Is the Gridded Data Accurate? Evaluation of Precipitation and Historical Wet and Dry Periods from ERA5 Data for Canadian Prairies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Organization and Treatment of the Precipitation Time Series
2.3. ERA5 Data
2.4. Standardized Precipitation Index (SPI)
2.5. Statistical Metrics
3. Results
3.1. ERA5 Data Validation
3.2. Monthly Precipitation—Boxplots and the MAPE
3.3. Monthly Maps—ERA5
3.4. SPI Derived from ERA5
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Serrano-Notivoli, R.; Martín-Vide, J.; Saz, M.A.; Longares, L.A.; Beguería, S.; Sarricolea, P.; Meseguer-Ruiz, O.; de Luis, M. Spatio-temporal variability of daily precipitation concentration in spain based on a high-resolution gridded data set. Int. J. Climatol. 2018, 38, e518–e530. [Google Scholar] [CrossRef] [Green Version]
- Talchabhadel, R.; Karki, R.; Thapa, B.R.; Maharjan, M.; Parajuli, B. Spatio-temporal variability of extreme precipitation in Nepal. Int. J. Climatol. 2018, 38, 4296–4313. [Google Scholar] [CrossRef]
- Tong, S.; Li, X.; Zhang, J.; Bao, Y.; Bao, Y.; Na, L.; Si, A. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960–2017. Sci. Total Environ. 2019, 649, 75–89. [Google Scholar] [CrossRef]
- Lima, A.O.; Lyra, G.B.; Abreu, M.C.; Oliveira-Júnior, J.F.; Zeri, M.; Cunha-Zeri, G. Extreme rainfall events over Rio de Janeiro State, Brazil: Characterization using probability distribution functions and clustering analysis. Atmos. Res. 2021, 247, 105221. [Google Scholar] [CrossRef]
- Wagner, P.D.; Fiener, P.; Wilken, F.; Kumar, S.; Schneider, K. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol. 2012, 464–465, 388–400. [Google Scholar] [CrossRef]
- Breinl, K.; Di Baldassarre, G.; Girons Lopez, M.; Hagenlocher, M.; Vico, G.; Rutgersson, A. Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity? Sci. Rep. 2017, 7, 5449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, M.; Xu, J.; Chen, Y.; Li, W. Simulating the precipitation in the data-scarce Tianshan Mountains, Northwest China based on the earth system data products. Arab. J. Geosci. 2020, 13, 637. [Google Scholar] [CrossRef]
- Ashouri, H.; Nguyen, P.; Thorstensen, A.; Hsu, K.; Sorooshian, S.; Braithwaite, D. Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. J. Hydrometeorol. 2016, 17, 2061–2076. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Tostes, J.O.; Lyra, G.B.; Oliveira- Júnior, J.F.; Francelino, M.R. Assessment of gridded precipitation and air temperature products for the State of Acre, Southwestern Amazonia, Brazil. Environ. Earth Sci. 2017, 76, 153. [Google Scholar] [CrossRef]
- Iguchi, T.; Kozu, T.; Meneghini, R.; Awaka, J.; Okamoto, K. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteorol. 2000, 39, 2038–2052. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamm, N.A.S.; Soares Magalhães, R.J.; Clements, A.C.A. Earth observation, spatial data quality, and neglected tropical diseases. PLoS Negl. Trop. Dis. 2015, 9, e0004164. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Broxton, P.D.; Ehsani, M.R.; Behrangi, A. Assessment of snowfall accumulation from satellite and reanalysis products using SNOTEL observations in Alaska. Remote Sens. 2021, 13, 2922. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Lakshmi Kumar, T. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid. Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over Eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.A.; Marianetti, G.; Hinrichs, S. Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos. Res. 2018, 213, 437–449. [Google Scholar] [CrossRef]
- Perdigón-Morales, J.; Romero-Centeno, R.; Pérez, P.O.; Barrett, B.S. The midsummer drought in Mexico: Perspectives on duration and intensity from the CHIRPS precipitation database. Int. J. Climatol. 2018, 38, 2174–2186. [Google Scholar] [CrossRef]
