Estimation of Human Body Height Using Consumer-Level UAVs
Abstract
:1. Introduction
2. Methods
2.1. Pinhole Model and Image Distorition Compensation: Background Theory
2.2. Target Height Estimation Using Gimballed Cameras Mounted in UAVs
2.3. Approach to Retrieve Height Difference between the Target and the Camera Center
2.4. Uncertainty Analysis
3. Results
3.1. Field Test 1: Multiple Pictures of the Same Target
3.2. Field Test 2: Single Picture of the Target, Multiple Ground Distances Considered
3.3. Field Test 3: Real Case Scenario with a Human Being as Target
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Gohari, A.; Ahmad, A.B.; Rahim, R.B.A.; Supa’at, A.S.M.; Abd Razak, S.; Gismalla, M.S.M. Involvement of Surveillance Drones in Smart Cities: A Systematic Review. IEEE Access 2022, 10, 56611–56628. [Google Scholar] [CrossRef]
- Kim, M.-G.; Moon, H.-M.; Chung, Y.; Pan, S.B. A Survey and Proposed Framework on the Soft Biometrics Technique for Human Identification in Intelligent Video Surveillance System. J. Biomed. and Biotechnol. 2012, 2012, 614146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonini, A.; Redweik, P.; Painho, M.; Castelli, M. Remote Estimation of Target Height from Unmanned Aerial Vehicle (UAV) Images. Remote Sens. 2020, 12, 3602. [Google Scholar] [CrossRef]
- Kraus, K.; Harley, I. Photogrammetry: Geometry from Images and Laser Scans. In de Gruyter Textbook, 2nd ed.; de Gruyter: Berlin, Germany, 2007; ISBN 978-3-11-019007-6. [Google Scholar]
- Kainz, O.; Dopiriak, M.; Michalko, M.; Jakab, F.; Fecil’Ak, P. Estimating the Height of a Person from a Video Sequence. In Proceedings of the 2021 19th International Conference on Emerging eLearning Technologies and Applications (ICETA), Košice, Slovakia, 11 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 150–156. [Google Scholar]
- Jeges, E.; Kispal, I.; Hornak, Z. Measuring Human Height Using Calibrated Cameras. In Proceedings of the 2008 Conference on Human System Interactions, Krakow, Poland, 25–27 May 2008; IEEE: Piscataway, NJ, USA; pp. 755–760. [Google Scholar]
- Sturm, P. Pinhole Camera Model. In Computer Vision; Ikeuchi, K., Ed.; Springer: Boston, MA, USA, 2014; pp. 610–613. ISBN 978-0-387-30771-8. [Google Scholar]
- Vass, G.; Perlaki, T. Applying and removing lens distortion in post production. In Proceedings of the 2nd Hungarian Conference on Computer Graphics and Geometry, Budapest, Hungary, 10 June 2003; pp. 9–16. [Google Scholar]
- Fahlstrom, P.G.; Gleason, T.J. Introduction to UAV Systems, 4th ed.; Aerospace Series; John Wiley & Sons: Chichester, UK, 2012; ISBN 978-1-119-97866-4. [Google Scholar]
- Padhy, R.P.; Verma, S.; Ahmad, S.; Choudhury, S.K.; Sa, P.K. Deep Neural Network for Autonomous UAV Navigation in Indoor Corridor Environments. Procedia Comput. Sci. 2018, 133, 643–650. [Google Scholar] [CrossRef]
- Minichino, J.; Howse, J. Learning OpenCV 3 Computer Vision with Python: Unleash the Power of Computer Vision with Python Using OpenCV, 2nd ed.; Packt Publishing: Birmingham, UK, 2015; ISBN 978-1-78528-384-0. [Google Scholar]
- MISB Standard 0902.7; Motion Imagery Sensor Minimum Metadata Set. MISB Standard: Springfiled, VA, USA, 2014.
