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Abstract: Land surface temperature (LST) is an important parameter that is highly responsive to
surface energy fluxes and has become valuable to many disciplines. However, it is difficult to
acquire satellite LSTs with both high spatial and temporal resolutions due to tradeoffs between
them. Thus, various algorithms/models have been developed to enhance the spatial or the temporal
resolution of thermal infrared (TIR) data or LST, but rarely both. The Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) is the widely-used data fusion algorithm for Landsat and MODIS
imagery to produce Landsat-like surface reflectance. In order to extend the STARFM application
over heterogeneous areas, an enhanced STARFM (ESTARFM) approach was proposed by introducing
a conversion coefficient and the spectral unmixing theory. The aim of this study is to conduct a
comprehensive evaluation of the ESTARFM algorithm for generating ASTER-like daily LST by three
approaches: simulated data, ground measurements and remote sensing products, respectively. The
datasets of LST ground measurements, MODIS, and ASTER images were collected in an arid region
of Northwest China during the first thematic HiWATER-Multi-Scale Observation Experiment on
Evapotranspiration (MUSOEXE) over heterogeneous land surfaces in 2012 from May to September.
Firstly, the results of the simulation test indicated that ESTARFM could accurately predict background
with temperature variations, even coordinating with small ground objects and linear ground objects.
Secondly, four temporal ASTER and MODIS data fusion LSTs (i.e., predicted ASTER-like LST products)
were highly consistent with ASTER LST products. Here, the four correlation coefficients were greater
than 0.92, root mean square error (RMSE) reached about 2 K and mean absolute error (MAE) ranged
from 1.32 K to 1.73 K. Finally, the results of the ground measurement validation indicated that the
overall accuracy was high (R2 = 0.92, RMSE = 0.77 K), and the ESTARFM algorithm is a highly
recommended method to assemble time series images at ASTER spatial resolution and MODIS
temporal resolution due to LST estimation error less than 1 K. However, the ESTARFM method is
also limited in predicting LST changes that have not been recorded in MODIS and/or ASTER pixels.
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1. Introduction

Land-surface temperature (LST) is a key parameter of the physics of land-surface processes at
the regional and global scales, and it includes combined effects of all surface–atmosphere interactions
and energy fluxes [1–7]. Due to the strong heterogeneity of land surface characteristics such as
vegetation, soil, water, and topography [8,9], LST changes rapidly over both spatial and temporal
scales [10–12]. In practice, the spatial and temporal resolution requirements of satellite-derived
surface temperature data for agricultural applications are estimated to be about 40 m and 1 day
(revisit time), respectively [13]. Therefore, high-resolution LST measurements obtained with remote
sensing approaches are highly desired. However, acquiring satellite images with high temporal
and spatial resolutions remains extremely difficult due to tradeoffs between both resolutions.
For example, the temporal frequency of the Moderate Resolution Imaging Spectrometer (MODIS,
low-spatial/high-temporal resolution sensor) with a 1-km spatial resolution is greater than one visit
per day [14,15]. In contrast, the temporal frequency of the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER, high-spatial/low-temporal resolution sensor) with a 90-m spatial
resolution is greater than 15 days [16,17].

To bridge the gap between the low spatial resolution of available thermal data and the high spatial
resolution required over agricultural areas, one may disaggregate low-spatial-resolution thermal
data at high-temporal frequencies. Existing techniques have been reported in interdisciplinary
literature, including image/data fusion [18–28], spatial sharpening [15,29–33], downscaling and
disaggregation [3,10,17,34–36] and their comparisons [37–40]. Various methods of LST downscaling
can be broadly grouped into physical and statistical categories. For statistical methods, a relationship
between a vegetation index/variable (e.g., the Normalized Difference Vegetation Index, NDVI) and
radiometric surface temperature can be addressed by a linear or nonlinear function. Due to the fact that
vegetation indices (VIs) are often available at a finer pixel resolution than LST, there is a potential to
make use of the VI–LST relationship to derive LST at the VI pixel resolution [17]. Physical downscaling
uses modulation methods, which take a thermal pixel as a block and distribute its LST or thermal
radiance into finer pixels corresponding to its shorter wavebands. However, the isothermal assumption
that underpins various modulation methods may cause some errors, especially in vegetated areas
that are composed of a mixture of different temperature components [10]. To our knowledge, many
disaggregation methods do not yield ideal results in areas where vegetation cover is mixed with other
land cover types, especially those areas covered with mixture of bare soil, water, and impervious
components [3]. In fact, many bare lands, lakes or rivers, and villages or towns are irregular in shape
and have variable sizes and distributions in agricultural fields, which are typical features of agricultural
landscapes in China [41,42]. Although thermal downscaling methods can produce LST data with a
relatively high spatial resolution in the order of 10–100 m, they do not simultaneously increase the
temporal resolution of the sensor.

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [18] is perhaps the
most widely used data fusion algorithm for Landsat and MODIS imagery [19–28,37,39,40]. It is one of
the few data fusion methods that result in synthetic Landsat-like surface reflectance [21,40,43]. The
basic assumption underlying the method is that the surface reflectance on a predicted date can be
estimated as a weighted sum of spectrally similar neighborhood information from both Landsat and
MODIS reflectances on observation dates (close to the predicted date). In fact, STARFM integrates
daily information from MODIS with periodic Landsat data to interpolate surface reflectance at the
Landsat resolution of 30 m on a daily basis [19,20,24]. STARFM relies on temporal information from
pure, homogeneous patches of land cover at the MODIS pixel scale. Simulations and predictions based
on actual Landsat and MODIS images show that STARFM can accurately predict reflectance if these
coarse-resolution homogeneous pixels exist [18]. However, the prediction results degrade somewhat
when used on heterogeneous fine-grained landscapes, including small-scale agriculture [18,19]. Zhu et al.
(2010) [20] developed an enhanced STARFM (ESTARFM) approach for application in a heterogeneous
area by introducing a conversion coefficient and a spectral unmixing theory to the fusion model.
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However, as an essential part of the important work before using ESTARFM algorithm for generating
high spatial-temporal LST products, an evaluation should be conducted over heterogeneous areas.
The ESTARFM algorithm requires at least two pairs of fine- and coarse-resolution images acquired at
the same date and a set of coarse-resolution images for desired prediction dates. Therefore, it should
be evaluated how the selection of imagery pairs affects the performance of the data fusion algorithm.

