 1490, 1631, 1760 and 1946 nm. This confirms that the wavebands that
we used, 1430, 1740 and 1940 nm, were significant in retrieving Halite and Epsomite. Hunt [38]
states that gypsum (CaSO4¨2H2O) has absorption features around 1000, 1200, 1400, 1700, 2000,
2200 and 2500 nm due to the presence of water at specific sites essential to the structure of the
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mineral. Carbonate (CaCO3) and Ca bicarbonate (CaHCO3) ions have overtones or combinations
of the internal vibrations which produce absorption features between 1600 and 2500 nm, including
2350 nm (3υ3), 2160 nm (υ1 + 2υ3 + υ4 and 3υ1 + 2υ4), 2000 nm (2υ1 + 2υ3) and 1900 nm (υ1 + 3υ3) [38].
Actually, the spectral signals related to the given minerals overlap with each other, thereby obscuring
the obvious absorption features solely attributable to one kind of mineral. As a result, the above
presented absorption features can vary according to the actual natural situations and could be impacted
by a variety of soil components such as mineral composition, moisture content and soil porosity. In our
study, although we resampled the spectral resolution to 10 nm, the detected absorption features were
similar as reported for finer spectral resolution data in the literature [38].

3.3.2. Calibration of M_SSCSMC Models (SSC = f(Rλ, SMC)) for Soil Salt Concentration

Because soil surface salinity is highly correlated with the hygroscopic soil moisture content, as was
pointed out by Ben-Dor [48], the impact of soil moisture on the retrieval of soil salt concentrations was
taken into account by separating soil samples into sub-samples according to predicted soil moisture
levels (see Section 3.2.2.) M_SSCSMC models used to predict soil salt concentrations were calibrated
using stepwise regression. The soil salt modeling results are displayed for 0.05 soil moisture intervals
in Table 6.

Table 6. Statistics for calibration results of M_SSCSMC models for soil salt concentration. The number
of samples is shown for each calibration dataset. The number of variables are indicated for each of the
stepwise regression equations. Not included is the constant term.

SMC Scale 0–0.05 0.05–0.1 0.1–0.15 0.15–0.2 0.2–0.25 0.25–0.3

SL + C + SC

Number of samples 11 44 54 44 44 16
Number of variables 2 5 7 4 3 5
R2 0.739 0.801 0.848 0.637 0.631 0.951
rRMSE 0.366 0.251 0.201 0.294 0.293 0.132
ME 0.000 0.000 0.000 0.000 0.000 0.000

Field

Number of samples

z

7 163 42

z

Number of variables 2 6 2
R2 0.912 0.481 0.316
rRMSE 0.175 0.479 0.451
ME 0.000 0.000 0.000

Due to the limited sample size, the M_SSCSMC models only include SL + C + SC laboratory
samples, where all M_SSCSMC models represent compelling higher explained variance and a lower
relative Root Mean-Square Error respectively (0.63 < R2 < 0.95, 0.132 < rRMSE < 0.366) than the
previous M_SSC model (Table 5, R2 = 0.47, rRMSE = 0.380). More specifically, soil salinity was better
predicted when the gravimetric moisture contents of the samples are lower than 0.15 or higher than
0.25 (Table 6). Moderate moisture values in the range of 0.15 to 0.25 were less predictable.

During the experiments, upward water and salt movement was due to evaporation. Therefore, the
surface soil moisture was likely slightly smaller than the mean value of the containers. Over time some
of the soil salt concentrations at the surface are likely slightly higher than the mean salt concentration
of the container. Because we used the mean values in the containers, the continuous evaporation
process likely overestimated actual surface soil moisture content and likely underestimated the actual
salt concentration. Soil moisture content measured for the “Field” samples only ranged from 0.132
to 0.238. Therefore, three sub-groups were examined with a 0.05 moisture interval. Among the three
sub-groups, only 7 samples were located in the moisture range of 0.1 to 0.15. The relative M_SSCSMC

