Analyzing Driving Factors of Drought in Growing Season in the Inner Mongolia Based on Geodetector and GWR Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. Meteorological Data
2.2.2. DEM Data
2.2.3. Other Data Sets
2.3. Methods
2.3.1. Calculation of the Standard Precipitation Evapotranspiration Index (SPEI)
2.3.2. Trend Analysis
2.3.3. Geodetector
2.3.4. The GWR Model
3. Results and Analysis
3.1. Spatiotemporal Variation Characteristics of SPEI
3.2. Identification of Main Control Factors
3.3. Spatial Difference of Main Control Factors
4. Discussion
4.1. Driving Analysis of Drought in the Inner Mongolia
4.2. Variation of Explanatory Power of Factors in Different Elevations
4.3. Advantages and Limitations of GWR
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Liu, D.; Ogaya, R.; Barbeta, A.; Yang, X.; Peñuelas, J. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species. Glob. Chang. Biol. 2015, 21, 4196–4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Zhao, C.; Yan, W.; Zhao, X. Influences of 1.5 °C and 2.0 °C global warming scenarios on water use efficiency dynamics in the sandy areas of northern China. Sci. Total. Environ. 2019, 664, 161–174. [Google Scholar] [CrossRef]
- Ren, S.; Yi, S.; Peichl, M.; Wang, X. Diverse Responses of Vegetation Phenology to Climate Change in Different Grasslands in Inner Mongolia during 2000–2016. Remote Sens. 2018, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, W. Applicability Analysis of Standardized Precipitation Evapotranspiration Index in Drought Monitoring in China. Plateau Meteorol. 2014, 33, 423–431. [Google Scholar] [CrossRef]
- Steinemann, A. Drought indicators and triggers: A stochastic approach to evaluation. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 1217–1233. [Google Scholar] [CrossRef]
- Musei, S.K.; Nyaga, J.M.; Dubow, A.Z. SPEI-based spatial and temporal evaluation of drought in Somalia. J. Arid Environ. 2020, 184, 104296. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 225, 177–192. [Google Scholar] [CrossRef]
- Caetano, J.M.; Tessarolo, G.; De Oliveira, G.; Souza, K.D.S.E.; Diniz-Filho, J.A.F.; Nabout, J.C. Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLoS ONE 2018, 13, e0191273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; Lopez-Moreno, I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Drumond, A.; Gimeno, L.; Nieto, R.; Trigo, R.M.; Vicente-Serrano, S.M. Drought episodes in the climatological sinks of the Mediterranean moisture source: The role of moisture transport. Glob. Planet. Chang. 2017, 151, 4–14. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, J.; Yao, F. Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Y. The Impact of Drought on Biomass of Forage Grass in Hulunbuir Grassland. Chin. J. Grassl. 2020, 42, 80–90. [Google Scholar] [CrossRef]
- Li, J.; He, Q.; Yao, J.; Hu, W. The characteristics of climate change and the impact factors analysis in the western part of Inner Mongolia. J. Arid. Land Resour. Environ. 2014, 28, 186–191. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, Y.; Zhang, C.; Su, F.; Li, Y.; Gao, Y.; Li, W.; Chen, D. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas. Trans. Atmos. Sci. 2020, 43, 1002–1009. [Google Scholar] [CrossRef]
- Bailing, M.; Zhiyong, L.; Cunzhu, L.; Lixin, W.; Chengzhen, J.; Fuxiang, B.; Chao, J. Temporal and spatial heterogeneity of drought impact on vegetation growth on the Inner Mongolian Plateau. Rangel. J. 2018, 40, 113. [Google Scholar] [CrossRef]
