Evapotranspiration Characteristics of Different Oases and Effects of Human Activities on Evapotranspiration in Heihe River Basin
Abstract
:1. Introduction
2. Data and Methods
2.1. In-Situ Observation Data and NDVI Data
2.2. Remote Sensing Evapotranspiration Data
2.3. Statistical Methods
2.4. Satellite Data Preprocessing and Model Equation
3. Evapotranspiration Process Analysis Based on High Resolution Remote Sensing Products
3.1. Comparison of Remote Sensing and In-Situ Data
3.2. Annual Variation of Evapotranspiration
3.3. Seasonal Variations of Evapotranspiration in Summer and Autumn
3.4. Effects of Irrigation on Regional Evapotranspiration
3.5. Effects of Urban Expansion on Regional Evapotranspiration
4. Conclusions
- (1)
- The evapotranspiration intensity of oases at different scales in the Heihe River basin had no significant interannual change. The average evapotranspiration intensity of Zhangye Oasis was up to 650 mm/year due to the abundance of farmland and wetland, and the overall evapotranspiration intensity was the highest in 2012 and 2015. The annual evapotranspiration intensity of Jinta Oasis was up to 580 mm/year and began to decrease slightly after 2012. The evapotranspiration intensity of Ejina Oasis was the lowest, which was up to 440 mm/year, and began to increase significantly after 2014.
- (2)
- In Zhangye Oasis, the peak of evapotranspiration in the oasis appears in July, and irrigation is the main factor causing the change in soil moisture. The obvious increase in soil moisture leads to a rapid increase in evapotranspiration, with a maximum value of 4 mm/day. After the end of irrigation, evapotranspiration decreases, to a certain extent. The evapotranspiration intensity did not decrease obviously after continuous irrigation.
- (3)
- The evapotranspiration intensity in urban areas did not change much with the season, and the intensity was smaller than that in oasis areas. The maximum difference was up to 120 mm/month in the peak period of evapotranspiration. With the urbanization expansion, regional evapotranspiration would be weakened. The urbanization expansion in the northwest direction is more obvious, and it also has an impact on the intensity of evapotranspiration in the surrounding wetlands.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Liu, B.; Zhao, W.; Zhu, Z. Temporal and spatial variability of water use efficiency of vegetation and its response to precipitation and temperature in Heihe River Basin. Acta Ecol. Sin. 2020, 40, 888–899. [Google Scholar]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Y.; Jia, Z.; Qian, D. Recent progress in land use and cover change in Heihe River Basin. J. Lanzhou University. Nat. Sci. 2014, 50, 390–397, 404. [Google Scholar]
- Qiang, Z.; Yinjiao, H. Oasis Effect in Arid Regions. Ziran Zazhi 2001, 23, 234–236, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, X.; Yu, D. Progress on Evapotranspiration Estimation Methods and Driving Forces in Arid and Semiarid Regions. Arid Zone Res. 2020, 37, 26–36. [Google Scholar]
- Hui, Z. Ecological Security Evaluation and Prediction of Zhangye Oasis. J. Lanzhou Univ. Arts Sci. (Nat. Sci. Ed.) 2019, 33, 57–64, (In Chinese with English abstract). [Google Scholar]
- Huiping, D.; Shanzhong, Q. Study on land use dynamic change of Arid inland River Oasis: A case study of Jinta Oasis. J. Anhui Agric. Sci. 2009, 37, 1656–1658, (In Chinese with English abstract). [Google Scholar]
- Ran, Y.; Li, X.; Sun, R.; Kljun, N.; Zhang, L.; Wang, X.; Zhu, G. Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agric. For. Meteorol. 2016, 230, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Li, X.; Liu, S.M. Understanding the Heterogeneity of Soil Moisture and Evapotranspiration Using Multiscale Observations From Satellites, Airborne Sensors, and a Ground-Based Observation Matrix. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2132–2136. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Ge, Y.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 2016, 230, 97–113. [Google Scholar] [CrossRef]