- Cavalcante, R.B.L.; da Silva Ferreira, D.B.; Pontes, P.R.M.; Tedeschi, R.G.; da Costa, C.P.W.; de Souza, E.B. Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmos. Res. 2020, 238, 104879. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Teodoro, P.E.; Rossi, F.S.; Blanco, C.J.C.; Lima, M.; de Gois, G.; Correia Filho, W.L.F.; de Barros Santiago, D.; dos Santos Vanderley, M.H.G. Confronting CHIRPS dataset and in situ stations in the detection of wet and drought conditions in the Brazilian Midwest. Int. J. Climatol. 2021, 41, 4478–4493. [Google Scholar] [CrossRef]
- Cerón, W.L.; Molina-Carpio, J.; Ayes Rivera, I.; Andreoli, R.V.; Kayano, M.T.; Canchala, T. A principal component analysis approach to assess CHIRPS precipitation dataset for the study of climate variability of the La Plata Basin, Southern South America. Nat. Hazards 2020, 103, 767–783. [Google Scholar] [CrossRef]
- Paca, V.H.d.M.; Espinoza-Dávalos, G.E.; Moreira, D.M.; Comair, G. Variability of trends in precipitation across the Amazon River Basin determined from the CHIRPS precipitation product and from station records. Water 2020, 12, 1244. [Google Scholar] [CrossRef]
- Hersbach, H.; de Rosnay, P.; Bell, B. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP; European Centre for Medium Range Weather Forecasts: Reading, UK, 2018. [Google Scholar]
- ECMWF—ECMWF Reanalysis v5 ERA5. Available online: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5#:~:text=ERA5 (accessed on 7 July 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1959 to present. Copernic. Clim. Chang. Serv. Clim. Data Store 2018, 10. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Crossett, C.C.; Betts, A.K.; Dupigny-Giroux, L.-A.L.; Bomblies, A. Evaluation of daily precipitation from the ERA5 global reanalysis against GHCN observations in the Northeastern United States. Climate 2020, 8, 148. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; He, D.; Kurban, A.; De Maeyer, P. Meteorological drought analysis in the lower mekong basin using satellite-based long-term CHIRPS product. Sustainability 2017, 9, 901. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Rembold, F.; Fasbender, D.; Vrieling, A. Evaluation of the standardized precipitation index as an early predictor of seasonal vegetation production anomalies in the Sahel. Remote Sens. Lett. 2017, 8, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.A.; Zentner, R.P.; Gameda, S.; Blomert, B.; Wall, D.D. Production of annual crops on the Canadian prairies: Trends during 1976–1998. Can. J. Soil Sci. 2002, 82, 45–57. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Wheaton, E.E.; Meinert, A.; Siemens, E. Characterizing the surface features of the 1999–2005 Canadian prairie drought in relation to previous severe twentieth century events. Atmosphere-Ocean 2011, 49, 320–338. [Google Scholar] [CrossRef]
- Tam, B.Y.; Szeto, K.; Bonsal, B.; Flato, G.; Cannon, A.J.; Rong, R. CMIP5 drought projections in Canada based on the standardized precipitation evapotranspiration index. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2019, 44, 90–107. [Google Scholar] [CrossRef]
- Shorthouse, J.D. Ecoregions of Canada’s prairie grasslands. Arthropods Can. Grasslands 2010, 1, 53–81. [Google Scholar] [CrossRef]
- Sheppard, S.C.; Bittman, S.; Donohoe, G.; Flaten, D.; Wittenberg, K.M.; Small, J.A.; Berthiaume, R.; McAllister, T.A.; Beauchemin, K.A.; McKinnon, J.; et al. Beef cattle husbandry practices across Ecoregions of Canada in 2011. Can. J. Anim. Sci. 2015, 95, 305–321. [Google Scholar] [CrossRef]
- Saskatchewan: Agriculture and Agri Value. Available online: https://www.saskatchewan.ca/business/investment-and-economic-development/key-economic-sectors/agriculture-and-agri-value (accessed on 5 May 2021).