model shows good statistical results (R2 = 0.912, rRMSE = 0.175) when 2 independent variables are
used for calibration. The sample quantity is the largest when moisture ranges from 0.15 to 0.2, and the
regression results of this M_SSCSMC model are better than the M_SSC model (Table 5). The “Field”
samples with moisture content from 0.2 to 0.25, exhibit statistics for the M_SSCSMC models (Table 6)
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almost equivalent to the M_SSC models (Table 5). Comparatively speaking, “Field” M_SSCSMC models
do not provide much improvement in salinity retrieval in the moisture range of 0.15 to 0.25. We
suggest that more in situ field experiments should be conducted with a wider range of moisture
levels to further test the applicability of this approach. Meanwhile, we collected the top 5 cm of each
soil sample and measured the mean soil moisture content and soil salt concentration. This likely
introduces some uncertainties when establishing the hyperspectral inversion models, because the
hyperspectral signatures are related directly to surface soil properties, rather than the mean value of
the top 5 cm. We also suggest including organic matter levels along with soil moisture, salt and texture
in the interaction analysis, because the spectral response of organic matter might have some responses
similar to soil moisture.

The independent variable selection for the M_SSCSMC models (Figure 7a) is closely related with
the moisture range. When soil moisture is lower than 0.05, only the second derivative of reflectance
data at two wavebands, 1740 and 2350 nm, are selected as efficient independent variables in the
stepwise regression model for inversion of salt concentrations (Figure 7a). When the soil moisture
content is between 0.05 and 0.15, the reflectance at 1390 and 1740 nm, as well as normalized reflectance
at 2010 and 2270 nm are the common independent variables. When soil moisture is greater than 0.15,
the reflectance transforms N, A1 and A” are kept as independent variables, while all original reflectance
variables are not used.

Bands at 440, 540, 570, 1390, 1430, 1740, 2010, 2270, 2350 and 2410 nm are selected as independent
variables in the M_SSCSMC models (Figure 7b). Four of them, 1390, 1740, 2010 and 2270 nm appear
more frequently than other wavebands. Consequently, 1740 nm is the most important wavebands for
calibrating the salt sub-model. The use frequency of certain wavebands in the M_SSCSMC models are a
little different from M_SSC models (Figure 6b), and implies that this method calibrates the models
more skillfully after the samples are grouped according to the retrieved soil moisture levels.

The coefficients for the “Field” M_SSCSMC models, show similar patterns as the SL + C + SC
M_SSCSMC models. The reflectance transforms, especially the first and second derivative value, appear
to be more significant in the regression models (Figure 8a) than the reflectance data. The stepwise
regression selected wavebands at 440, 1390, 1430, 1740, 1870, 1900, 2010 and 2270 nm as significant
independent variables (Figure 8b). Consequently, the developed models can be applied to multispectral
missions such as Sentinel-2, which has medium spatial resolution (10–60 m) and 13 spectral bands.
Sentinel-2 bands at 443, 490, 560,1375, 1610, 2190 nm are efficient bands that could be used as variables
in our models [49]. Compared with traditional field sampling and chemical analysis, our models could
be more economic and save time once calibrated and established. In addition, with the development
of computing and remote sensing technology, the costs and time required for applying our models
have become less expensive and more acceptable. These predictive SMC and SSC models can likely
also be used for other soil properties such as soil organic carbon [50–53].
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the salt model coefficients/wavebands for different soil moisture ranges.

4. Conclusions

Inversion of soil moisture and salt concentration using remote sensed spectral technology is
meaningful for agricultural management, especially in the vast arid and semi-arid lands [54] that
encompass ~35% of the earth’s land surface. Nevertheless, moisture, salt and texture soil properties
all simultaneously influence soil spectra [55], which makes single soil property inversions for soil
moisture or salt concentration more complicated.

Our modeling results also show that the transforms of normalized reflectance (N), first derivative
values (A1) and second derivative values (A”) of the absorption, can improve our soil moisture and salt
modeling predictions. At the same time, hyperspectral waveband selections are crucial for developing
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soil moisture, salt and texture based models. The selected wavebands reduce the dimensionality and
represent the variability in the spectral data sets, the development of simple soil moisture and salt
models are feasible.