- Xu, F.; Wang, W.; Wang, J.; Xu, Z.; Qi, Y.; Wu, Y. Area-averaged evapotranspiration over a heterogeneous land surface: Aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis. Hydrol. Earth Syst. Sci. 2017, 21, 4037–4051. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of Variable-Infiltration Capacity Model and MODIS-Terra Satellite-Derived Grid-Scale Evapotranspiration Estimates in a River Basin with Tropical Monsoon-Type Climatology. J. Irrig. Drain. Eng. 2017, 143. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, S.; Li, H.; Ma, Y.; Wang, J.; Zhang, Y.; Xu, Z.; Xu, T.; Song, L.; Yang, X.; et al. Intercomparison of Six Upscaling Evapotranspiration Methods: From Site to the Satellite Pixel. J. Geophys. Res.-Atmos. 2018, 123, 6777–6803. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.H. Microclimate: The Biological Environment, 2nd ed.; Rosenberg, N., Blad, B., Verma, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1984; Volume 82, pp. 562–563. [Google Scholar]
- Brown, K.W.; Rosenberg, N.J. Resistance model to predict evapotranspiration and its application to a sugar-beet field. Agron. J. 1973, 65, 341–347. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, D.; Liu, Y.; Chen, H. Review of multi-scale evapotranspiration estimation and spatio-temporal scale expansion. Trans. Chin. Soc. Agric. Eng. 2015, 31, 8–16. [Google Scholar]
- Yongmin, Y.; Zhaodong, F.; Jian, Z. Evapotranspiration in Heihe River Basin based on SEBS model. J. Lanzhou Univ. Nat. Sci. 2008, 44, 1–6. [Google Scholar]
- Meng, X.; Lue, S.; Zhang, T.; Guo, J.; Gao, Y.; Bao, Y.; Wen, L.; Luo, S.; Liu, Y. Numerical simulations of the atmospheric and land conditions over the Jinta oasis in northwestern China with satellite-derived land surface parameters. J. Geophys. Res.-Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Meng, X.; Lu, S.; Gao, Y.; Guo, J. Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China. Int. J. Climatol. 2015, 35, 4116–4125. [Google Scholar] [CrossRef]
- Rahimi, S.; Sefidkouhi, M.A.G.; Raeini-Sarjaz, M.; Valipour, M. Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Arch. Agron. Soil Sci. 2015, 61, 695–709. [Google Scholar] [CrossRef]
- Lian, J.; Huang, M. Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model. Water Resour. Manag. 2015, 29, 5157–5170. [Google Scholar] [CrossRef]
- Kang, S.Z.; Shi, W.J.; Zhang, J.H. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Res. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Ge, Y.; Li, X.; Huang, C.; Nan, Z. A Decision Support System for irrigation water allocation along the middle reaches of the Heihe River Basin, Northwest China. Environ. Model. Softw. 2013, 47, 182–192. [Google Scholar] [CrossRef]
- Wu, L.; Zuo, H.; Feng, J. Numerical simulation of the impacts of groundwater irrigation over the North China Plain on regional climate. Acta Meteorol. Sin. 2018, 76, 635–648. [Google Scholar]
- Luo, S.; Chen, S.; Lv, S. Sensitivity Test of Oasis Boundary Layer Characteristic under Different Soil Moisture. Plateau Meteorol. 2005, 24, 470–477. [Google Scholar]
- Wen, L.; Shihua, L.; Xianhong, M.; Heng, M.A. Numerical Simulation of the Climate Effect on Town in Oasis. Clim. Environ. Res. 2009, 14, 105–112. [Google Scholar]
- Li, H.; Zhang, Q.; Shi, J.; Zhao, J.; Wang, S. A study of the parameterization of land-surface processes over the natural vegetation surface of Loess Plateau. Acta Meteorol. Sin. 2012, 70, 1137–1148. [Google Scholar]
- Singh, R.K.; Senay, G.B.; Velpuri, N.M.; Bohms, S.; Verdin, J.P. On the Downscaling of Actual Evapotranspiration Maps Based on Combination of MODIS and Landsat-Based Actual Evapotranspiration Estimates. Remote Sens. 2014, 6, 10483–10509. [Google Scholar] [CrossRef] [Green Version]