- Bailey, A.; Schellenberg, M.; McCartney, D. Management of Canadian Prairie Rangeland; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2010.
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B.; et al. From ERA-interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Xu, W.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M.; et al. How well does the ERA5 reanalysis capture the extreme climate events over China? Part I: Extreme precipitation. Front. Environ. Sci. 2022, 10, 921658. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- de Gois, G.; de Souza, J.L.; da Silva, P.R.T.; de Oliveira Júnior, J.F. Caracterização da desertificação no estado de alagoas utilizando variáveis climáticas. Rev. Bras. Meteorol. 2005, 20, 301–314. [Google Scholar]
- Teodoro, P.E.; Corrêa, C.C.G.; Torres, F.E.; de Oliveira Junior, J.F.; da Silva Junior, C.A.; Gois, G.; Delgado, R.C. Analysis of the occurrence of wet and drought periods using standardized precipitation index in Mato Grosso Do Sul State, Brazil. J. Agron. 2015, 14, 80–86. [Google Scholar]
- NOAA. NOAA—Climate Prediction Center. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 4 May 2022).
- Garnett, E.R.; Khandekar, M.L.; Babb, J.C. On the utility of ENSO and PNA indices for long-lead forecasting of summer weather over the crop-growing region of the Canadian prairies. Theor. Appl. Climatol. 1998, 60, 37–45. [Google Scholar] [CrossRef]
- Hsieh, W.W.; Tang, B.; Garnett, E.R. Teleconnections between Pacific Sea surface temperatures and Canadian prairie wheat yield. Agric. For. Meteorol. 1999, 96, 209–217. [Google Scholar] [CrossRef]
- Khandekar, M.L. Canadian Prairie Drought, a Climatological Assessment; Alberta Environment: Edmonton, AB, Canada, 2004. [Google Scholar]
- Asong, Z.E.; Razavi, S.; Wheater, H.S.; Wong, J.S. Evaluation of integrated multisatellite retrievals for GPM (IMERG) over Southern Canada against ground precipitation observations: A preliminary assessment. J. Hydrometeorol. 2017, 18, 1033–1050. [Google Scholar] [CrossRef]
- Costa, J.C.; Pereira, G.; Siqueira, M.E.; da Silva Cardozo, F.; Da Silva, V.V. Validação dos dados de precipitação estimados pelo CHIRPS para o Brasil. Rev. Bras. Climatol. 2019, 24, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Validation of the first years of GPM operation over Cyprus. Remote Sens. 2018, 10, 1520. [Google Scholar] [CrossRef] [Green Version]
- Akinremi, O.O.; McGinn, S.M.; Cutforth, H.W. Precipitation trends on the Canadian prairies. J. Clim. 1999, 12, 2996–3003. [Google Scholar] [CrossRef]
- Gan, T.Y. Hydroclimatic trends and possible climatic warming in the Canadian prairies. Water Resour. Res. 1998, 34, 3009–3015. [Google Scholar] [CrossRef]
- Boluwade, A.; Zhao, K.-Y.; Stadnyk, T.A.; Rasmussen, P. Towards validation of the Canadian precipitation analysis (CaPA) for hydrologic modeling applications in the Canadian prairies. J. Hydrol. 2018, 556, 1244–1255. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Zhang, X. Canadian prairie growing season precipitation variability and associated atmospheric circulation. Clim. Res. 1999, 11, 191–208. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.D.; Ross, A.; Kochendorfer, J.; Earle, M.E.; Wolff, M.; Buisán, S.; Roulet, Y.-A.; Laine, T. Evaluation of the WMO solid precipitation intercomparison experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements. Hydrol. Earth Syst. Sci. 2020, 24, 4025–4043. [Google Scholar] [CrossRef]