- An, Q.; He, H.; Nie, Q.; Cui, Y.; Gao, J.; Wei, C.; Xie, X.; You, J. Spatial and Temporal Variations of Drought in Inner Mongolia, China. Water 2020, 12, 1715. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Tong, S.; Lai, Q.; Zhang, J.; Bao, Y.; Lusi, A.; Ma, Q.; Li, X.; Zhang, F. Spatiotemporal drought variability on the Mongolian Plateau from 1980–2014 based on the SPEI-PM, intensity analysis and Hurst exponent. Sci. Total. Environ. 2018, 615, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhang, T.; Yi, G.; Wei, P.; Yang, D. Remote sensing monitoring and analysis of influencing factors of drought in Inner Mongolia growing season since 2000. J. Nat. Resour. 2021, 36, 459–475. [Google Scholar] [CrossRef]
- Yang, Z.; Ning, L.; Jidong, W. Analysis of Drought and its Possible Causes in Inner Mongolia Region for Nearly 30 Years. J. Catastrophol. 2013, 28, 67–73. [Google Scholar]
- Psilovikos, A.; Tzimopoulos, C. Comparison of quadratic and non-linear programming (QP and NLP) optimization models in groundwater management. J. Hydroinformatics 2004, 6, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Wen, Q.; Sun, P.; Zhang, Q.; Yao, R. A multi-scalar drought index for global warming: The non-stationary stand-ardized precipitation evaporation index (NSPEI) and spatio-temporal patterns of future drought in China. Acta Geogr. Sin. 2020, 75, 1465–1482. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, C.; Wu, B.; Su, H.; Jiao, W.; Zhang, L. Research on remote sensing drought monitoring by considering spatial non-stationary characteristics. Natl. Remote Sens. Bull. 2019, 23, 487–500. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, D.; Zhang, Y.; Li, Y.; Liu, Y.; Cen, Y.; Zhang, W.; Geng, W.; Rong, T.; Liu, Y.; et al. Re-examining the drive forces of China’s industrial wastewater pollution based on GWR model at provincial level. J. Clean. Prod. 2020, 262, 121309. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; He, M.; Christakos, G. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. CATENA 2019, 185, 104297. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 73, 219–231. [Google Scholar] [CrossRef]
- He, D.; Yi, G.; Zhang, T.; Miao, J.; Li, J.; Bie, X. Temporal and Spatial Characteristics of EVI and Its Response to Climatic Factors in Recent 16 years Based on Grey Relational Analysis in Inner Mongolia Autonomous Region, China. Remote Sens. 2018, 10, 961. [Google Scholar] [CrossRef]
- Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. LandScan: A Global Population Database for Estimating Populations at Risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia—Under-standing the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Ming, B.; Guo, Y.; Tao, H.; Liu, G.; Li, S.; Wang, P. SPEIPM-based research on drought impact on maize yield in North China Plain. J. Integr. Agric. 2015, 14, 660–669. [Google Scholar] [CrossRef]
- Luong, N.; Hiep, N.; Bui, T. Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam. Sustainability 2021, 13, 4926. [Google Scholar] [CrossRef]
- Yang, S.; Quan, Q.; Liang, W.; Liu, T. Characteristics of Agricultural Droughts and Spatial Stratified Heterogeneity and Dependence of Dominant Factors in Inner Mongolia Autonomous Region, China. Atmosphere 2021, 12, 1249. [Google Scholar] [CrossRef]
- Reiche, M.; Funk, R.; Zhang, Z.; Hoffmann, C.; Reiche, J.; Wehrhan, M.; Li, Y.; Sommer, M. Application of satellite remote sensing for mapping wind erosion risk and dust emission-deposition in Inner Mongolia grassland, China. Grassl. Sci. 2012, 58, 8–19. [Google Scholar] [CrossRef]
- Jia, Y.; Cui, X.; Liu, Y.; Liu, Y.; Xu, C.; Li, T.; Ran, Q.; Wang, Y. Drought vulnerability assessment in Inner Mongolia. Acta Ecol. Sin. 2020, 40, 9070–9082. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Alsafadi, K.; Al-Ansari, N.; Mokhtar, A.; Mohammed, S.; Elbeltagi, A.; Sammen, S.S.; Bi, S. An evapotranspiration deficit-based drought index to detect variability of terrestrial carbon productivity in the Middle East. Environ. Res. Lett. 2022, 17, 014051. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Zhou, L.; Chen, A. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 2006, 33, L23402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhao, X.; Zuo, X.; Degen, A.A.; Li, Y.; Liu, X.; Luo, Y.; Qu, H.; Lian, J.; Wang, R. Drought-induced shift from a carbon sink to a carbon source in the grasslands of Inner Mongolia, China. CATENA 2020, 195, 104845. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Xie, F.; Feng, Y.C.; Tian, F. Experimental studies on the effects of the “Conversion of Cropland to Grassland Program” on the water budget and evapotranspiration in a semi-arid steppe in Inner Mongolia, China. J. Hydrol. 2011, 411, 120–129. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, J.; Wang, R.; Bao, Y.; Guo, E. Analysis for Spatio-Temporal Variation Characteristics of Droughts in Different Climatic Regions of the Mongolian Plateau Based on SPEI. Sustainability 2019, 11, 5767. [Google Scholar] [CrossRef] [Green Version]
- Brueck, H.; Erdle, K.; Gao, Y.; Giese, M.; Zhao, Y.; Peth, S.; Lin, S. Effects of N and water supply on water use-efficiency of a semiarid grassland in Inner Mongolia. Plant Soil. 2010, 328, 495–505. [Google Scholar] [CrossRef]
- Pan, T.; Wu, S.; He, D.; Dai, E.; Liu, Y. Ecological Effects of Longitudinal Range-Gorge Land Surface Pattern and Its Regional Differentiation. Acta Geogr. Sin. 2012, 67, 13–26. [Google Scholar] [CrossRef]
- An, C.-B.; Chen, F.-H.; Barton, L. Holocene environmental changes in Mongolia: A review. Glob. Planet. Chang. 2008, 63, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; Van Dijk, A.I.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 2016, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatial Differences of Variations of Vegetation Coverage in Inner Mongolia during 2001–2010. Acta Geogr. Sin. 2012, 67, 1255–1268. [Google Scholar]
- Shi, H.; Yang, S.; Li, R.; Li, X.; Li, W.; Yan, J.; Miao, Q.; Li, Z. Water-Saving Irrigation and Utilization Efficiency of Water and Fertilizer in Hetao Irrigation District of Inner Mongolia: Prospect for Future Research. J. Irrig. Drain. 2020, 39, 1–12. [Google Scholar] [CrossRef]
- Dregne, H.E. Desertification of Arid Lands. Econ. Geogr. 1977, 53, 322–331. [Google Scholar] [CrossRef]
- Julich, S.; Moorcroft, M.-A.; Feger, K.; van Tol, J. The impact of overgrazing on water fluxes in a semi-arid watershed—The suitability of watershed scale modeling in a data scarce area. J. Hydrol. Reg. Stud. 2022, 43, 101178. [Google Scholar] [CrossRef]
- Shrestha, A.; Luo, W. Analysis of Groundwater Nitrate Contamination in the Central Valley: Comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression. ISPRS Int. J. Geo-Inf. 2017, 6, 297. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
SPEI Value | Drought |
---|---|
>1 | Severe wet |
(0.5, 1] | Moderate wet |
(0, 0.5] | Light wet |
(−0.5, 0] | Light drought |
(−1, −0.5] | Moderate drought |
<−1 | Severe drought |
Judgement Condition | Interaction |
---|---|
Non-linearly weaken | |
Non-linearly weaken by one factor | |
Mutually enhanced | |
Independent effect | |
Non-linearly enhanced |
Year | Drought Area (Ten Thousand Km2) | Percentage of Study Area | Percentage of Light Drought | Percentage of Moderate Drought | Percentage of Severe Drought | SPEI |
---|---|---|---|---|---|---|
2000 | 101.25 | 99.6% | 23.28% | 73.10% | 3.62% | −0.62 |
2001 | 96.49 | 94.98% | 20.44% | 68.36% | 11.21% | −0.68 |
2002 | 55.60 | 54.79% | 73.00% | 20.60% | 6.39% | −0.01 |
2003 | 7.74 | 7.62% | 100% | 0 | 0 | 0.66 |
2004 | 51.40 | 50.59% | 60.17% | 39.82% | 0.02% | 0.03 |
2005 | 69.74 | 68.65% | 33.45% | 30.38% | 36.17% | −0.43 |
2006 | 65.55 | 64.52% | 98.63% | 1.37% | 0 | −0.06 |
2007 | 84.12 | 82.80% | 25.98% | 40.67% | 33.35% | −0.59 |
2008 | 16.74 | 16.48% | 96.58% | 3.42% | 0 | 0.29 |
2009 | 73.59 | 72.43% | 35.96% | 53.26% | 10.78% | −0.39 |
2010 | 66.59 | 65.54% | 99.68% | 0.32% | 0 | −0.03 |