- Hong, Q. Simulating the Effects of Land Use Change on the Evapotranspiration in the Process of Urbanization. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2015. [Google Scholar]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Li, J.; Liu, Q.; Huete, A.R.; Xu, B.; Yin, G.; Zhao, J.; Yang, L.; Fan, W.; Wu, S.; et al. An Iterative BRDF/NDVI Inversion Algorithm Based on A Posteriori Variance Estimation of Observation Errors. Ieee Trans. Geosci. Remote Sens. 2016, 54, 6481–6496. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Wang, W.; Hu, X.; Xu, Z.; Wen, J.; et al. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 2017, 4, 170083. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Ma, P.; Nie, A.; Yang, A.; Yao, Y.; Lu, W.; Zhang, H.; Liu, Q. Land cover mapping using time series HJ-1/CCD data. Sci. China-Earth Sci. 2014, 57, 1790–1799. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S. High-Temporal and Landsat-Like Surface Evapotranspiration in Heihe River Basin (2010–2016) (HiTLL ET V1.0). 2020. Available online: http://poles.tpdc.ac.cn/en/data/118dfdff-c07d-449a-8947-8a2a19d768b0/ (accessed on 8 December 2022). [CrossRef]
- Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S.M. Quick atmospheric correction code: Algorithm description and recent upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5882, 136–142. [Google Scholar]
- Pan, X.; Li, X.; Shi, X.; Han, X.; Luo, L.; Wang, L. Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China. Front. Earth Sci. 2012, 6, 314–323. [Google Scholar] [CrossRef]
- Redelsperger, J.-L.; Thorncroft, C.D.; Diedhiou, A.; Lebel, T.; Parker, D.J.; Polcher, J. African monsoon multidisciplinary analysis—An international research project and field campaign. Bull. Am. Meteorol. Soc. 2006, 87, 1739. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Jin, R.; Li, X. Regression Kriging-Based Upscaling of Soil Moisture Measurements From a Wireless Sensor Network and Multiresource Remote Sensing Information Over Heterogeneous Cropland. IEEE Geosci. Remote Sens. Lett. 2015, 12, 92–96. [Google Scholar] [CrossRef]
- Jackson, R.D.; Hatfield, J.L.; Reginato, R.J.; Idso, S.B.; Pinter, P.J. Estimation of daily evapo-transpiration from one time-of-day measurements. Agric. Water Manag. 1983, 7, 351–362. [Google Scholar] [CrossRef]
- Yang, G.; Weng, Q.; Pu, R.; Gao, F.; Sun, C.; Li, H.; Zhao, C. Evaluation of ASTER-Like Daily Land Surface Temperature by Fusing ASTER and MODIS Data during the HiWATER-MUSOEXE. Remote Sens. 2016, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Liu, S.; Xu, L.; Chen, Y.; Jia, Z.; Xu, Z.; Nielson, J. Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sens. 2015, 7, 3400–3425. [Google Scholar] [CrossRef]
- McVicar, T.R.; Van Niel, T.G.; Li, L.; Hutchinson, M.F.; Mu, X.; Liu, Z. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 2007, 338, 196–220. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Song, L.; Xu, Z.; Liu, Y.; Xu, T.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens. Environ. 2018, 216, 715–734. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, L. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale. Water 2014, 6, 993–1012. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Yan, N.; Xiong, J.; Bastiaanssen, W.G.M.; Zhu, W.; Stein, A. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. J. Hydrol. 2012, 436, 67–80. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, J.; Li, Y.; Wang, X. Simulating the evapotranspiration with SEBAL and Modified SEBAL (M-SEBAL) models over the desert and oasis of the middle reaches of the Heihe River. J. Glaciol. Geocryol. 2014, 36, 1526–1537. [Google Scholar]
- Zhao, L.; Ji, X. Quantification of Transpiration and Evaporation over Agricultural Field Using the FAO-56 Dual Crop Coefficient Approach—A Case Study of the Maize Field in an Oasis in the Middlestream of the Heihe River Basin in Northwest China. Sci. Agric. Sin. 2010, 43, 4016–4026. [Google Scholar]
- Brutsaert, W. Aspects of bulk atmospheric boundary layer similarity under free-convective conditions. Rev. Geophys. 1999, 37, 439–451. [Google Scholar] [CrossRef]
