Automatic Detection of Marine Litter: A General Framework to Leverage Synthetic Data
Abstract
:1. Introduction
1.1. Background
1.2. Issues
1.3. Leveraging Synthetic Data
1.4. Structure of the Paper
2. Materials and Methods
2.1. Methodology and Modelling
2.1.1. Methodology Outline
2.1.2. Optical Modeling
- is the Point Spread Function for band s. It defines the local response of a Dirac delta impulse in the resulting image [32]. It is thus the convolution kernel of the filter.
- is the ascending top of the atmosphere radiance, with being the atmospheric transmittance and being the atmosphere in-scattering term. All these terms are defined for each band.
- where is the reflectance of the object on the ground, and sums the flux of light received by the object from the sun taking into account all atmospheric effects.
- H1: All the terms are constant in time when compared to the timescale of image acquisition.
- H2: The observed scene is considered small enough so that and are constant with respect to p, i.e., the atmosphere is assumed to be the same in a neighborhood.
- H3: To simplify further, the effects of the atmosphere are neglected. The term is overlooked and is set to 1. This is in accordance with real satellite images corrected of the effect of the atmosphere, as they are made available by ESA, supposing that this correction is perfect.
- H4: Keeping in mind our disregard of the atmosphere, we have: . This implies that .
- H5: , the descending top of the atmosphere radiance, is considered constant for band s. is the solar constant and the distance between the earth and sun. With this, we ignore the geometric parameters of the sun and satellite.
- H6: The noise follows a normal law , with being the mean and the variance.
2.1.3. Sampling Modelling
- Calculate the GSD under which no detail can be perceived by the optical system: .
- Based on the actual GSDs of the satellite bands, find a number, d, that evenly divides into all of them and that is smaller than .
- When building the initial image, before any other processing, consider a pixel to be a square of size .
2.1.4. Marine Debris and Seawater Model
- The shape: in this proof of concept, the patch can either be a rectangle or a circle. These simple shapes are consistent with the targets used by [10].
- The size: if it is a rectangle, two dimensions are required for the length and the width whereas if it is a circle, only the radius is required.
- The type of material: can be specified among a list of predefined material types. Based on the material, the corresponding reflectance values are loaded from a database of spectral reflectance values.
- The fraction of material: a number between 0 and 1 which defines the proportion of material contained in the patch. If the value is 0, there is only seawater and if the value is 1, the patch is 100% filled by the material. This parameter is used as an attenuation factor to model patches where the material does not completely cover the water (as a cover percentage) or to model other types of attenuation such as biofouling. Furthermore, it can be used to weaken the amplitude of the spectral reflectance that are measured in conditions too far from reality. Within a patch, the same attenuation is applied to each pixel.
- The rotation: a number in the [−45°, 45°] range that defines the rotation of the patch. In real conditions, the material patch might not be aligned with the pixels. This is only applied when the shape is a rectangle.
- The bands: the interval of wavelengths of the bands considered for the satellite.
2.1.5. Dataset Generation
2.2. Case Study on Sentinel-2
2.2.1. Data Sources
2.2.2. Processing Steps
2.2.3. Assessment of the Simulation Performance
- Shape: rectangle;
- Size: ;
- Type of plastic: wet bottles frame;
- Rotation: 10°;
- Fraction of plastic: 1;
- Noise level: 0.01.
2.2.4. Aliasing Artifacts in Sentinel-2 Data
2.2.5. Description of the Generated Dataset
2.2.6. Training of a Classifier on Synthetic Data
3. Results on Real Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aoyama, T. Extraction of marine debris in the Sea of Japan using high-spatial-resolution satellite images. In Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges; Frouin, R.J., Shenoi, S.C., Rao, K.H., Eds.; SPIE International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 9878, pp. 213–219. [Google Scholar] [CrossRef]
- Novelli, A.; Tarantino, E. The contribution of Landsat 8 TIRS sensor data to the identification of plastic covered vineyards. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 16–19 March 2015; Hadjimitsis, D.G., Themistocleous, K., Michaelides, S., Papadavid, G., Eds.; SPIE International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9535, pp. 441–449. [Google Scholar] [CrossRef]
- Garaba, S.P.; Aitken, J.; Slat, B.; Dierssen, H.M.; Lebreton, L.; Zielinski, O.; Reisser, J. Sensing Ocean Plastics with an Airborne Hyperspectral Shortwave Infrared Imager. Environ. Sci. Technol. 2018, 52, 11699–11707. [Google Scholar] [CrossRef] [PubMed]
- Garaba, S.P.; Dierssen, H.M. An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics. Remote Sens. Environ. 2018, 205, 224–235. [Google Scholar] [CrossRef]
- Maximenko, N.; Corradi, P.; Law, K.L.; Van Sebille, E.; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martinez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Toward the Integrated Marine Debris Observing System. Front. Mar. Sci. 2019, 6, 447. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef] [Green Version]