Although ESTARFM was originally designed to fuse shortwave reflectance data from MODIS and
Landsat to create daily reflectance, it is also greatly beneficial for the prediction of high spatial-temporal
resolution thermal maps. Recently, Weng et al. (2014) [24] improved the STARFM method for
predicting thermal radiance and LST data by considering the annual temperature cycle (ATC) over
a heterogeneous urban area. This technique, the Spatio-temporal Adaptive Data Fusion Algorithm
(SADFAT), blends Landsat and MODIS data to generate synthetic Landsat-like daily surface thermal
data. They found that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K [24].
Yang et al. (2015) [28] used ground measured temperature to evaluate the ESTARFM with a few
temporal images. Therefore, based on our knowledge, most disaggregation methods for remotely
sensed surface temperature were tested with only simulated data, or remote sensing products, or
ground measurements. Therefore, these methods need a comprehensive evaluation and validation
from three levels: simulation, remote sensing data, and ground observation.

The objective of this study was to evaluate the performance of the ESTARFM algorithm in
retrieving LSTs using simulated data and coordination with ground measurements, MODIS, and
ASTER data. All ground measurements and remote sensing data were collected in an arid region of
Northwest China during the first thematic Multi-Scale Observation Experiment on Evapotranspiration
(MUSOEXE) over heterogeneous land surfaces in 2012 [44], as a part of the Heihe Watershed Allied
Telemetry Experimental Research (HiWATER) [45]. Following a brief introduction to the ground
LST measurements collected in the HiWATER experiment, the satellite data used in this study is
presented. The theoretical basis and application of the ESTARFM algorithm method are discussed in
Section 3. The evaluation results from simulation, ground measurements and ASTER LST products
are presented in Section 4. Finally, the discussion and conclusions of this study are summarized in
Sections 5 and 6 respectively.

2. Experimental Data

2.1. HiWATER-MUSOEXE Experiment

The HiWATER program was designed as a comprehensive ecohydrologic experiment and was
based on the diverse needs of the interdisciplinary areas of the research plan and existing observation
infrastructures in the Heihe River Basin [45]. The coordinate range of the study area is between
97.1˝E–102.0˝E and 37.7˝N–42.7˝N. The first thematic experiment launched in HiWATER was the
HiWATER-MUSOEXE, which involved a flux observation matrix in the middle reach of a natural
oasis area of the Heihe River Basin between May and September 2012 [44]. The HiWATER-MUSOEXE
consisted of two nested matrices: one large experimental area (30 ˆ 30 km) and one core experimental
area (5.5 ˆ 5.5 km) in Figure 1. The vegetation coverage was 49.23% of the total experimental area and
consisted of maize (83.06%) and a small amount of shelter forests and shrubs. The non-vegetated area
coverage was 50.08%, which was comprised of Gobi desert (71.59%) and a small amount of towns
and roads. The water coverage was 0.69%. The goal of the HiWATER-MUSOEXE was to study the
spatial-temporal variations in evapotranspiration (ET), the effects of advection in the oasis-desert
ecosystem (30 ˆ 30 km), heterogeneity of ET in the irrigated oasis (5.5 ˆ 5.5 km), and ET acquisition at
a pixel scale. A detailed description of the HiWATER-MUSOEXE could be found in Xu et al. (2013) [44].
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Figure 1. Location of the study area and the WATERNET and AWS stations’ spatial distribution. (a) 
ASTER L1B visible near infrared (VNIR) image of the study area on 27 August 2012. RGB components 
are channels 3 (0.81 μm), 2 (0.66 μm), and 1 (0.56 μm), respectively, with 15-m resolution; (b) true 
color image acquired with an airborne digital camera, which covers the core experimental area (5.5 
km × 5.5 km); (c) one node of WATERNET; (d) AWS-10. station; and (e) thermal infrared sensor. 

2.2. Ground LST Measurements 

A hydrologic wireless sensor network (WATERNET) composed of 50 nodes in HiWATER-
MUSOEXE was deployed according to an optimal design based on the spatial variation in terrain, 
soil moisture, and LST. Most of the WATERNET nodes were located in a maize field, and a few were 
in a vegetable field or orchard. There were 29 nodes equipped with surface temperature infrared 
radiometers (Campbell Scientific®, SI-111), which were installed at a height of 4 m with a footprint of 
8 m2. Moreover, 21 automatic weather stations (AWSs) equipped with surface infrared radiometers 
were deployed in the HiWATER-MUSOEXE experimental area. An SI-111 radiometer, which was 
positioned at an effective angle of approximately 55° from the zenith to measure the atmospheric 
downwelling radiance, was installed at the WATERNET-44 station. 

All the SI-111 radiometers measured LST continuously from 15 June to 18 September 2012. After 
the elimination of missing data at a few stations, the SI-111 radiometer measurements at 12 AWSs 
and 27 WATERNET stations were selected as validation data for the ESTARFM algorithm (Figure 1). 
To synchronize the SI-111 radiometer and MODIS or ASTER satellite observations, all the SI-111 
radiometers recorded intensive 1-min observations from 8:00 to 18:00 each day. The atmospheric 

Figure 1. Location of the study area and the WATERNET and AWS stations’ spatial distribution.
(a) ASTER L1B visible near infrared (VNIR) image of the study area on 27 August 2012. RGB
components are channels 3 (0.81 µm), 2 (0.66 µm), and 1 (0.56 µm), respectively, with 15-m resolution;
(b) true color image acquired with an airborne digital camera, which covers the core experimental area
(5.5 km ˆ 5.5 km); (c) one node of WATERNET; (d) AWS-10. station; and (e) thermal infrared sensor.

2.2. Ground LST Measurements

A hydrologic wireless sensor network (WATERNET) composed of 50 nodes in
HiWATER-MUSOEXE was deployed according to an optimal design based on the spatial
variation in terrain, soil moisture, and LST. Most of the WATERNET nodes were located in a maize
field, and a few were in a vegetable field or orchard. There were 29 nodes equipped with surface
temperature infrared radiometers (Campbell Scientific®, SI-111), which were installed at a height
of 4 m with a footprint of 8 m2. Moreover, 21 automatic weather stations (AWSs) equipped with
surface infrared radiometers were deployed in the HiWATER-MUSOEXE experimental area. An
SI-111 radiometer, which was positioned at an effective angle of approximately 55˝ from the zenith to
measure the atmospheric downwelling radiance, was installed at the WATERNET-44 station.

