Detection of Surface Water and Floods with Multispectral Satellites
Abstract
:1. Introduction
- (a)
- Providing an overview of the current optical satellites used in flooded area and wetland inundation mapping, with a focus on some of the medium–high-spatial resolution sensors that offer free-of-charge data.
- (b)
- Highlighting the potential and limitations of the use of spectral indices for flood mapping and water segmentation, with particular attention to the land cover setting.
2. Multispectral Satellite Remote Sensing for Flooded Area and Wetland Inundation Mapping
2.1. Trends in Using Multispectral Imagery for Flood Mapping
2.2. Flood Mapping Approaches Using Optical Remote Sensing
3. Multispectral Indices for Water Segmentation
3.1. Performance Assessment
3.2. Investigation of Spectral Index Performances
3.3. Classification According to Land Cover
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schumann, G.J.-P.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting Flood Disaster Response with Earth Observation Data and Products: A Critical Assessment. Remote Sens. 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- Buma, W.G.; Lee, S.-I.; Seo, J.Y. Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE. Sensors 2018, 18, 2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Li, Y. Extraction of Water-Body in Remote Sensing Image Based on Logic Operation. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–4. [Google Scholar]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface Water Monitoring in Small Water Bodies: Potential and Limits of Multi-Sensor Landsat Time Series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [Google Scholar] [CrossRef] [Green Version]
- Asmadin; Siregar, V.P.; Sofian, I.; Jaya, I.; Wijanarto, A.B. Feature Extraction of Coastal Surface Inundation via Water Index Algorithms Using Multispectral Satellite on North Jakarta. IOP Conf. Ser. Earth Environ. Sci. 2018, 176, 12032. [Google Scholar] [CrossRef]
- Ireland, G.; Volpi, M.; Petropoulos, G.P. Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood. Remote Sens. 2015, 7, 3372–3399. [Google Scholar] [CrossRef] [Green Version]
- Memon, A.A.; Muhammad, S.; Rahman, S.; Haq, M. Flood Monitoring and Damage Assessment Using Water Indices: A Case Study of Pakistan Flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Ben Dor, E. Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, Earth Observation Series, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780323852838. [Google Scholar]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Dor, E.B.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.; Reager, J.T.; Small, E. CYGNSS Data Map Flood Inundation during the 2017 Atlantic Hurricane Season. Sci. Rep. 2018, 8, 9336. [Google Scholar] [CrossRef]
- Wan, W.; Liu, B.; Zeng, Z.; Chen, X.; Wu, G.; Xu, L.; Chen, X.; Hong, Y. Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017. Remote Sens. 2019, 11, 854. [Google Scholar] [CrossRef]
- Gerlein-Safdi, C.; Ruf, C.S. A CYGNSS-Based Algorithm for the Detection of Inland Waterbodies. Geophys. Res. Lett. 2019, 46, 12065–12072. [Google Scholar] [CrossRef]
- Chew, C.; Small, E. Estimating Inundation Extent Using CYGNSS Data: A Conceptual Modeling Study. Remote Sens. Environ. 2020, 246, 111869. [Google Scholar] [CrossRef]
- Rajabi, M.; Nahavandchi, H.; Hoseini, M. Evaluation of CYGNSS Observations for Flood Detection and Mapping during Sistan and Baluchestan Torrential Rain in 2020. Water 2020, 12, 2047. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Z.; Li, Z.; Zhang, P.; Liu, Q.; Nan, Y.; Zhang, J.; Hu, S.; Feng, Y.; Zhao, H. Using CYGNSS Data to Map Flood Inundation during the 2021 Extreme Precipitation in Henan Province, China. Remote Sens. 2021, 13, 5181. [Google Scholar] [CrossRef]
- Ruf, C.S.; Chew, C.; Lang, T.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation. Sci. Rep. 2018, 8, 8782. [Google Scholar] [CrossRef] [Green Version]