Our findings indicate that relative to soil salt, the soil moisture models are easier to interpret
because they are less sensitive to soil salt and texture. On the other hand, soil salt models are
more susceptible to soil moisture and texture. Consequently, we retrieved both soil moisture and
salt simultaneously, by including the accurately estimated soil moisture (0.032–0.364 for laboratory
samples, 0.132–0.238 for field samples) as a factor to separate samples into several sub-groups.
Compared with the results from direct retrieval, soil salinity (0.1%–1.0% g/g for laboratory samples,
and 0.06%–0.932% g/g for field samples) retrieval improves when soil moisture estimates are included
in the models. Furthermore, our methodology also performs well for the field samples. We showed
that the remote sensing methodologies coupled with reflectance spectroscopy techniques have the
potential to provide non-destructive and rapid predictions of soil moisture and salt in the short-term
at low cost and an acceptable level of error.

Acknowledgments: This research is supported by the State Natural Science Funds (Research on the Production
Function of Water–fertilizer in Saline Soil Based on Crop Growth Simulation grant No. 51379151, and
Soil Salinization Prediction of Irrigation District Based on Data Assimilation grant No. 51279142), China
Postdoctoral Science Foundation (No. 2015M582274), and the Fundamental Research Funds for the Central
Universities (grant No. 2014206020201).

Author Contributions: Chi Xu wrote the paper and did the experiments; Wenzhi Zeng, supervised the study,
did part of the experiments, reviewed and edited the manuscript; Jiesheng Huang supervised the study and
reviewed the manuscript; Jingwei Wu reviewed the manuscript; Willem J.D. van Leeuwen provided feedback to
the research and helped with editing the manuscript. All authors read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klute, A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; American Society of Agronomy,
Inc.: Madison, WI, USA, 1986.

2. Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. Methods Soil Anal. Part 1996, 3,
417–435.

3. Paliwal, K.; Gandhi, A. Effect of salinity, SAR, Ca: Mg Ratio in Irrigation Water, and Soil Texture on the
Predictability of Exchangeable Sodium Percentage. Soil Sci. 1976, 122, 85–90. [CrossRef]

4. Schelde, K.; Thomsen, A.; Hougaard, H. Comparison of EM38 and TDR measurements of soil moisture and
electrical conductivity. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala,
Sweden, 9–12 June 2005.

5. Seyfried, M.; Grant, L.; Du, E.; Humes, K. Dielectric loss and calibration of the Hydra Probe soil water sensor.
Vadose Zone J. 2005, 4, 1070–1079. [CrossRef]

6. Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of
evapotranspiration and moisture stress across the continental united states based on thermal remote sensing:
1. Model formulation. J. Geophys. Res.: Atmos. 2007, 112, D10. [CrossRef]

7. Hain, C.R.; Mecikalski, J.R.; Anderson, M.C. Retrieval of an available water-based soil moisture proxy from
thermal infrared remote sensing. Part I: Methodology and validation. J. Hydrometeorol. 2009, 10, 665–683.
[CrossRef]

8. Lane, M. Upcoming Themis investigation of salts on Mars. In Proceedings of the Lunar and Planetary
Science Conference, League City, TX, USA, 11–15 March 2002.

9. Schmugge, T.; Gloersen, P.; Wilheit, T.; Geiger, F. Remote sensing of soil moisture with microwave radiometers.
J. Geophys. Res. 1974, 79, 317–323. [CrossRef]

10. Mougenot, B.; Pouget, M.; Epema, G.F. Remote sensing of salt affected soils. Remote Sens. Rev. 1993, 7,
241–259. [CrossRef]

11. Ciani, A.; Goss, K.U.; Schwarzenbach, R.P. Light penetration in soil and particulate minerals. Eur. J. Soil Sci.
2005, 56, 561–574. [CrossRef]

http://dx.doi.org/10.1097/00010694-197608000-00004
http://dx.doi.org/10.2136/vzj2004.0148
http://dx.doi.org/10.1029/2006JD007506
http://dx.doi.org/10.1175/2008JHM1024.1
http://dx.doi.org/10.1029/JB079i002p00317
http://dx.doi.org/10.1080/02757259309532180
http://dx.doi.org/10.1111/j.1365-2389.2005.00688.x