All the SI-111 radiometers measured LST continuously from 15 June to 18 September 2012. After
the elimination of missing data at a few stations, the SI-111 radiometer measurements at 12 AWSs
and 27 WATERNET stations were selected as validation data for the ESTARFM algorithm (Figure 1).
To synchronize the SI-111 radiometer and MODIS or ASTER satellite observations, all the SI-111
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radiometers recorded intensive 1-min observations from 8:00 to 18:00 each day. The atmospheric
downwelling radiance in the HiWATER-MUSOEXE experimental area was consistent with that
observed by the SI-111 radiometer at the WATERNET-44 station.

The radiometric temperatures measured by all 39 (12 AWS + 27 WATERNET) SI-111 radiometers
were corrected for emissivity and downward sky irradiance effects. Let Tr be the radiometric
temperature measured by a radiometer, the true land surface temperature Ts is given by:

BpTsq “ rBpTrq ´ p1´ εqLskys{ε (1)

where B is the Planck function weighted for the spectral response function of the SI-111 radiometer; ε
is the surface emissivity of the SI-111 channel; and Lsky is the downward sky irradiance divided by π.

The emissivities of the stations were determined using the vegetation cover method [46]. This
method requires the vegetation and background emissivities to be known. During the field experiment,
the emissivities of bare soil and cropland were measured with an infrared spectroradiometer (ABB
BOMEM® MR304) and a diffuse golden plate, and these values were used to obtain the radiometric
data of the samples and the corresponding atmospheric downward radiance. The spectral resolution of
the MR304 is 1 cm´1. The emissivity spectra in the range of 8–14 µm were retrieved using the Iterative
Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm, which has been proven
to be an effective algorithm with a high accuracy for temperature and emissivity retrieval [47]. The
Fractional Vegetation Cover (FVC) was measured using a photographic method [48] at a nadir view.
Up until this point, all the processed SI-111 measured LST data in HiWATER-MUSOEXE [49].

2.3. ASTER and MODIS Data

To validate the ESTARFM method for downscaling satellite-retrieved LST data, this study used
data from MODIS and ASTER sensors onboard NASA’s TERRA satellite. ASTER was designed to
collect data for geological and environmental applications and to provide three spectral bands in the
visible near-infrared (VNIR, 0.5–0.9 µm), six bands in the shortwave infrared (SWIR, 1.6–2.5 µm), and
five bands in the thermal infrared (TIR, 8–12 µm) regions, with 15-, 30-, and 90-m ground resolutions,
respectively [16]. In this study, six ASTER images were acquired from July to September 2012. Table 1
presents a list of all dates and the overpass times of the ASTER data. The land surface temperature
and emissivities were derived from the ASTER data using the temperature emissivity separation (TES)
algorithm [47], combined with the Water Vapor Scaling (WVS) atmospheric correction method [7,50]
which can decrease the uncertainty of the TES algorithm by the parameterization of the sensor view
angle and total column water vapor [12,51]. Since the ASTER LST products were generated and
evaluated by Wang et al. (2015) [7], here, we just used the LST products without discussing the details
of the retrieval method. For a more detailed description of the ASTER LST products, please refer to
Wang et al. (2015) [7].

Table 1. A list of dates and statistics results of the ASTER and MODIS LSTs.

Case
Date

(Day/Month/Year)
Maximum LST (K) Minimum LST (K) Mean LST (K) STD (K)

MODIS ASTER MODIS ASTER MODIS ASTER MODIS ASTER

1 10 July 2012 323.36 325.76 301.76 299.61 309.36 310.67 6.59 8.02
2 2 August 2012 323.80 327.63 302.96 301.50 310.47 311.92 6.67 8.05
3 18 August 2012 311.72 314.32 298.82 297.34 303.43 304.29 3.66 4.57
4 27 August 2012 320.98 323.99 301.44 299.27 308.76 309.87 6.36 7.63
5 3 September 2012 312.92 316.37 296.82 295.08 302.76 303.36 5.19 6.25
6 12 September 2012 312.38 315.28 293.97 291.95 300.93 301.45 5.80 6.95

MODIS is a multispectral imager onboard the Terra and Aqua satellites of NASA’s EOS, and it
provides daytime and nighttime imaging capability of any point on the Earth’s surface every 1–2 days,
with a spatial resolution of ~1 km at nadir and 5 km at higher off-nadir viewing angles at the scan
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edge [14]. The LST is retrieved with the new refined generalized split window (GSW) or the day/night
LST algorithms, which are view-angle dependent [1,52,53]. Because both ASTER and MODIS are
onboard the same satellite platform, observations are made at the same height and coincident nadirs.

Thirteen cloud-free MODIS datasets covering the study area were acquired from July to
September 2012 (Figure 2). Each MODIS dataset, including MOD03_L1A, MOD07_L2, MOD09GQ,
and MOD11_L2 datasets, was collected from the Land Processes Distributed Active Archive Center
(LP DAAC) of the U.S. Geological Survey (USGS). The MOD03_L1A geolocation product contains
geodetic coordinates, ground elevation, and satellite zenith and azimuth angles for each MODIS 1-km
pixel, which were used in visual interpretations to assist with the accurate coregistration between the
MODIS LST and ASTER LST data. The LST products from MOD11_L2 are produced daily at 5-min
increments using the generalized split-window algorithm [1,14]. In this study, the acquired ASTER
images were first coarsely registered to the MODIS images using the geolocation data provided with
the images. Then, the ASTER images were refined by adjusting the integer cross-track and in-track
offsets between the MODIS and ASTER images using the area cross-correlation approach [34]. Finally,
both the ASTER and MODIS data were registered to the same coordinate system and resampled at the
same spatial resolution (90 m). The land cover map in the HiWATER-MUSOEXE experimental area
was acquired from the 30-m resolution global land cover (GLC) dataset, GlobeLand30, which includes
more than seven land cover types (cultivated land, artificial surfaces, bare land, water bodies, wetland,
shrub lands, and forests) [54]. GlobeLand30 datasets were used to classify the land cover into three
types in considering the characteristics of land surface coverage in the study area.
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Figure 2. Two schemes for estimation of LST at ASTER resolution by ESTARFM. Scheme 1 was a
segment-based prediction made by taking turns of each two adjacent temporal data. Scheme 2 was
only using first and last temporal data for the direct estimation.