- ESA. Sentinel-2 ESA’s Optical High Resolution Mission for GMES Operational Services; European Space Agency: Paris, France, 2012. [Google Scholar]
- Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters using Optical Satellite Data. Sci. Rep. 2020, 10, 5364. [Google Scholar] [CrossRef] [Green Version]
- Kikaki, K.; Kakogeorgiou, I.; Mikeli, P.; Raitsos, D.E.; Karantzalos, K. MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS ONE 2022, 17, e0262247. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Themistocleous, K.; Papoutsa, C.; Michaelides, S.; Hadjimitsis, D. Investigating Detection of Floating Plastic Litter from Space Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 2648. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Arias Ballesteros, M. Remote Sensing of Sea Surface Artificial Floating Plastic Targets with Sentinel-2 and Unmanned Aerial Systems (Plastic Litter Project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Williamson, B.J.; McIlvenny, J.; Corradi, P. Using a UAV thermal infrared camera for monitoring floating marine plastic litter. Remote Sens. 2022, 14, 3179. [Google Scholar] [CrossRef]
- Bao, Z.; Sha, J.; Li, X.; Hanchiso, T.; Shifaw, E. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method. Mar. Pollut. Bull. 2018, 137, 388–398. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Jakovljevic, G.; Govedarica, M.; Alvarez-Taboada, F. A deep learning model for automatic plastic mapping using unmanned aerial vehicle (UAV) data. Remote Sens. 2020, 12, 1515. [Google Scholar] [CrossRef]
- Geraeds, M.; van Emmerik, T.; de Vries, R.; bin Ab Razak, M.S. Riverine plastic litter monitoring using unmanned aerial vehicles (UAVs). Remote Sens. 2019, 11, 2045. [Google Scholar] [CrossRef] [Green Version]
- Andriolo, U.; Gonçalves, G.; Sobral, P.; Bessa, F. Spatial and size distribution of macro-litter on coastal dunes from drone images: A case study on the Atlantic coast. Mar. Pollut. Bull. 2021, 169, 112490. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, X.; Dedman, S.; Rosso, M.; Zhu, J.; Yang, J.; Xia, Y.; Tian, Y.; Zhang, G.; Wang, J. UAV remote sensing applications in marine monitoring: Knowledge visualization and review. Sci. Total. Environ. 2022, 838, 155939. [Google Scholar] [CrossRef]
- Basu, B.; Sannigrahi, S.; Sarkar Basu, A.; Pilla, F. Development of Novel Classification Algorithms for Detection of Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery. Remote Sens. 2021, 13, 1598. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Basu, B.; Basu, A.S.; Pilla, F. Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models. Mar. Pollut. Bull. 2022, 178, 113527. [Google Scholar] [CrossRef]
- Taggio, N.; Aiello, A.; Ceriola, G.; Kremezi, M.; Kristollari, V.; Kolokoussis, P.; Karathanassi, V.; Barbone, E. A Combination of Machine Learning Algorithms for Marine Plastic Litter Detection Exploiting Hyperspectral PRISMA Data. Remote Sens. 2022, 14, 3606. [Google Scholar] [CrossRef]
- Anthony, M.; Bartlett, P.L.; Bartlett, P.L. Neural Network Learning: Theoretical Foundations; Cambridge University Press: Cambridge, UK, 1999; Volume 9. [Google Scholar]
- Cao, Y.; Huang, X. A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 2022, 188, 157–176. [Google Scholar] [CrossRef]
- Knaeps, E.; Strackx, G.; Meire, D.; Sterckx, S.; Mijnendonckx, J.; Moshtaghi, M. Hyperspectral reflectance of marine plastics in the VIS to SWIR. Sci. Rep. 2020. [Google Scholar] [CrossRef]
- Yu, X.; Wu, X.; Luo, C.; Ren, P. Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework. GIScience Remote Sens. 2017, 54, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Tan, Z.; Su, N. A Data Augmentation Strategy Based on Simulated Samples for Ship Detection in RGB Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2019, 8, 276. [Google Scholar] [CrossRef] [Green Version]
- Tournadre, B.; Gschwind, B.; Thomas, C.; Saboret, L.; Blanc, P. Simulating Clear-Sky Reflectance of the Earth as Seen by Spaceborne Optical Imaging Systems with a Radiative Transfer Model; EGU General Assembly: Munich, Germany, 2019; Volume 21, p. 18647. [Google Scholar] [CrossRef]
- Hoeser, T.; Kuenzer, C. SyntEO: Synthetic dataset generation for earth observation and deep learning—Demonstrated for offshore wind farm detection. ISPRS J. Photogramm. Remote Sens. 2022, 189, 163–184. [Google Scholar] [CrossRef]
- Kong, F.; Huang, B.; Bradbury, K.; Malof, J. The Synthinel-1 dataset: A collection of high resolution synthetic overhead imagery for building segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1814–1823. [Google Scholar]
- Fourest, B.; Lier, V. (Eds.) Satellite Imagery from Acquisition Principles to Processing of Optical Images for Observing the Earth; Cépaduès Editions: Toulouse, France, 2012. [Google Scholar]
- Blanc, P.; Wald, L. A review of earth-viewing methods for in-flight assessment of modulation transfer function and noise of optical spaceborne sensors. HAL Open Sci. 2009, 1–38. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Moshtaghi, M.; Knaeps, E.; Sterckx, S.; Garaba, S.; Meire, D. Spectral reflectance of marine macroplastics in the VNIR and SWIR measured in a controlled environment. Sci. Rep. 2021, 11, 5436. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; Technical Report; USGS: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
- USGS Spectral Library. Spectral Library Version 7. 2017. Available online: https://crustal.usgs.gov/speclab/SNTL2.php?quick_filter= (accessed on 13 November 2021).