- Timmermans, J.; Su, Z.; van der Tol, C.; Verhoef, A.; Verhoef, W. Quantifying the uncertainty in estimates of surface-atmosphere fluxes through joint evaluation of the SEBS and SCOPE models. Hydrol. Earth Syst. Sci. 2013, 17, 1561–1573. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Nieto, H.; Morillas, L.; Anderson, M.C.; Alfieri, J.G.; Hipps, L.E.; Villagarcia, L.; Domingo, F.; Garcia, M. Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”. Remote Sens. Environ. 2016, 184, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Sayde, C.; Li, Q.; Basara, J.; Selker, J.; Tanner, E.; Gentine, P. Failure of Taylor’s hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophys. Res. Lett. 2017, 44, 4287–4295. [Google Scholar] [CrossRef]
- Van Niel, T.G.; McVicar, T.R.; Roderick, M.L.; van Dijk, A.I.J.M.; Renzullo, L.J.; van Gorsel, E. Correcting for systematic error in satellite-derived latent heat flux due to assumptions in temporal scaling: Assessment from flux tower observations. J. Hydrol. 2011, 409, 140–148. [Google Scholar] [CrossRef]
- Van Niel, T.G.; McVicar, T.R.; Roderick, M.L.; van Dijk, A.I.J.M.; Beringer, J.; Hutley, L.B.; van Gorsel, E. Upscaling latent heat flux for thermal remote sensing studies: Comparison of alternative approaches and correction of bias. J. Hydrol. 2012, 468, 35–46. [Google Scholar] [CrossRef]
- Ryu, Y.; Baldocchi, D.D.; Black, T.A.; Detto, M.; Law, B.E.; Leuning, R.; Miyata, A.; Reichstein, M.; Vargas, R.; Ammann, C.; et al. On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums. Agric. For. Meteorol. 2012, 152, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Cammalleri, C.; Anderson, M.C.; Kustas, A.P. Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications. Hydrol. Earth Syst. Sci. 2014, 18, 1885–1894. [Google Scholar] [CrossRef] [Green Version]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Liu, S.; Xu, Z.; Chen, Y.; Zhu, M. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. J. Geophys. Res.-Atmos. 2012, 117. [Google Scholar] [CrossRef]
Site | Longitude and Latitude | Land Surface Pattern | Altitude |
---|---|---|---|
Huazhaizi | 100.32°E, 38.77°N | Desert | 1731 m |
Daman | 100.37°E, 38.86°N | Cornfield | 1556 m |
Hunhelin | 101.13°E, 41.99°N | populus and tamarix | 874 m |
Maize | |
---|---|
Growing Period | Mean Time |
Emergence | Early May |
Trilobate | Mid-May |
Jointing | Late June |
Tasseling | Mid-July |
Milky Ripe | Mid-August |
Maturity | Late September |
Daman | Huazhaizi | Hunhelin | |
---|---|---|---|
ME | −20.44 | −3.79 | −6.25 |
RMSE | 21.23 | 8.66 | 7.17 |
R | 0.96 | 0.91 | 0.91 |
Annual Change of Evapotranspiration Value (%) | |||||||
---|---|---|---|---|---|---|---|
Zhangye Oasis | −1.5% | −1.8% | 3.8% | −2.4% | −1.7% | 4.5% | −0.7% |
Ejina Oasis | −3.7% | −4.9% | −0.8% | −3.1% | −4.0% | 9.5% | 7.1% |
Jinta Oasis | −2.4% | 0.9% | 5.9% | 3.3% | −3.1% | −1.6% | −2.9% |
Time | Extended Area/km2 | The Area of Annual Expansion/km2 | Expansion Strength Index/% | Extension Type |
---|---|---|---|---|
1949–1978 | 1.235 | 0.042 | 1.262 | Slow extension |
1978–1992 | 3.644 | 0.261 | 3.953 | Low extension |
1992–2000 | 3.211 | 0.401 | 4.863 | Moderate-speed extension |
2000–2006 | 3.039 | 0.506 | 4.418 | Rapidly extension |
2006–2015 | 9.458 | 1.051 | 7.246 | High-speed extension |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ao, Y.; Li, Z. Evapotranspiration Characteristics of Different Oases and Effects of Human Activities on Evapotranspiration in Heihe River Basin. Remote Sens. 2022, 14, 6283. https://doi.org/10.3390/rs14246283
Wang Y, Ao Y, Li Z. Evapotranspiration Characteristics of Different Oases and Effects of Human Activities on Evapotranspiration in Heihe River Basin. Remote Sensing. 2022; 14(24):6283. https://doi.org/10.3390/rs14246283
Chicago/Turabian StyleWang, Yuxuan, Yinhuan Ao, and Zhaoguo Li. 2022. "Evapotranspiration Characteristics of Different Oases and Effects of Human Activities on Evapotranspiration in Heihe River Basin" Remote Sensing 14, no. 24: 6283. https://doi.org/10.3390/rs14246283
APA StyleWang, Y., Ao, Y., & Li, Z. (2022). Evapotranspiration Characteristics of Different Oases and Effects of Human Activities on Evapotranspiration in Heihe River Basin. Remote Sensing, 14(24), 6283. https://doi.org/10.3390/rs14246283