3. Methodology

3.1. Theoretical Basis of the ESTARFM

The ESTARFM algorithm described by Zhu et al. (2010) [20] was applied in the current study,
which is described by a linear model in Equation (2) below. The algorithm is based on the assumption
that both ASTER and MODIS imagery observe the same reflectance and LST, biased by a constant
error. This error is caused by the characteristics of a pixel, and is systematic over short temporal
intervals. Therefore, this error can be calculated for each pixel in the image if a base ASTER-MODIS
synchronization acquired image pair is available. These errors can then be applied to the MODIS
imagery of a prediction date to obtain a corresponding ASTER-like prediction image.
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Here, the predicted fine-resolution ASTER-like LST is directly calculated from two pairs of fine-
and coarse-resolution images at ta and tc, and the coarse resolution image at tb is only used to calculate
the temporal weight at ta and tc.
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^

Fb is the final predicted fine-resolution LST at the prediction time tb; F and C denote the
fine-resolution reflectance and coarse resolution LST, respectively; ta and tc denote the acquisition date
for one pair of fine-resolution and coarse-resolution images, respectively; w is the search window size;
N is the number of similar pixels including the central “prediction” pixel within the search window;
(xi, yi) is the location of the ith similar pixel; Wi is the weight of ith similar pixel; Hi is the conversion
coefficient of the ith similar pixel; and Tb

a and Tb
c denote the temporal weight at ta and tc as Equation (3),

respectively, which can be calculated according to the change in magnitude detected by the resampled
coarse-resolution LST between the time (ta or tc) and prediction time tb.

In order to get high spatial-temporal LST from ASTER and MODIS data based on Equation (2),
the implementation of ESTARFM consists of three steps. Firstly, a moving window is applied to the
ASTER imagery to identify similar neighboring pixels. Secondly, a weight is assigned to each similar
neighbor based on: (a) the differences between surface reflectances of ASTER-MODIS image pair and
between LSTs of ASTER-MODIS image pair; (b) the temporal difference of the pixel’s value in both
MODIS images; and (c) the spatial Euclidean distance between the neighbor and the central pixel. The
final step consists of calculating the surface LST of the central pixel. For a more detailed description of
the ESTARFM algorithm, please refer to Gao et al. (2006) [18] and Zhu et al. (2010) [20].

3.2. Evaluation Schemes for Prediction of ASTER-Like LST

In this study, six temporal ASTER LST products already acquired also differed with respect to
time intervals. The shortest interval was six days (27 August 2012–3 September 2012), and the longest
was 22 days (10 July 2012–2 August 2012). Hence, two schemes for the estimation of 90-m LST were
designed (Figure 2). Scheme 1 was a segment-based prediction made using ASTER data acquired
on different dates (Figure 2). That is that the two adjacent temporal ASTER/MODIS data were used
to estimate the 90-m LST on intermediate dates. In Scheme 1, the ASTER LST products of different
dates were input successively to estimate the 90-m LST with ESTARFM. Because the ASTER LST
products had different time intervals, the different temporal ASTER LST data were used as the input
with different frequencies; the smallest frequency was 1 (10 July, 2 August, 12 September 2012) and
the largest was 4 (27 August 2012). Finally, the 11 temporal LSTs at a 90-m resolution were estimated
successively. In Scheme 2 (Figure 2), the two temporal ASTER/MODIS data, 10 July 2012 and 12
September 2012, were used for the direct estimation of the 11 temporal LSTs at the 90-m resolution.

The 90 m LST estimated by ESTARFM was validated with three experiments. (1) The simulation
data of typical ground objects (water surface, vegetation) were chosen for the validation by changing
their LST, shape, and size. With reference to the simulation tests conducted by Gao et al. (2006) [18] and
Zhu et al. (2010) [20], we tested four cases: varying temperature/reflectance, varying shapes, predicting
small objects, and predicting linear objects. In detail, a series of 198 ˆ 198 pixel fine-resolution images
were first simulated by assigning each pixel a positive value ranging from 290 to 320 or 0 to 1 to
denote the temperature or reflectance of each pixel, respectively. Coarse-resolution images were
produced by scaling-up the fine-resolution images (i.e., each cluster of 11 ˆ 11 neighboring pixels in
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the fine-resolution image was aggregated to create a pixel in a coarse-resolution image). The spatial
resolutions of fine- and coarse-resolution simulated images were identical to those of ASTER and
MODIS. Specifically, three pairs of fine- and coarse-resolution images acquired on the same date were
simulated. Then, the first and last pairs and the coarse-resolution image of the second pair were
used to predict the fine-resolution image of the second pair, and the predicted and real images were
compared to assess the accuracy of the new algorithm; (2) Using the schemes in Figure 2, the four
temporal ASTER LST products (2 August, 18 August, 27 August and 3 September 2012) were chosen
for the validation of LST estimated by ESTARFM; (3) The LST estimated by ESTARFM was validated
with the LST measurements of the radiometer equipped at the WATERNET stations and AWSs in
HiWATER-MUSOEXE. Here, the normalized error index (NEI) is used to express the relative LSTs’
deviation between the ESTARFM estimated LSTs and ground measurements while varying the number
of land cover types and the size of search window. It can be described as Equation (4).

NEI “
Maxpσq ´ σ

Maxpσq ´Minpσq
,σ “ LSTGround ´ LSTESTARFM (4)

where σ is the LST predicted errors by the ESTARFM comparing to ground measurements, Maxpσq is
the maximum of σ, and Minpσq is the minimum of σ.

4. Results

4.1. Evaluation of ESTARFM by Simulation

4.1.1. Test with Varying Temperature

The ESTARFM algorithm was tested with simulated temperature and reflectance data to help
understand its effectiveness and limitations. In this simple case, there were only two objects
(e.g., water and vegetation) (Figure 3). The shapes of water and vegetation were fixed, and we assumed
that the water body (circle) had a constant surface reflectance of 0.05 and a constant temperature of
290 K over the observing period, whereas the vegetation reflectance was set as 0.1, 0.2, and 0.4, and
the corresponding temperature was set as 300 K (Figure 3a), 310 K (Figure 3b), and 320 K (Figure 3c).
The MODIS-like 990-m spatial resolution temperature images (Figure 3d–f) were aggregated from the
ASTER-like 90-m spatial resolution images (Figure 3a–c). Using the ESTARFM algorithm and data from
Figure 3a,c–f, we estimated the fine-resolution temperature image (Figure 3b). When the surrounding
spatial information of fine-resolution data was used, a nearly exact match (Figure 3g) could be
retrieved at a finer resolution in this simple case. Zhu et al. (2010) [20] conducted a similar study
for downscaling land surface reflectance data from MODIS resolution to Landsat ETM+ resolution
using an enhanced spatial and temporal adaptive reflectance fusion model. This example reveals the
significance of additional fine resolution spatial information from multisource remote sensing data to
downscaling LST.
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comparison with image (b). 
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temperature and the corresponding prediction errors increased compared with the true values 
(Figure 4b). However, the image also shows the opposite result, ranging from inner ring in Figure 4b 
to the outer ring in Figure 4c. According to the ESTARFM algorithm, Figure 4g was calculated by 
weighting the first prediction from Figure 4a to Figure 4b, and the second prediction from Figure 4c 
to Figure 4b. Overlapping and non-overlapping regions were included in the total area during the 
prediction process. There were no temperature changes within overlapping regions between Figure 
4a,b or between Figure 4b,c, respectively. Therefore, there were no prediction errors due to 
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Figure 3. Simulation of temporal changes in temperature for water (inside circle) and vegetation
(outside circle). (a–c) were fine resolution images for three temporal; (d–f) were coarse-resolution
images aggregated from fine resolution images (a–c); Image in (g) was estimated with ESTARFM, for
comparison with image (b).