- Boothroyd, R.J.; Nones, M.; Guerrero, M. Deriving Planform Morphology and Vegetation Coverage from Remote Sensing to Support River Management Applications. Front. Environ. Sci. 2021, 9, 657354. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Gurnell, A.M.; Bertoldi, W.; Drake, N.A. An Assessment of the Degree to Which Landsat TM Data Can Support the Assessment of Fluvial Dynamics, as Revealed by Changes in Vegetation Extent and Channel Position, along a Large River. Geomorphology 2013, 202, 74–85. [Google Scholar] [CrossRef]
- Cavallo, C.; Papa, M.N.; Gargiulo, M.; Palau-Salvador, G.; Vezza, P.; Ruello, G. Continuous Monitoring of the Flooding Dynamics in the Albufera Wetland (Spain) by Landsat-8 and Sentinel-2 Datasets. Remote Sens. 2021, 13, 3525. [Google Scholar] [CrossRef]
- Soomro, S.; Hu, C.; Boota, M.W.; Soomro, M.H.A.A.; Jian, S.; Zafar, Z.; Li, X. Mapping Flood Extend and Its Impact on Land Use/Land Cover and Settlements Variations: A Case Study of Layyah District, Punjab, Pakistan. Acta Geophys. 2021, 69, 2291–2304. [Google Scholar] [CrossRef]
- Radice, A.; Rosatti, G.; Ballio, F.; Franzetti, S.; Mauri, M.; Spagnolatti, M.; Garegnani, G. Management of Flood Hazard via Hydro-Morphological River Modelling. The Case of the Mallero in Italian Alps. J. Flood Risk Manag. 2013, 6, 197–209. [Google Scholar] [CrossRef]
- Bertoldi, W.; Drake, N.A.; Gurnell, A.M. Interactions between River Flows and Colonizing Vegetation on a Braided River: Exploring Spatial and Temporal Dynamics in Riparian Vegetation Cover Using Satellite Data. Earth Surf. Process. Landf. 2011, 36, 1474–1486. [Google Scholar] [CrossRef]
- Gurnell, A.M. Trees, Wood and River Morphodynamics: Results from 15 Years Research on the Tagliamento River, Italy. In River Science: Research and Management for the 21st Century; Gilvear, D.J., Greenwood, M.T., Thoms, M.C., Wood, P.J., Eds.; John Wiley & Sons: Chichester, UK, 2016; pp. 132–155. [Google Scholar] [CrossRef]
- Masocha, M.; Dube, T.; Makore, M.; Shekede, M.D.; Funani, J. Surface Water Bodies Mapping in Zimbabwe Using Landsat 8 OLI Multispectral Imagery: A Comparison of Multiple Water Indices. Phys. Chem. Earth Parts A/B/C 2018, 106, 63–67. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Khalid, H.W.; Khalil, R.M.Z.; Qureshi, M.A. Evaluating Spectral Indices for Water Bodies Extraction in Western Tibetan Plateau. Egypt. J. Remote Sens. Space Sci. 2021, 24, 619–634. [Google Scholar] [CrossRef]
- Parihar, S.K.; Borana, S.L.; Yadav, S.K. Comparative Evaluation of Spectral Indices and Sensors for Mapping of Urban Surface Water Bodies in Jodhpur Area: Smart & Sustainable Growth. In Proceedings of the 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 484–489. [Google Scholar] [CrossRef]
- Zhou, S.L.; Zhang, W.C. Flood Monitoring and Damage Assessment in Thailand Using Multi-Temporal HJ-1A/1B and MODIS Images. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 57, p. 12016. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef] [PubMed]
- Chiloane, C.; Dube, T.; Shoko, C. Monitoring and Assessment of the Seasonal and Inter-Annual Pan Inundation Dynamics in the Kgalagadi Transfrontier Park, Southern Africa. Phys. Chem. Earth Parts A/B/C 2020, 118, 102905. [Google Scholar] [CrossRef]
- Munasinghe, D.; Cohen, S.; Huang, Y.; Tsang, Y.; Zhang, J.; Fang, Z. Intercomparison of Satellite Remote Sensing-Based Flood Inundation Mapping Techniques. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 834–846. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In Proceedings of the Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada, 10–14 December 1973; Volume SP-351, pp. 309–317. [Google Scholar]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey (USGS) EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 4 February 2022).
- Sentinel Scientific Data Hub. Available online: https://scihub.copernicus.eu/ (accessed on 4 February 2022).