- Lengyel, E. Mathematics for 3D Game Programming and Computer Graphics, 3rd ed.; Course Technology Press: Boston, MA, USA, 2011. [Google Scholar]
- Marschner, S.; Shirley, P. Fundamentals of Computer Graphics, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-2939-4. [Google Scholar]
- Fonte, J.; Meunier, E.; Gonçalves, J.A.; Dias, F.; Lima, A.; Gonçalves-Seco, L.; Figueiredo, E. An Integrated Remote-Sensing and GIS Approach for Mapping Past Tin Mining Landscapes in Northwest Iberia. Remote Sens. 2021, 13, 3434. [Google Scholar] [CrossRef]
- DJI. Phantom 4 PRO/PRO+ User Manual; DJI: Shenzhen, China, 2017. [Google Scholar]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Vester, J. Estimating the Height of an Unknown Object in a 2D Image. Master Thesis, Royal Institute of Technology, Stockholm, Sweden, 2012. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-39818-0. [Google Scholar]
- Guan, Y.-P. Unsupervised Human Height Estimation from a Single Image. J. Biomed. Sci. Eng. 2009, 02, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 886–893. [Google Scholar]
- Jia, H.-X.; Zhang, Y.-J. Fast Human Detection by Boosting Histograms of Oriented Gradients. In Proceedings of the Fourth International Conference on Image and Graphics (ICIG 2007), Chengdu, China, 22–24 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 683–688. [Google Scholar]
- Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.; Vosselman, G. Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data for UAV-Based Cadastral Mapping. Remote Sens. 2016, 8, 689. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Huang, W.; Wang, X.; Xu, H.; Zuo, H.; Su, R. Automated Accurate Registration Method between UAV Image and Google Satellite Map. Multimed. Tools Appl. 2020, 79, 16573–16591. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
Pitch (o) | 39.1 | 39.1 | 39.1 | 39.1 | 25 | 25 | 25 | 25 | 25 | 25 | 45 | 45 | 60 | 20 | 20 |
Length in Pixels | 2648 | 560 | 4598 | 55 | 1546 | 264 | 48 | 36 | 52 | 836 | 111 | 71 | 37 | 64 | 640 |
Dist. from Ima. Cent. (pixels) | 3398 | 1089 | 4555 | 4281 | 2670 | 7632 | 4579 | 3676 | 4435 | 4586 | 2177 | 5452 | 5029 | 5909 | 4125 |
Ground length (mm) | 4800 | 2400 | 11147 | 120 | 10,000 | 3240 | 375 | 170 | 600 | 10,000 | 2800 | 531 | 517 | 150 | 4810 |
Real V (UAV Height) (m) | 3.00 | 3.00 | 3.00 | 3.00 | 12.00 | 12 | 12.01 | 12.01 | 11.98 | 12.00 | 24 | 24.02 | 40.02 | 5.99 | 6 |
Calculation of V considering uncertainties | |||||||||||||||
Uncertainty due to Pixel (m) | 0.00 | 0.02 | 0.00 | 0.14 | 0.02 | 0.11 | 0.12 | 0.72 | 0.92 | 0.03 | 0.34 | 0.9 | 3.25 | 0.04 | 0.03 |
Uncertainty due to Pitch (m) | 0.06 | 0.15 | 0.09 | 0.07 | 0.2 | 0.24 | 0.24 | 0.21 | 0.39 | 0.35 | 0.72 | 0.20 | 0.18 | 0.07 | 0.23 |