4.1.2. Test with Changing Shapes, Small Objects, and Linear Objects

(A) Changing Shapes

Land cover may change over a growing season, not just in terms of overall temperature and
reflectance, but also in terms of shape and size. To better understand the ESTARFM algorithm’s
performance, we assumed that the surface reflectance was constant with time for the two land-cover
types; the background reflectance was 0.2; the background temperature was 310 K; the circular
object reflectance was 0.05; and the circular object temperature was 290 K. The radius of the circular
object was set as 500 m (Figure 4a,d), 1000 m (Figure 4b,e), and 2000 m (Figure 4c,f). Figure 4a–c
shows the simulated ASTER-like 90-m temperature images. The MODIS-like 990-m resolution data
(Figure 4d–f) were aggregated from the ASTER-resolution views. Figure 4g is the image predicted
from fine-resolution data (Figure 4a,c) and coarse-resolution data (Figure 4d–f), including additional
spatial information. Figure 4h is the absolute difference between true (Figure 4b) and predicted
data (Figure 4g). It shows that the differences were greatest along the annular region (Figure 4h),
ranging from the inner ring in Figure 4a to the outer ring in Figure 4b, where the radius represents
the estimated temperature and the corresponding prediction errors increased compared with the
true values (Figure 4b). However, the image also shows the opposite result, ranging from inner ring
in Figure 4b to the outer ring in Figure 4c. According to the ESTARFM algorithm, Figure 4g was
calculated by weighting the first prediction from Figure 4a to Figure 4b, and the second prediction
from Figure 4c to Figure 4b. Overlapping and non-overlapping regions were included in the total
area during the prediction process. There were no temperature changes within overlapping regions
between Figure 4a,b or between Figure 4b,c, respectively. Therefore, there were no prediction errors
due to overlapping regions. However, there were large errors within non-overlapping regions, which
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were mainly caused by mixed pixels. For instance, in the annular region ranging from the inner ring in
Figure 4a to the outer ring in Figure 4b, the value of mixed pixels in Figure 4e was greater than the true
values in Figure 4b, resulting in overestimated temperature and a maximum error along the border of
the circular region (Figure 4h). In contrast, temperature was underestimated within non-overlapping
regions between Figure 4b,c.
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temporal; (d–f) were coarse-resolution images aggregated from fine resolution images (a–c); Image
in (g) was estimated with ESTARFM, for comparison with image (b); Image in (h) was difference
between (b,g).

(B) Small Objects

Similar to the previous simulation in Figure 3, we assumed that a water body (circle) had a
constant surface temperature and reflectance with a radius of 990 m (11 fine-resolution pixels). The
background vegetation (outside the circle) reflectance was set as 0.1, 0.2, and 0.4, and the corresponding
temperature was set as 300 K, 310 K, and 320 K for three different periods (Figure 5). It is obvious that
the ESTARFM algorithm can predict the shape of the small circular object. Moreover, the predicted
temperature (Figure 5g) of the small circular object from the ESTARFM is close to that in Figure 5b.
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simulated fine-resolution images contained three objects: the background with temperature was set 
as 300 K (Figure 6a), 310 K (Figure 6b), and 320 K (Figure 6c) and the corresponding reflectance was 
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temperature of 295 K. The simulated road (over background) and bridge (over water) had a constant 
reflectance of 0.5 and temperature of 330 K. The MODIS-like data in Figure 6d–f were aggregated 
from the ASTER-like data. Roads (over background) are still visible in Figure 6d,e but not in Figure 
6f owing to the smaller contrast between roads and the background in Figure 6c. Figure 6g is a 
predicted version of Figure 6b using fine-resolution (Figure 6a,c) and coarse resolution (Figure 6d–f) 
images with an additional neighboring pixel spatial-information option turned on. The result shows 
that ESTARFM can exactly predict the shape of the linear object (Figure 6g). 

  

Figure 5. Simulation test on a small object. (a–c) were fine resolution images for three temporal;
(d–f) were coarse-resolution images aggregated from fine resolution images (a–c); Image in (g) was
estimated with ESTARFM, for comparison with image (b).

(C) Linear Objects

Linear objects such as roads and small rivers are normally visible in fine-resolution ASTER
imagery but are not obvious in coarse-resolution MODIS imagery. For the linear object example,
the simulated fine-resolution images contained three objects: the background with temperature was
set as 300 K (Figure 6a), 310 K (Figure 6b), and 320 K (Figure 6c) and the corresponding reflectance
was set as 0.1, 0.2, and 0.4. The simulated water body (circle) had a constant reflectance of 0.05 and
temperature of 295 K. The simulated road (over background) and bridge (over water) had a constant
reflectance of 0.5 and temperature of 330 K. The MODIS-like data in Figure 6d–f were aggregated
from the ASTER-like data. Roads (over background) are still visible in Figure 6d,e but not in Figure 6f
owing to the smaller contrast between roads and the background in Figure 6c. Figure 6g is a predicted
version of Figure 6b using fine-resolution (Figure 6a,c) and coarse resolution (Figure 6d–f) images with
an additional neighboring pixel spatial-information option turned on. The result shows that ESTARFM
can exactly predict the shape of the linear object (Figure 6g).
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Figure 6. Simulation test on a linear object. (a–c) were fine resolution images for three temporal; (d–f)
were coarse-resolution images aggregated from fine resolution images (a–c); Image in (g) was estimated
with ESTARFM, for comparison with image (b).