- Earthdata Search—NASA. Available online: https://search.earthdata.nasa.gov/search (accessed on 4 February 2022).
- LAADS DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 4 February 2022).
- Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. [Google Scholar] [CrossRef]
- Chignell, S.M.; Anderson, R.S.; Evangelista, P.H.; Laituri, M.J.; Merritt, D.M. Multi-Temporal Independent Component Analysis and Landsat 8 for Delineating Maximum Extent of the 2013 Colorado Front Range Flood. Remote Sens. 2015, 7, 9822–9843. [Google Scholar] [CrossRef] [Green Version]
- Ghansah, B.; Nyamekye, C.; Owusu, S.; Agyapong, E. Mapping Flood Prone and Hazards Areas in Rural Landscape Using Landsat Images and Random Forest Classification: Case Study of Nasia Watershed in Ghana. Cogent Eng. 2021, 8, 1923384. [Google Scholar] [CrossRef]
- Hudson, P.F.; Colditz, R.R. Flood Delineation in a Large and Complex Alluvial Valley, Lower Panuco Basin, Mexico. J. Hydrol. 2003, 280, 229–245. [Google Scholar] [CrossRef]
- Jung, H.C.; Alsdorf, D.; Moritz, M.; Lee, H.; Vassolo, S. Analysis of the Relationship between Flooding Area and Water Height in the Logone Floodplain. Phys. Chem. Earth Parts A/B/C 2011, 36, 232–240. [Google Scholar] [CrossRef]
- Nandi, I.; Srivastava, P.K.; Shah, K. Floodplain Mapping through Support Vector Machine and Optical/Infrared Images from Landsat 8 OLI/TIRS Sensors: Case Study from Varanasi. Water Resour. Manag. 2017, 31, 1157–1171. [Google Scholar] [CrossRef]
- Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Hunter, S.J. Landsat Mapping of Annual Inundation (1979–2006) of the Macquarie Marshes in Semi-Arid Australia. Int. J. Remote Sens. 2011, 32, 4545–4569. [Google Scholar] [CrossRef]
- Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Cox, S.J.; Sims, N.C.; Hunter, S.J. Mapping Inundation in the Heterogeneous Floodplain Wetlands of the Macquarie Marshes, Using Landsat Thematic Mapper. J. Hydrol. 2015, 524, 194–213. [Google Scholar] [CrossRef]
- Thito, K.; Wolski, P.; Murray-Hudson, M. Mapping Inundation Extent, Frequency and Duration in the Okavango Delta from 2001 to 2012. Afr. J. Aquat. Sci. 2016, 41, 267–277. [Google Scholar] [CrossRef]
- Amarnath, G.; Ameer, M.; Aggarwal, P.; Smakhtin, V. Detecting Spatio-Temporal Changes in the Extent of Seasonal and Annual Flooding in South Asia Using Multi-Resolution Satellite Data. In Earth Resources and Environmental Remote Sensing/GIS Applications III: Proceedings of the International Society for Optics and Photonics (SPIE), Volume 8538, Amsterdam, The Netherland, 1–6 July 2012; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2012; p. 853818. [Google Scholar] [CrossRef]
- Islam, A.S.; Bala, S.K.; Haque, M.A. Flood Inundation Map of Bangladesh Using MODIS Time-series Images. J. Flood Risk Manag. 2010, 3, 210–222. [Google Scholar] [CrossRef]
- Ogilvie, A.; Belaud, G.; Delenne, C.; Bailly, J.-S.; Bader, J.-C.; Oleksiak, A.; Ferry, L.; Martin, D. Decadal Monitoring of the Niger Inner Delta Flood Dynamics Using MODIS Optical Data. J. Hydrol. 2015, 523, 368–383. [Google Scholar] [CrossRef] [Green Version]
- Timár, G.; Székely, B.; Molnár, G.; Ferencz, C.; Kern, A.; Galambos, C.; Gercsák, G.; Zentai, L. Combination of Historical Maps and Satellite Images of the Banat Region—Re-Appearance of an Old Wetland Area. Glob. Planet. Chang. 2008, 62, 29–38. [Google Scholar] [CrossRef]
- Kordelas, G.A.; Manakos, I.; Aragonés, D.; Díaz-Delgado, R.; Bustamante, J. Fast and Automatic Data-Driven Thresholding for Inundation Mapping with Sentinel-2 Data. Remote Sens. 2018, 10, 910. [Google Scholar] [CrossRef] [Green Version]