Ground length unc. = 1 cm (m) | 0.00 | 0.01 | 0.00 | 0.25 | 0.01 | 0.05 | 0.32 | 0.7 | 0.20 | 0.01 | 0.09 | 0.45 | 0.38 | 0.40 | 0.01 |
Ground length unc. = 5 cm (m) | 0.03 | 0.06 | 0.01 | 1.25 | 0.06 | 0.27 | 1.6 | 3.53 | 1.00 | 0.06 | 0.43 | 2.26 | 3.88 | 2.00 | 0.06 |
Ground length unc. = 50 cm (m) | 0.31 | 0.62 | 0.13 | 12.51 | 0.60 | 2.48 | 16.01 | 35.32 | 9.98 | 0.60 | 4.29 | 32.41 | 38.71 | 19.97 | 0.62 |
Statistical error considering uncertainty of Pitch angle | |||||||||||||||
Statistical Error (1 cm) | 0.06 | 0.15 | 0.09 | 0.29 | 0.20 | 0.27 | 0.42 | 1.03 | 1.02 | 0.35 | 0.80 | 1.03 | 3.28 | 0.41 | 0.23 |
Statistical Error (5 cm) | 0.07 | 0.16 | 0.09 | 1.26 | 0.21 | 0.38 | 1.62 | 3.61 | 1.41 | 0.36 | 0.90 | 2.44 | 5.06 | 2.00 | 0.24 |
Statistical Error (50 cm) | 0.32 | 0.64 | 0.16 | 12.51 | 0.63 | 2.49 | 16.01 | 35.33 | 10.03 | 0.70 | 4.36 | 32.42 | 38.85 | 19.97 | 0.66 |
Statistical error without uncertainty of Pitch angle | |||||||||||||||
Statistical Error (1 cm) | 0.00 | 0.02 | 0.00 | 0.29 | 0.02 | 0.12 | 0.34 | 1.00 | 0.94 | 0.03 | 0.35 | 1.01 | 3.27 | 0.40 | 0.03 |
Statistical Error (5 cm) | 0.03 | 0.06 | 0.01 | 1.26 | 0.06 | 0.29 | 1.60 | 3.60 | 1.36 | 0.07 | 0.55 | 2.43 | 5.06 | 2.00 | 0.07 |
Statistical Error (50 cm) | 0.31 | 0.62 | 0.13 | 12.51 | 0.60 | 2.48 | 16.01 | 35.33 | 10.02 | 0.60 | 4.30 | 32.42 | 38.85 | 19.97 | 0.62 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
H | 5 | 6 | 11.3 | 12.3 | 29.7 | 29.2 | 31.7 | 33.9 | 39.7 | 45 | 49.1 | 24.3 | 17 | 8.1 | 10.9 | 7.7 | 17.6 | 25.4 | 9.1 | 8.3 |
V | 4.96 | 7.62 | 7.63 | 9.24 | 8.65 | 15.97 | 20.20 | 4.99 | 8.19 | 14.34 | 22.61 | 22.19 | 12.52 | 4.24 | 3.53 | 9.88 | 14.07 | 20.14 | 19.56 | 27.53 |
Pitch | 36.8 | 49.7 | 30.5 | 35.3 | 14.1 | 27.8 | 31.7 | 6.2 | 10.9 | 17 | 24 | 41.5 | 33 | 19.5 | 11.4 | 49.9 | 37.2 | 37.2 | 63.7 | 72.8 |
Tot. Num of Pix. | 799 | 489 | 430 | 366 | 207 | 178 | 151 | 191 | 160 | 134 | 112 | 153 | 264 | 697 | 569 | 362 | 239 | 164 | 139 | 70 |
Target Height Estimation (considering Pitch’s uncertainty) | ||||||||||||||||||||
Stat Error (unc. V = 5 cm) (m) | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 |
Stat Error (unc. V = 10 cm) (m) Target Height Estimation (without Pitch’s uncertainty) | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.05 | 0.05 | 0.02 | 0.01 | 0.00 | 0.01 | 0.00 |
Stat Error (unc. V = 5 cm) (m) | 0.03 | 0.02 | 0.02 | 0.02 | 0.05 | 0.02 | 0.02 | 0.10 | 0.07 | 0.05 | 0.03 | 0.01 | 0.02 | 0.04 | 0.06 | 0.01 | 0.02 | 0.01 | 0.03 | 0.04 |
Stat Error (unc. V = 10 cm) (m) | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.06 | 0.05 | 0.02 | 0.01 | 0.00 | 0.01 | 0.00 |
DJI39 | DJI42 | DJI43 | DJI49 | DJI48 | DJI122 | DJI126 | DJI80 | DJI84 | DJI89 | |
Pixels upwards (ri) | 306 | 272 | 158 | 284 | 358 | 179 | 288 | 220 | 108 | 104 |