4.2. Tests with ASTER LST Products

According to the schemes in Figure 2, two groups of ASTER-like 90-m LSTs were estimated with
ESTARFM (Figures 7 and 8). In general, the 11 temporal LST products at the 90-m resolution estimated
by the two schemes were consistent.
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Figure 7. Estimated LST with ASTER resolution using ESTARFM according to Scheme 1. (a) 2 August 
2012; (b) 18 August 2012; (c) 20 August 2012; (d) 21 August 2012; (e) 22 August 2012; (f) 23 August 
2012; (g) 25 August 2012; (h) 27 August 2012; (i) 29 August 2012; (j) 2 September 2012; (k) 3 September 2012. 
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Figure 7. Estimated LST with ASTER resolution using ESTARFM according to Scheme 1. (a) 2 August
2012; (b) 18 August 2012; (c) 20 August 2012; (d) 21 August 2012; (e) 22 August 2012; (f) 23 August 2012;
(g) 25 August 2012; (h) 27 August 2012; (i) 29 August 2012; (j) 2 September 2012; (k) 3 September 2012.
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and water. The size of the search window was set as 22 ASTER pixels at 90-m or 2 MODIS pixels at 
990-m spatial resolution. The ASTER data from the first date (10 July 2012) and last date (12 
September 2012) was used as input data for ESTARFM. Thus, it was impossible to estimate the 
ASTER-like 90-m LSTs of these two dates. The ASTER LST products were employed to validate the 
LST estimates of the four dates (2 August, 18 August, 27 August and 3 September 2012). Figures 9 
and 10 display the scatter plots between the predicted ASTER-like and real ASTER LST products 
based on Schemes 1 and 2 in Figure 2, respectively. The data points fell close to the 1:1 diagonal line 
in each panel, indicating that the predictions all agreed well with the observations. To quantify the 
prediction accuracy, the R2, RMSE, and MAE for each land cover type and the total area were 
calculated. Table 2 shows the computation results for the two schemes (Figure 2). Overall, the values 
of R2, MAE, and RMSE between the ASTER-like and observed LSTs for the average of the three land 
cover types, were quite close with the two schemes. The R2 values of the two schemes were all greater 
than 0.92. The MAE ranged from 1.32 K to 1.73 K and the RMSE ranged from 1.92 K to 2.39 K for the 
two schemes. The possible reason was that, the short-term, transient land cover changes over 
croplands were little and can be ignored during the maize growing period from July to September, 
2012 although the selected images also reflected the phenological changes. 

Figure 8. Estimated LST with ASTER resolution using ESTARFM according to Scheme 2. (a) 2 August
2012; (b) 18 August 2012; (c) 20 August 2012; (d) 21 August 2012; (e) 22 August 2012; (f) 23 August 2012;
(g) 25 August 2012; (h) 27 August 2012; (i) 29 August 2012; (j) 2 September 2012; (k) 3 September 2012.

ASTER LST products with a 90-m spatial resolution were used as real values for the validation of
ASTER-like 90-m LSTs estimated by ESTARFM. The prediction accuracy for all pixels of ESTARFM
was evaluated with the correlation coefficient (R2), root-mean-square error (RMSE), and mean absolute
error (MAE). The number of land cover types was set as three: vegetated, non-vegetated, and water.
The size of the search window was set as 22 ASTER pixels at 90-m or 2 MODIS pixels at 990-m spatial
resolution. The ASTER data from the first date (10 July 2012) and last date (12 September 2012) was
used as input data for ESTARFM. Thus, it was impossible to estimate the ASTER-like 90-m LSTs of
these two dates. The ASTER LST products were employed to validate the LST estimates of the four
dates (2 August, 18 August, 27 August and 3 September 2012). Figures 9 and 10 display the scatter
plots between the predicted ASTER-like and real ASTER LST products based on Schemes 1 and 2
in Figure 2, respectively. The data points fell close to the 1:1 diagonal line in each panel, indicating
that the predictions all agreed well with the observations. To quantify the prediction accuracy, the
R2, RMSE, and MAE for each land cover type and the total area were calculated. Table 2 shows
the computation results for the two schemes (Figure 2). Overall, the values of R2, MAE, and RMSE
between the ASTER-like and observed LSTs for the average of the three land cover types, were quite
close with the two schemes. The R2 values of the two schemes were all greater than 0.92. The MAE
ranged from 1.32 K to 1.73 K and the RMSE ranged from 1.92 K to 2.39 K for the two schemes. The
possible reason was that, the short-term, transient land cover changes over croplands were little and
can be ignored during the maize growing period from July to September, 2012 although the selected
images also reflected the phenological changes.

The accuracies of LST estimates made with Schemes 1 and 2 were calculated for the three
individual land cover types. In general, the accuracies of LSTs estimated by the two schemes were
consistent for the same land cover type. There was some variation in the prediction accuracy for
different land cover types. The order of land cover types with respect to their RMSE or MAE values
was non-vegetated > vegetated > water. The following is a detailed analysis of the estimations made
using Scheme 2. The correlation coefficient between the predicted and observed LSTs was the highest
in non-vegetated areas, and the R2 values of all four dates were larger than 0.82. The order of land
cover types with respect to their respective R2 values was non-vegetated > vegetated > water. The
RMSEs for water were the smallest (all lower than 0.22 K), whereas the RMSEs for non-vegetated areas
were the highest (all higher than 1.5 K). The predicted LSTs had close RMSEs for the three land cover
types at different dates. The order of the land cover types with respect to the average RMSE of the
four dates was non-vegetated > vegetated > water. The MAE for water was the smallest on all four
dates, with a value close to 0.02 K. The MAE of non-vegetated areas was the largest, with a value of
1.0 K (2 August 2012). The order of land cover types based on the average MAE for the four dates was
the same as that based on RMSE (i.e., non-vegetated > vegetated > water). The correlation coefficient
between the predicted and observed LSTs of water in the four dates was low. However, the RMSE and
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MAE between the predicted and observed LSTs of water were five-times lower than that of the other
two land cover types.
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Figure 9. Scatter density plots between the observed product and estimated LSTs with Scheme 1 on
8 August 2012 (a); 18 August 2012 (b); 27 August 2012 (c); and 3 September 2012 (d).
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Figure 10. Scatter density plots between the observed product and estimated LSTs with Scheme 2 on
2 August 2012 (a); 18 August 2012 (b); 27 August 2012 (c); and 3 September 2012 (d).
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Table 2. The accuracy of estimated LST for overall and individual land cover types by two schemes (K).