- Ehsani, M.R.; Behrangi, A. A comparison of correction factors for the systematic gauge-measurement errors to improve the global land precipitation estimate. J. Hydrol. 2022, 610, 127884. [Google Scholar] [CrossRef]
- Scaff, L.; Yang, D.; Li, Y.; Mekis, E. Inconsistency in precipitation measurements across the Alaska–Yukon border. Cryosphere 2015, 9, 2417–2428. [Google Scholar] [CrossRef]
- Loeb, N.A.; Crawford, A.; Stroeve, J.C.; Hanesiak, J. Extreme precipitation in the Eastern Canadian Arctic and Greenland: An evaluation of atmospheric reanalyses. Front. Environ. Sci. 2022, 10, 663. [Google Scholar] [CrossRef]
- Tiedtke, M. Representation of clouds in large-scale models. Mon. Weather Rev. 1993, 121, 3040–3061. [Google Scholar] [CrossRef]
- Forbes, R.M.; Ahlgrimm, M. On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Weather Rev. 2014, 142, 3425–3445. [Google Scholar] [CrossRef]
- Forbes, R.; Tompkins, A. An improved representation of cloud and precipitation. ECMWF Newsl. 2011, 129, 13–18. [Google Scholar]
- Forbes, R.M.; Tompkins, A.M.; Untch, A. A New Prognostic Bulk Microphysics Scheme for the IFS; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2011. [Google Scholar]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Bechtold, P.; Köhler, M.; Jung, T.; Doblas-Reyes, F.; Leutbecher, M.; Rodwell, M.J.; Vitart, F.; Balsamo, G. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Q. J. R. Meteorol. Soc. 2008, 134, 1337–1351. [Google Scholar] [CrossRef]
- Hirons, L.C.; Inness, P.; Vitart, F.; Bechtold, P. Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Q. J. R. Meteorol. Soc. 2013, 139, 1427–1444. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, E.E. But It’s a Dry Cold: Weathering the Canadian Prairies; Fifth House Publishers: Calgary, AB, Canada, 1998. [Google Scholar]
- McGinn, S.M. Weather and climate patterns in Canada’s prairie grasslands. Arthropods Can. Grassl. 2010, 1, 105–119. [Google Scholar]
- Raddatz, R.L. Summer rainfall recycling for an agricultural region of the Canadian prairies. Can. J. Soil Sci. 2000, 80, 367–373. [Google Scholar] [CrossRef]
- Evans, E.; Stewart, R.E.; Henson, W.; Saunders, K. On precipitation and virga over three locations during the 1999–2004 Canadian prairie drought. Atmosphere-Ocean 2011, 49, 366–379. [Google Scholar] [CrossRef]
- Hanesiak, J.M.; Stewart, R.E.; Bonsal, B.R.; Harder, P.; Lawford, R.; Aider, R.; Amiro, B.D.; Atallah, E.; Barr, A.G.; Black, T.A.; et al. Characterization and summary of the 1999–2005 Canadian prairie drought. Atmosphere-Ocean 2011, 49, 421–452. [Google Scholar] [CrossRef]
- Quiring, S.M.; Papakryiakou, T.N. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 2003, 118, 49–62. [Google Scholar] [CrossRef]