Remote Sens. 2016, 8, 42 19 of 20

12. Skidmore, E.L.; Dickerson, J.D.; Schimmelpfennig, H. Evaluating surface-soil water content by measuring
reflectance. Soil Sci. Soc. Am. J. 1975, 39, 238–242. [CrossRef]

13. Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging
spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [CrossRef]

14. Van der Meer, F. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth
Obs. Geoinf. 2004, 5, 55–68. [CrossRef]

15. Whiting, M.L.; Li, L.; Ustin, S.L. Predicting water content using gaussian model on soil spectra.
Remote Sens. Environ. 2004, 89, 535–552. [CrossRef]

16. Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ.
2003, 85, 1–20. [CrossRef]

17. Csillag, F.; Pásztor, L.; Biehl, L.L. Spectral band selection for the characterization of salinity status of soils.
Remote Sens. Environ. 1993, 43, 231–242. [CrossRef]

18. Cloutis, E. Review article hyperspectral geological remote sensing: Evaluation of analytical techniques. Int. J.
Remote Sens. 1996, 17, 2215–2242. [CrossRef]

19. Hirschfeld, T. Salinity determination using nira. Appl. Spectrosc. 1985, 39, 740–741. [CrossRef]
20. Wang, Q.; Li, P.; Chen, X. Modeling salinity effects on soil reflectance under various moisture conditions and

its inverse application: A laboratory experiment. Geoderma 2012, 170, 103–111. [CrossRef]
21. Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. Mapping of several soil properties using DAIS-7915

hyperspectral scanner data—A case study over clayey soils in Israel. Int. J. Remote Sens. 2002, 23, 1043–1062.
[CrossRef]

22. Weng, Y.; Gong, P.; Zhu, Z. Reflectance spectroscopy for the assessment of soil salt content in soils of the
yellow river delta of China. Int. J. Remote Sens. 2008, 29, 5511–5531. [CrossRef]

23. Weng, Y.L.; Gong, P.; Zhu, Z.L. A spectral index for estimating soil salinity in the yellow river delta region of
china using eo-1 hyperion data. Pedosphere 2010, 20, 378–388. [CrossRef]

24. Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and mapping of soil salinity with reflectance
spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sens. 2014, 6,
10813–10834. [CrossRef]

25. Haubrock, S.N.; Chabrillat, S.; Kuhnert, M.; Hostert, P.; Kaufmann, H. Surface soil moisture quantification
and validation based on hyperspectral data and field measurements. J. Appl. Remote Sens. 2008, 2, 023552.
[CrossRef]

26. Oltra-Carrió, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. Improvement of soil moisture retrieval
from hyperspectral vnir-swir data using clay content information: From laboratory to field experiments.
Remote Sens. 2015, 7, 3184–3205. [CrossRef]

27. Farifteh, J.; Farshad, A.; George, R.J. Assessing salt-affected soils using remote sensing, solute modelling,
and geophysics. Geoderma 2006, 130, 191–206. [CrossRef]

28. Yao, Y.; Wei, N.; Chen, Y.; He, Y.; Tang, P. Soil moisture monitoring using hyper-spectral remote sensing
technology. In Proceedings of the 2010 Second IITA International Conference on Geoscience and Remote
Sensing (IITA-GRS), Qingdao, China, 28–31 August 2010; pp. 373–376.