- ESA. Sentinel-2 Spectral Response Functions (S2-SRF). 2017. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses (accessed on 12 October 2021).
- Source Code of the Simulator. Available online: https://code.sophia.mines-paristech.fr/Luca/ademal (accessed on 5 August 2021).
- Topouzelis, K.; Papageorgiou, D. Plastic Litter Project 2021. Available online: http://plp.aegean.gr/category/experiment-log-2021/ (accessed on 11 October 2021).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kay, S.; Hedley, J.; Lavender, S. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: A Review of Methods for Visible and Near-Infrared Wavelengths. Remote Sens. 2009, 1, 697. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
Band | Central Wavelength (nm) | Spatial Resolution (GSD in m) | Nyquist Frequency fn(m) | Cut-Off Frequency fc(m) | Ratio |
---|---|---|---|---|---|
B01 | 443 | 60 | 0.008 | 0.43 | 53.75 |
B02 | 490 | 10 | 0.05 | 0.39 | 7.8 |
B03 | 560 | 10 | 0.05 | 0.34 | 6.8 |
B04 | 665 | 10 | 0.05 | 0.29 | 5.8 |
B05 | 705 | 20 | 0.025 | 0.27 | 10.8 |
B06 | 740 | 20 | 0.025 | 0.25 | 10 |
B07 | 783 | 20 | 0.025 | 0.24 | 9.6 |
B08 | 842 | 10 | 0.05 | 0.23 | 4.6 |
B08a | 865 | 20 | 0.025 | 0.22 | 8.8 |
B09 | 945 | 60 | 0.008 | 0.20 | 25 |
B10 | 1380 | 60 | 0.008 | 0.14 | 17.5 |
B11 | 1610 | 20 | 0.025 | 0.12 | 4.8 |
B12 | 2190 | 20 | 0.025 | 0.08 | 3.2 |
Shape | Rectangle | Circle | |
---|---|---|---|
GSD | |||
GSD = 10 m (B2, B3, B4, B8) | R = 15 | ||
GSD = 20 m (B5, B6, B7, B8a, B11, B12) | R = 25 | ||
GSD = 60 m (B1, B9, B10) | R = 70 |
ID | Location | Image Filename | Date of Acquisition | Description |
---|---|---|---|---|
1 | Mytilene, Greece | S2A_MSIL2A_20180607T085601_N0208_R007_T35SMD_20180607T114919 | 7 July 2018 | target of plastic bottles |
2 | Gulf of Gera, Greece | S2A_MSIL2A_20210611T085601_N0300_R007_T35SMD_20210611T121904 | 11 June 2021 | 28 m diameter target HDPE mesh |
3 | Gulf of Gera, Greece | S2A_MSIL2A_20210701T085601_N0301_R007_T35SMD_20210701T125029 | 1 July 2021 | two 28 m diameter targets HDPE mesh and wood |
4 | Gulf of Gera, Greece | S2A_MSIL2A_20210721T085601_N0301_R007_T35SMD_20210721T121035 | 21 July 2021 | two 28 m diameter targets HDPE mesh and wood biofouled |
Image ID | Number of Plastic Pixels | TP | FP |
---|---|---|---|
1 | 4 | 0 | 552 |
2 | 10 | 10 | 0 |
3 | 10 | 7 | 3 |
4 | 7 | 3 | 0 |
Image ID | Number of Wood Pixels | TP | FP |
---|---|---|---|
3 | 12 | 11 | 0 |
4 | 14 | 9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, M.; Istrate, L.; Simtinică, M.; Travadel, S.; Blanc, P. Automatic Detection of Marine Litter: A General Framework to Leverage Synthetic Data. Remote Sens. 2022, 14, 6102. https://doi.org/10.3390/rs14236102
Nagy M, Istrate L, Simtinică M, Travadel S, Blanc P. Automatic Detection of Marine Litter: A General Framework to Leverage Synthetic Data. Remote Sensing. 2022; 14(23):6102. https://doi.org/10.3390/rs14236102
Chicago/Turabian StyleNagy, Manon, Luca Istrate, Matei Simtinică, Sébastien Travadel, and Philippe Blanc. 2022. "Automatic Detection of Marine Litter: A General Framework to Leverage Synthetic Data" Remote Sensing 14, no. 23: 6102. https://doi.org/10.3390/rs14236102
APA StyleNagy, M., Istrate, L., Simtinică, M., Travadel, S., & Blanc, P. (2022). Automatic Detection of Marine Litter: A General Framework to Leverage Synthetic Data. Remote Sensing, 14(23), 6102. https://doi.org/10.3390/rs14236102