Station Name | Province | Station ID | Latitude (°) | Longitude (°) | Elevation (m) | Ecoregion |
---|---|---|---|---|---|---|
Taber | AB | 2315 | 49.79 | −112.12 | 811 | Mixed |
Beechy | SK | 3071 | 50.83 | −107.31 | 660 | Mixed |
Rock Point | SK | 3142 | 51.15 | −107.26 | 725 | Mixed |
Swift Current CDA | SK | 3157 | 50.27 | −107.73 | 825 | Mixed |
Coronach SPC | SK | 3172 | 49.05 | −105.48 | 756 | Mixed |
Queenstown | AB | 2295 | 50.61 | −112.98 | 940 | Moist-Mixed |
Buffalo Pound Lake | SK | 2859 | 50.55 | −105.38 | 588 | Moist-Mixed |
Last Mountain CS | SK | 2942 | 51.42 | −105.25 | 497 | Moist-Mixed |
Scott CDA | SK | 3259 | 52.36 | −108.83 | 660 | Moist-Mixed |
Outlook PFRA | SK | 3318 | 51.48 | −107.05 | 541 | Moist-Mixed |
SPI Values | Classification |
---|---|
>2.0 | Extreme Wet |
1.5 to 1.99 | Severe Wet |
1.0 to 1.49 | Moderate Wet |
0.99 to −0.99 | Normal |
−1.0 to −1.49 | Moderate Drought |
−1.5 to −1.99 | Severe Drought |
<=−2.0 | Extreme Drought |
Mixed Ecoregion | Equation | R2 | Sig | RMSE | MBE |
Beechy | y = 0.8931x + 150.88 | 0.71 | p < 0.001 | 122.63 | 111.43 |
Coronach | y = 0.4107x + 359.21 | 0.23 | p = 0.002 | 188.51 | 159.49 |
Rock Point | y = 0.7525x + 163.71 | 0.71 | p < 0.001 | 82.9 | 63.12 |
Swift Current | y = 0.812x + 177.47 | 0.76 | p < 0.001 | 119.28 | 109.50 |
Taber | y = 0.6888x + 179.95 | 0.52 | p < 0.001 | 93.67 | 62.81 |
Moist-Mixed Ecoregion | Equation | R2 | Sig | RMSE | MBE |
Buffalo | y = 0.7299x + 273.08 | 0.53 | p < 0.001 | 203.85 | 188.96 |
Last Mountain | y = 0.5643x + 274.82 | 0.42 | p < 0.001 | 140.43 | 111.65 |
Outlook | y = 0.8719x + 158.3 | 0.76 | p < 0.001 | 122.67 | 113.71 |
Queenstown | y = 0.7385x + 206.21 | 0.67 | p < 0.001 | 109.71 | 99.32 |
Scott | y = 0.5959x + 252.58 | 0.51 | p < 0.001 | 123.59 | 107.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, T.; da Silva Junior, C.A.; Chutko, K.J.; Teodoro, P.E.; de Oliveira-Júnior, J.F.; Guo, X. Is the Gridded Data Accurate? Evaluation of Precipitation and Historical Wet and Dry Periods from ERA5 Data for Canadian Prairies. Remote Sens. 2022, 14, 6347. https://doi.org/10.3390/rs14246347
Frank T, da Silva Junior CA, Chutko KJ, Teodoro PE, de Oliveira-Júnior JF, Guo X. Is the Gridded Data Accurate? Evaluation of Precipitation and Historical Wet and Dry Periods from ERA5 Data for Canadian Prairies. Remote Sensing. 2022; 14(24):6347. https://doi.org/10.3390/rs14246347
Chicago/Turabian StyleFrank, Thiago, Carlos Antonio da Silva Junior, Krystopher J. Chutko, Paulo Eduardo Teodoro, José Francisco de Oliveira-Júnior, and Xulin Guo. 2022. "Is the Gridded Data Accurate? Evaluation of Precipitation and Historical Wet and Dry Periods from ERA5 Data for Canadian Prairies" Remote Sensing 14, no. 24: 6347. https://doi.org/10.3390/rs14246347
APA StyleFrank, T., da Silva Junior, C. A., Chutko, K. J., Teodoro, P. E., de Oliveira-Júnior, J. F., & Guo, X. (2022). Is the Gridded Data Accurate? Evaluation of Precipitation and Historical Wet and Dry Periods from ERA5 Data for Canadian Prairies. Remote Sensing, 14(24), 6347. https://doi.org/10.3390/rs14246347