29. Weidong, L.; Baret, F.; Xingfa, G.; Qingxi, T.; Lanfen, Z.; Bing, Z. Relating soil surface moisture to reflectance.
Remote Sens. Environ. 2002, 81, 238–246. [CrossRef]

30. Whiting, M.L.; Ustin, S.L.; Zarco-Tejada, P.; Palacios-Orueta, A.; Vanderbilt, V.C. Hyperspectral mapping of
crop and soils for precision agriculture. Proc. SPIE 2006, 6298, 62980B. [CrossRef]

31. Miller, W.; Miller, D. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 1987,
18, 1–15. [CrossRef]

32. Chakraborty, S.; Weindorf, D.C.; Ali, M.N.; Li, B.; Ge, Y.; Darilek, J.L. Spectral data mining for rapid
measurement of organic matter in unsieved moist compost. Appl. Opt. 2013, 52, B82–B92. [CrossRef]
[PubMed]

33. Ben-Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short
wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 1997,
61, 1–15. [CrossRef]

34. Bajcsy, P.; Groves, P. Methodology for hyperspectral band selection. Photogramm. Eng. Remote Sens. 2004, 70,
793–802. [CrossRef]

http://dx.doi.org/10.2136/sssaj1975.03615995003900020009x
http://dx.doi.org/10.1016/j.rse.2008.09.019
http://dx.doi.org/10.1016/j.jag.2003.09.001
http://dx.doi.org/10.1016/j.rse.2003.11.009
http://dx.doi.org/10.1016/S0034-4257(02)00188-8
http://dx.doi.org/10.1016/0034-4257(93)90068-9
http://dx.doi.org/10.1080/01431169608948770
http://dx.doi.org/10.1366/0003702854250293
http://dx.doi.org/10.1016/j.geoderma.2011.10.015
http://dx.doi.org/10.1080/01431160010006962
http://dx.doi.org/10.1080/01431160801930248
http://dx.doi.org/10.1016/S1002-0160(10)60027-6
http://dx.doi.org/10.3390/rs61110813
http://dx.doi.org/10.1117/1.3059191
http://dx.doi.org/10.3390/rs70303184
http://dx.doi.org/10.1016/j.geoderma.2005.02.003
http://dx.doi.org/10.1016/S0034-4257(01)00347-9
http://dx.doi.org/10.1117/12.681289
http://dx.doi.org/10.1080/00103628709367799
http://dx.doi.org/10.1364/AO.52.000B82
http://www.ncbi.nlm.nih.gov/pubmed/23385945
http://dx.doi.org/10.1016/S0034-4257(96)00120-4
http://dx.doi.org/10.14358/PERS.70.7.793


Remote Sens. 2016, 8, 42 20 of 20

35. Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of
absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287.
[CrossRef]

36. Mtamba, J.; van der Velde, R.; Ndomba, P.; Zoltán, V.; Mtalo, F. Use of Radarsat-2 and Landsat TM images
for spatial parameterization of manning’s roughness coefficient in hydraulic modeling. Remote Sens. 2015, 7,
836–864. [CrossRef]

37. Corona, P.; Fattorini, L.; Franceschi, S.; Chirici, G.; Maselli, F.; Secondi, L. Mapping by spatial predictors
exploiting remotely sensed and ground data: A comparative design-based perspective. Remote Sens. Environ.
2014, 152, 29–37. [CrossRef]

38. Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42,
501–513. [CrossRef]

39. Ryerson, R. Manual of Remote Sensing, Volume 3: Remote Sensing for the Earth Sciences; American Society for
Photogrammetry and Remote Sensing, John Wiley & Sons: New York, NY, USA, 1999.

40. Hick, P.; Russell, W. Some spectral considerations for remote sensing of soil salinity. Soil Res. 1990, 28,
417–431. [CrossRef]

41. Derksen, S.; Keselman, H. Backward, forward and stepwise automated subset selection algorithms:
Frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [CrossRef]

42. Ben-Dor, E.; Banin, A.; Singer, A. Simultaneous determination of six important soil properties by diffuse
reflectance in the near infrared region. In Proceedings of the 5th International Colloquium on Physical
Measures and Signatures in Remote Sensing, Courchevel, France, 14–18 January 1991; pp. 159–163.

43. Dalal, R.; Henry, R. Simultaneous determination of moisture, organic carbon, and total nitrogen by near
infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [CrossRef]

44. Tian, J.; Philpot, W.D. Relationship between surface soil water content, evaporation rate, and water absorption
band depths in swir reflectance spectra. Remote Sens. Environ. 2015, 169, 280–289. [CrossRef]

45. Metternicht, G.; Zinck, A. Remote Sensing of Soil Salinization: Impact on Land Management; CRC Press: Boca
Raton, FL, USA, 2008.