Scheme Date (D/M/Y)
Correlation Coefficient (R2) Root Mean Square Error (RMSE) Mean Absolute Error (MAE)

Overall Vegetation Non-Vegetation Water Overall Vegetation Non-Vegetation Water Overall Vegetation Non-Vegetation Water

1

2 August 2012 0.96 0.68 0.88 0.55 2.35 1.31 1.89 0.22 1.72 0.68 1.03 0.02
18 August 2012 0.92 0.74 0.78 0.68 2.15 1.00 1.86 0.23 1.45 0.49 0.94 0.02
27 August 2012 0.96 0.62 0.91 0.63 2.28 1.26 1.86 0.20 1.57 0.60 0.95 0.02

3 September 2012 0.95 0.64 0.87 0.74 2.05 1.09 1.69 0.14 1.41 0.52 0.88 0.01

2

2 August 2012 0.96 0.68 0.88 0.55 2.39 1.36 1.90 0.22 1.73 0.71 1.00 0.02
18 August 2012 0.93 0.64 0.82 0.64 1.91 1.07 1.55 0.18 1.40 0.57 0.81 0.02
27 August 2012 0.97 0.74 0.92 0.60 1.97 1.21 1.50 0.20 1.36 0.61 0.73 0.02

3 September 2012 0.95 0.65 0.89 0.70 1.92 1.03 1.57 0.15 1.32 0.52 0.79 0.02
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The spatial homogeneity analysis of each land cover type with a 90-m spatial resolution in the
study area showed that the main ground object in the non-vegetated area was Gobi desert. This
homogeneity of the Gobi desert at different dates did not significantly vary. Therefore, the accuracy
of the 90-m LST predictions with ESTARFM was high. The vegetated area was mainly cultivated
with crops such as spring wheat and summer maize. During the period from July to September, the
vegetation coverage changed with the growth, maturity, and harvest of the crops. Vegetation coverage
had a strong negative correlation with LST [29,45], which had a major influence on LST homogeneity.
As a result, the influence of land surface homogeneity would cause an uncertainty for calculation of
the weight coefficient using ESTARFM. The waters in the Heihe River Basin represented the main
water type in the study area. The water amount of the rivers decreased from July to September. Most
of the tributaries dried up, causing significant variation in the area through which the rivers flows at
different dates. The water body coverage is only 0.69%, and most rivers and Gobi desert in the study
area formed mixed pixels. Consequently, the uncertainty of LST estimated by ESTARFM increased.

As indicated by accuracy comparisons between Schemes 1 and 2, when there was no obvious
change in land cover type and only a seasonal change in vegetation coverage, remote sensing data
from only two dates were needed for LST predictions over a little bit longer time period
(10 July 2012–12 September 2012). High-accurate LST predictions can be achieved at any intermediate
times. These results suggest that ESTARFM would have a high reliability when predicting long time
series of LSTs.

4.3. Tests with Ground Measurements

The LST measurements taken with the SI-111 radiometer at 12 AWSs and 27 WATERNET stations
in the HiWATER-MUSOEXE experiment were used to validate the LST predictions. Wan et al. (2008)
suggested that the uncertainty of the LST at ideal stations for a homogeneity validation should be less
than 1 K. The latitude and longitude of 39 (12 + 27) ground observation sites were used to extract the
LSTs of nine pixels within the range of 3 ˆ 3 pixels from 11 predicted scenes of ASTER LST (Figure 8).
The STD (standard deviation) of the LSTs of nine pixels was calculated. The average STD of the all dates
for each satellite image at each observation station was calculated. Observation sites with an average
STD lower than 1 K were chosen as sites for the final ground validation. A total of 23 observation
sites were screened based on the above conditions, including nine AWSs and 14 WATERNET stations
(Figure 11).Remote Sens. 2016, 8, 75 
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Figure 11. The average STD of LSTs at all AWS and WATERNET stations.

The LST measurements made on different dates at 23 observation sites were chosen to validate
the estimated LSTs, as shown in Figure 12. The error distribution of LSTs predicted by ESTARFM was
[´1.5, 2.4] K, as shown in Figure 12a. Figure 12b shows the overall validation accuracy (R2 = 0.92,
RMSE = 0.77 K). There was a certain amount of variation in the validation accuracy on different dates.
The LST estimates on different dates were validated by the LST measurements. That is that the LST at
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each observation station was used to perform a validation analysis of time series (Figure 12c). As shown
in Figure 12c, the R2 value was generally higher than 0.9 (except for the station WATERNET 42). This
indicated that the variation trend of LSTs predicted by ESTARFM was consistent with that of measured
LSTs at each observation station. The RMSE of LSTs estimated by ESTARFM at each observation station
was smaller than 1 K. This was consistent with the condition for the selection of LST observation sites
(i.e., STD < 1 K).
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Figure 12. Error image and correlation analysis plot for LST ground validation. (a) Image of errors
between estimated and measured LSTs for each date (horizontal axis) and stations (vertical axis);
(b) Scatter plot of measured and estimated LSTs on 11 dates (2 August–3 September] and overall
accuracy; (c) Correlation coefficient and RMSE between estimated and measured LSTs for each ground
observation including all dates.

5. Discussion

5.1. Uncertainty of LST Spatial Variance

In MODIS and ASTER, the LST is retrieved with the generalized split-window algorithm [1,14]
and the temperature emissivity separation (TES) algorithm combined with the WVS method [47,50,51],
respectively. Due to the large differences in the retrieval algorithms, there was a certain variation
retrieved in LST [12]. In this study, although the mean LST and STD of ASTER and MODIS LSTs
were coordinated, the LST variation range of ASTER was greater than MODIS. The variation range for
MODIS LST was within the ASTER LST range for each pair of acquired MODIS and ASTER data at
the same date (Table 1). To some extent, these deviations were caused by land surface heterogeneity.
Therefore, it was only necessary to choose an area with homogeneous land cover types in ESTARFM
to calculate the conversion coefficients (Hi) of MODIS and ASTER LSTs. The errors arising from the
differences in the retrieval algorithms could be reduced.