2011 | 62.57 | 61.59% | 69.74% | 30.26% | 0 | −0.16 |
2012 | 6.11 | 6.01% | 90.94% | 9.06% | 0 | 0.77 |
2013 | 29.32 | 28.86% | 52.46% | 26.51% | 21.03% | 0.51 |
2014 | 11.19 | 11.02% | 100% | 0 | 0 | 0.36 |
2015 | 17.87 | 17.59% | 99.99% | 0.01% | 0 | 0.37 |
2016 | 34.37 | 33.80% | 100% | 0 | 0 | 0.19 |
2017 | 88.27 | 86.88% | 28.08% | 49.06% | 22.86% | −0.61 |
2018 | 73.46 | 72.31% | 68.36% | 31.64% | 0 | −0.21 |
Annual average | 53.26 | 52.39% | 74.34% | 18.89% | 6.7% | 0.03 |
Factor | Tag | p Value | q-Value | Rank |
---|---|---|---|---|
MAT | X1 | 0.05 | 0.43 | 3 |
MP | X2 | 0.05 | 0.73 | 1 |
MWS | X3 | 0.05 | 0.13 | |
MSD | X4 | 0.05 | 0.22 | |
DTR | X5 | 0.05 | 0.42 | 4 |
DTC | X6 | 0.05 | 0.03 | |
Elevation | X7 | 0.05 | 0.53 | 2 |
Aspect | X8 | >0.1 | 0.01 | |
Slope | X9 | 0.05 | 0.11 | |
AOPD | X10 | >0.1 | 0.06 | |
POS | X11 | 0.05 | 0.23 | |
LUCC | X12 | 0.05 | 0.26 |
q = A B | Results Comparison | Interaction Type | Rank |
---|---|---|---|
X1X2 = 0.852 | X1 + X2 > Max(X1, X2) | Double-factor Enhance | 2 |
X1X7 = 0.753 | X1 + X7 > Max(X1, X7) | Double-factor Enhance | 8 |
X2X3 = 0.846 | X2 + X3 > Max(X2, X3) | Double-factor Enhance | 3 |
X2X4 = 0.836 | X2 + X4 > Max(X2, X4) | Double-factor Enhance | 4 |
X2X5 = 0.742 | X2 + X5 > Max(X2, X5) | Double-factor Enhance | 11 |
X2X6 = 0.770 | X2 + X6 < X2X6 | Nonlinear Enhance | 5 |
X2X7 = 0.870 | X2 + X7 > Max(X2, X7) | Double-factor Enhance | 1 |
X2X9 = 0.745 | X2 + X9 > Max(X2, X9) | Double-factor Enhance | 10 |
X2X10 = 0.756 | X2 + X10 > Max(X2, X10) | Double-factor Enhance | 7 |
X2X11 = 0.751 | X2 + X11 > Max(X2, X11) | Double-factor Enhance | 9 |
X2X12 = 0.762 | X2 + X12 > Max(X2, X12) | Double-factor Enhance | 6 |
X3X7 = 0.686 | X3 + X7 < X3X7 | Nonlinear Enhance | 15 |
X4X7 = 0.737 | X4 + X7 > Max(X4, X7) | Double-factor Enhance | 12 |
X5X7 = 0.695 | X5 + X7 > Max(X5, X7) | Double-factor Enhance | 14 |
X7X10 = 0.703 | X7 + X10 > Max(X7, X10) | Double-factor Enhance | 13 |
2000/2018 Unit: Km2 | Croplands | Forests | Grasslands | Water Areas | Construction Lands | Unused Lands |
---|---|---|---|---|---|---|
Croplands | 14,143.289 (3.5) | 948.394 (0.2) | 7180.634 (1.8) | 464.368 (0.1) | 1530.627 (0.4) | 1758.953 (0.4) |
Forests | 1357.162 (0.3) | 61,982.534 (15.5) | 17,312.724 (4.3) | 0 | 0 | 811.536 (0.2) |
Grasslands | 5566.708 (1.4) | 5677.182 (1.4) | 193,072.543 (48.3) | 1278.544 (0.3) | 735.711 (0.2) | 13,980.681 (3.5) |
Water areas | 477.401 (0.1) | 0 | 952.564 (0.2) | 2410.992 (0.6) | 0 | 986.008 (0.2) |
Construction lands | 1372.649 (0.3) | 159.97 (0.1) | 1920.498 (0.5) | 0 | 1092.653 (0.3) | 492.902 (0.1) |
Unused lands | 626.973 (0.2) | 3200.702 (0.8) | 14,295.369 (3.6) | 871.862 (0.2) | 117.173 (0.1) | 43,698.632 (10.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, B.; Qin, Y.; Zhang, T.; Zhou, X.; Yi, G.; Zhang, M.; Li, M. Analyzing Driving Factors of Drought in Growing Season in the Inner Mongolia Based on Geodetector and GWR Models. Remote Sens. 2022, 14, 6007. https://doi.org/10.3390/rs14236007
Ji B, Qin Y, Zhang T, Zhou X, Yi G, Zhang M, Li M. Analyzing Driving Factors of Drought in Growing Season in the Inner Mongolia Based on Geodetector and GWR Models. Remote Sensing. 2022; 14(23):6007. https://doi.org/10.3390/rs14236007
Chicago/Turabian StyleJi, Bowen, Yanbin Qin, Tingbin Zhang, Xiaobing Zhou, Guihua Yi, Mengting Zhang, and Menglin Li. 2022. "Analyzing Driving Factors of Drought in Growing Season in the Inner Mongolia Based on Geodetector and GWR Models" Remote Sensing 14, no. 23: 6007. https://doi.org/10.3390/rs14236007
APA StyleJi, B., Qin, Y., Zhang, T., Zhou, X., Yi, G., Zhang, M., & Li, M. (2022). Analyzing Driving Factors of Drought in Growing Season in the Inner Mongolia Based on Geodetector and GWR Models. Remote Sensing, 14(23), 6007. https://doi.org/10.3390/rs14236007