46. Fan, X.; Liu, Y.; Tao, J.; Weng, Y. Soil salinity retrieval from advanced multi-spectral sensor with Partial Least
Square Regression. Remote Sens. 2015, 7, 488–511. [CrossRef]

47. Farifteh, J.; Tolpekin, V.; van der Meer, F.; Sukchan, S. Salinity modelling by inverted gaussian parameters of
soil reflectance spectra. Int. J. Remote Sens. 2010, 31, 3195–3210. [CrossRef]

48. Ben-Dor, E. Quantitative remote sensing of soil properties. In Advances in Agronomy; Academic Press:
Cambridge, MA, USA, 2002; pp. 173–243.

49. Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological
applications. Remote Sens. Environ. 2014, 148, 124–133. [CrossRef]

50. Peng, X.; Shi, T.; Song, A.; Chen, Y.; Gao, W. Estimating soil organic carbon using VIS/NIR spectroscopy
with SVMR and SPA methods. Remote Sens. 2014, 6, 2699–2717. [CrossRef]

51. Ji, W.; Rossel, R.V.; Shi, Z. Improved estimates of organic carbon using proximally sensed vis–NIR spectra
corrected by piecewise direct standardization. Eur. J. Soil Sci. 2015, 66, 670–678. [CrossRef]

52. Dhawale, N.; Adamchuk, V.; Prasher, S.; Viscarra Rossel, R.; Ismail, A.; Kaur, J. Proximal soil sensing of soil
texture and organic matter with a prototype portable mid-infrared spectrometer. Eur. J. Soil Sci. 2015, 66,
661–669. [CrossRef]

53. Villa, P.; Malucelli, F.; Scalenghe, R. Carbon stocks in peri-urban areas: A case study of remote sensing
capabilities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4119–4128. [CrossRef]

54. Worthington, E.B. Arid Land Irrigation in Developing Countries: Environmental Problems and Effects; Elsevier:
Amsterdam, The Netherlands, 2013.

55. Mulder, V.; de Bruin, S.; Schaepman, M.; Mayr, T. The use of remote sensing in soil and terrain mapping—A
review. Geoderma 2011, 162, 1–19. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0034-4257(98)00084-4
http://dx.doi.org/10.3390/rs70100836
http://dx.doi.org/10.1016/j.rse.2014.05.011
http://dx.doi.org/10.1190/1.1440721
http://dx.doi.org/10.1071/SR9900417
http://dx.doi.org/10.1111/j.2044-8317.1992.tb00992.x
http://dx.doi.org/10.2136/sssaj1986.03615995005000010023x
http://dx.doi.org/10.1016/j.rse.2015.08.007
http://dx.doi.org/10.3390/rs70100488
http://dx.doi.org/10.1080/01431160903156536
http://dx.doi.org/10.1016/j.rse.2014.03.022
http://dx.doi.org/10.3390/rs6042699
http://dx.doi.org/10.1111/ejss.12271
http://dx.doi.org/10.1111/ejss.12265
http://dx.doi.org/10.1109/JSTARS.2014.2328862
http://dx.doi.org/10.1016/j.geoderma.2010.12.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Soil Preparation 
	Hyperspectral Measurements 
	Laboratory Measurements 
	Field Measurements 

	Spectral Transforms 
	Waveband Selection of Sensitive Bands 
	Soil Moisture and Salt Model Calibration and Evaluation 
	Model Performance Indicators 

	Results and Discussion 
	Waveband Selections Sensitive to Soil Moisture and Salt 
	Soil Moisture Characterization 
	Relationship between Hyperspectral Reflectance and Soil Moisture 
	Calibration and Evaluation of M_SMC Models (SMC = f(R, T)) for Soil Moisture Content 

	Soil Salt Characterization 
	Calibration and Evaluation of Soil Salt Concentration Models (SSC = f(R, T)) 
	Calibration of M_SSCSMC Models (SSC = f(R, SMC)) for Soil Salt Concentration 


	Conclusions 