The non-vegetated area was mainly composed of extensive Gobi desert, which varied very little
over the entire research period. Therefore, ESTARFM had a higher prediction accuracy for this area.
Crops covered a majority of the vegetated area, and the coverage decreased with varying extents over
the entire research period (10 July–12 September 2012) (Figure 13). It can be seen from Figure 13 that
the vegetation coverage (i.e., FVC) of 23 observation sites declined by [0.1, 0.4]. As the extent of the
reduction in coverage differed at different sites, the heterogeneity of land surfaces increased, which
affected the prediction accuracy of ESTARFM. The main water types in the study area were linear
rivers and inconsistently distributed planar water bodies. The surface water in the study area was
mainly comprised of snowmelt from high mountains. Under the influence of snowmelt, the flow
area and position of rivers varied. The variation in the morphology of ground objects also affected
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the prediction accuracy of ESTARFM, as already shown by the validation using the simulation data
(Figure 4).
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Figure 13. Variation range of 23 selected stations’ FVC from 30 May to 19 September 2012.

On the basis of simulation testing with changing shapes, small objects, and linear objects, it can
be concluded that the ESTARFM approach cannot accurately predict objects whose shape changes
over time, and will thus blur the changing boundary. It also cannot accurately predict short-term
disturbances and changes that are not recorded in any of the bracketed fine-resolution images. The
best way to solve this problem is to identify spatial and temporal changes in the landscape with a high
level of detail and to select the last MODIS and ASTER image pair for predictions [19].

5.2. Uncertainty of the ESTARFM Input Parameters

There is a need to pay special attention to the two input parameters, the number of land cover
types and the size of the search window for the ESTARFM. In the tests with ASTER LST products, we
directly gave constant values of the two parameters (i.e., the number of land cover types was set as 3
and the size of the search window was set as 22). Although the total number of land cover types in the
study area was unchanged from July to August 2012, and the three land cover types—non-vegetation,
vegetation and water area—remained the same during the period. However, a swap of a part of the
pixels among the three land cover types would take place in different temporal images. Therefore,
when applying the ESTARFM algorithm, the number of land cover types would be changed with
the position of the window and corresponding temporal image. For example, with the image on
3 September 2012 (Figure 14a), we tested the different number of land cover types and compared
the results with ground temperature measurements in HiWATER-MUSOEXE. Figure 14a illustrated
different NEI values with varying number of land cover types at each station. When an NEI value was
close to zero, the corresponding number of land cover types is optimal.

For finding a similar pixel process in ESTARFM, the size of the moving window played an
important role in searching for similar pixels and directly affected their weight distribution. In fact,
based on the principle of ESTARFM algorithm, the basis of searching for similar pixels was spectral
and temperature similarity. In other words, the degree of land surface heterogeneity determines the
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size of window, and thus affects results from finding similar pixels. Therefore, the size of window
should be appropriately determined when the ESTARFM is applied to other areas. Figure 14b showed
that the size of window should be set at 13 and 19 for the images on 2 August and 3 September,
respectively. The best way to optimize the size of search window for each temporal image in the next
step is suggested to use the ESTARFM method coupled with a ground measurement-based assimilation
approach [31].
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Figure 14. Impact analyses of the number of land cover types and the size of search window for
ESTARFM, (a) NEI with different land cover type; (b) NEI with different size of window.

In this study, the annual temperature cycle (ATC) model [24] was not employed to consider the
seasonality variations of land surface temperature. First, an ATC model can approximate the long
term seasonal cycles of LST, but it cannot delineate the specific daily weather and surface conditions
that may also affect the temporal variation in daily LST, leading to uncertainty in the model. Second,
the phase shift parameter of the ATC for each predicted pixel was constant. In fact, the phase shift
parameter of the ATC model for different ground objects also differed. The phase shift parameter of
the ATC model differed even under different time scales of the ground objects [11]. Furthermore, as the
evaluation results of the ESTARFM by simulation mentioned Section 4.1.1, the ESTARFM can estimate
object LST with high accuracy without spatial shape change, just temperature variation within season.
Therefore, a suitable way to deal with LST prediction for objects with shape changes is using closely
temporal MODIS LST to predict ASTER-like LST.

6. Conclusions

In this study, we tested ESTARFM to generate an ASTER-like LST using combined MODIS
and ASTER datasets. We successfully examined the implementation and validation procedures of
ESTARFM based on six ASTER and 13 MODIS cloud-free observations made from July to September
2012 (Figure 2) over an arid oasis area of Northwest China.

We validated ESTARFM using simulation data. The results indicated that ESTARFM could
accurately predict ground objects with temperature variations. The prediction was also accurate for
small ground objects and linear ground objects. The ASTER-like 90-m LSTs estimated by the two
schemes at 11 succession dates were consistent. This indicated the reliability of ESTARFM for the
prediction of long LST time series. The 90-m ASTER LST products were used as real values. The
ASTER-like 90-m LSTs estimated by ESTARFM were validated. The overall R2 values of the predicted
LSTs on four dates (2 August, 18 August, 27 August, and 3 September 2012) were larger than 0.92. The
MAE of the two schemes ranged from 1.32 K to 1.73 K, and the RMSE ranged from 1.92 K to 2.39 K. The



Remote Sens. 2016, 8, 75 22 of 25

order of land type with respect to the corresponding R2, RMSE, and MAE values was non-vegetated >
vegetated > water.

A total of 23 observation sites were selected from the HiWATER-MUSOEXE experiment. The
LST measurements made by SI-111 radiometers at each observation station were used to validate the
ASTER-like LSTs predicted on the 11 dates. The results indicated that the overall accuracy was high
(R2 = 0.92, RMSE = 0.77 K). The error distribution of LST predicted by ESTARFM was [´1.5, 1.5] K.
Moreover, the predicted LSTs at the same observation station but different dates were also validated.
The R2 values were higher than 0.9 (except at the WATERNET42 station). The RMSE of LSTs predicted
at each observation station with ESTARFM was less than 1 K.

There are two major limitations as previously reported by Zhu et al. (2010) that should be
considered when using the ESTARFM approach to predict LST. First, ESTARFM cannot accurately
predict short-term, transient LST changes that are not recorded in any bracketed fine-resolution images,
which was proved by changing shapes within the simulation validation in Section 4.1.2. Therefore,
combining ESTARFM with STAARCH [19] or STRUM [40] algorithms may be a feasible way to enhance
the capability of the new algorithm. Secondly, ESTARFM may be computationally intensive and require
at least two pairs of fine- and coarse-resolution images acquired on the same day. More frequent
intra-annual images are helpful to bracket all vegetation phenology changes. However, in some cloudy
regions, it is difficult to acquire two high-quality input pairs simultaneously. Mismatching between
ASTER and MODIS pixels was neglected in this study. The variation in the MODIS pixel footprint,
especially for off-nadir viewing, may have caused some errors and needs to be considered.
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