Pixels downwards (rj) | 1660 | 1706 | 1548 | 510 | 760 | 226 | 30 | 107 | 157 | 71 |
Pitch angle (deg) | 11.7 | 11.7 | 19.3 | 36.8 | 20.3 | 14.7 | 33.7 | 2.7 | 25.8 | 43.3 |
Flight Roll Angle (deg) | 0.0 | 1.3 | 0.9 | 0.7 | 2.2 | 0.6 | 0.2 | 2.7 | 0 | 2.4 |
Ground Length “D” (mm) | 3060 | 3060 | 3060 | 3060 | 3060 | 3060 | 3060 | 3060 | 3060 | 3060 |
Length in Pixels “D” | 1545 | 1548 | 1499 | 1091 | 1182 | 564 | 518 | 452 | 421 | 356 |
RESULTS | ||||||||||
Calculated V | 2.19 | 2.2 | 2.7 | 5 | 3.1 | 4.9 | 10.2 | 1.5 | 10.8 | 19.6 |
Estimated height (m) | 1.79 | 1.79 | 1.80 | 1.82 | 1.79 | 1.80 | 1.83 | 1.65 | 1.83 | 1.83 |
Real Height (m) | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 |
Error (m) | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | 0.00 | 0.03 | 0.15 | 0.03 | 0.03 |
From point | 1 | 1 | 1 | 3 | 7 | 7 | 7 | 7 | 9 | 9 | 9 | 8 | 8 | 12 |
To point | 2 | 3 | 4 | 5 | 8 | 11 | 10 | 9 | 12 | 11 | 8 | 10 | 12 | 10 |
Dist. ground (mm) | 1220 | 4530 | 15,000 | 5850 | 5150 | 7260 | 5100 | 10350 | 5100 | 7250 | 5200 | 7260 | 7250 | 10,310 |
Length in pixels | 260 | 981 | 3221 | 1028 | 1046 | 1312 | 826 | 2093 | 831 | 1279 | 1047 | 1550 | 1570 | 2715 |
RESULTS | ||||||||||||||
Calculated V | 10.28 | 10.14 | 10.18 | 10.16 | 10.18 | 10.08 | 10.09 | 10.19 | 10.07 | 10.19 | 10.21 | 10.24 | 10.09 | 10.25 |
Est. height (m) | 1.82 | 1.80 | 1.80 | 1.80 | 1.80 | 1.79 | 1.79 | 1.80 | 1.78 | 1.80 | 1.81 | 1.82 | 1.79 | 1.82 |
Real Height (m) | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 |
Error (m) | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02 |
DJI243 | DJI250 | DJI255 | |
Pixels upwards (ri) | 219 | 220 | 81 |
Pixels downwards (rj) | 126 | 134 | 167 |
Pitch angle (deg) | 39.1 | 15.4 | 26.8 |
Flight Roll Angle (deg) | 2.7 | 0.1 | 4.3 |
Ground Length A-B (mm) | 3940 | 3940 | 3940 |
Length in Pixels | 687 | 636 | 810 |
RESULTS | |||
Calculated V | 9.71 | 5.25 | 11.22 |
Estimated height (m) | 1.72 | 1.73 | 1.72 |
Real Height (m) | 1.74 | 1,74 | 1.80 |
Error (m) | 0.02 | 0.01 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonini, A.; Painho, M.; Castelli, M. Estimation of Human Body Height Using Consumer-Level UAVs. Remote Sens. 2022, 14, 6176. https://doi.org/10.3390/rs14236176
Tonini A, Painho M, Castelli M. Estimation of Human Body Height Using Consumer-Level UAVs. Remote Sensing. 2022; 14(23):6176. https://doi.org/10.3390/rs14236176
Chicago/Turabian StyleTonini, Andrea, Marco Painho, and Mauro Castelli. 2022. "Estimation of Human Body Height Using Consumer-Level UAVs" Remote Sensing 14, no. 23: 6176. https://doi.org/10.3390/rs14236176
APA StyleTonini, A., Painho, M., & Castelli, M. (2022). Estimation of Human Body Height Using Consumer-Level UAVs. Remote Sensing, 14(23), 6176. https://doi.org/10.3390/rs14236176