- Kordelas, G.A.; Manakos, I.; Lefebvre, G.; Poulin, B. Automatic Inundation Mapping Using Sentinel-2 Data Applicable to Both Camargue and Doñana Biosphere Reserves. Remote Sens. 2019, 11, 2251. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, C.; Walli, A.; Schleicher, C.; Weichselbaum, J.; Riffler, M. A Highly Automated Algorithm for Wetland Detection Using Multi-Temporal Optical Satellite Data. Remote Sens. Environ. 2019, 224, 333–351. [Google Scholar] [CrossRef]
- Solovey, T. Flooded Wetlands Mapping from Sentinel-2 Imagery with Spectral Water Index: A Case Study of Kampinos National Park in Central Poland. Geol. Q. 2020, 64, 492–505. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xu, T.; Chen, Y. Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm. Remote Sens. 2016, 8, 625. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Xu, T.; Meng, L.; Huang, C.; Shi, K. Spatial Attraction Models Coupled with Elman Neural Networks for Enhancing Sub-Pixel Urban Inundation Mapping. Remote Sens. 2020, 12, 2068. [Google Scholar] [CrossRef]
- Colditz, R.R.; Souza, C.T.; Vazquez, B.; Wickel, A.J.; Ressl, R. Analysis of Optimal Thresholds for Identification of Open Water Using MODIS-Derived Spectral Indices for Two Coastal Wetland Systems in Mexico. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 13–24. [Google Scholar] [CrossRef]
- Yan, Y.-E.; Ouyang, Z.-T.; Guo, H.-Q.; Jin, S.-S.; Zhao, B. Detecting the Spatiotemporal Changes of Tidal Flood in the Estuarine Wetland by Using MODIS Time Series Data. J. Hydrol. 2010, 384, 156–163. [Google Scholar] [CrossRef]
- Wang, Y. Using Landsat 7 TM Data Acquired Days after a Flood Event to Delineate the Maximum Flood Extent on a Coastal Floodplain. Int. J. Remote Sens. 2004, 25, 959–974. [Google Scholar] [CrossRef]
- Wang, Y.; Colby, J.D.; Mulcahy, K.A. An Efficient Method for Mapping Flood Extent in a Coastal Floodplain Using Landsat TM and DEM Data. Int. J. Remote Sens. 2002, 23, 3681–3696. [Google Scholar] [CrossRef]
- Atif, I.; Mahboob, M.A.; Waheed, A. Spatio-Temporal Mapping and Multi-Sector Damage Assessment of 2014 Flood in Pakistan Using Remote Sensing and GIS. Indian J. Sci. Technol. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Cuca, B.; Barazzetti, L. Damages from Extreme Flooding Events to Cultural Heritage and Landscapes: Water Component Estimation for Centa River (Albenga, Italy). Adv. Geosci. 2018, 45, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Gianinetto, M.; Villa, P.; Lechi, G. Postflood Damage Evaluation Using Landsat TM and ETM+ Data Integrated with DEM. IEEE Trans. Geosci. Remote Sens. 2005, 44, 236–243. [Google Scholar] [CrossRef]
- Haq, M.; Akhtar, M.; Muhammad, S.; Paras, S.; Rahmatullah, J. Techniques of Remote Sensing and GIS for Flood Monitoring and Damage Assessment: A Case Study of Sindh Province, Pakistan. Egypt. J. Remote Sens. Space Sci. 2012, 15, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational Monitoring and Damage Assessment of Riverine Flood-2014 in the Lower Chenab Plain, Punjab, Pakistan, Using Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 714. [Google Scholar] [CrossRef]
- Villa, P.; Gianinetto, M. Multispectral Transform and Spline Interpolation for Mapping Flood Damages. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 275–278. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Radočaj, D.; Obhođaš, J.; Jurišić, M.; Gašparović, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
- Foroughnia, F.; Alfieri, S.M.; Menenti, M.; Lindenbergh, R. Evaluation of SAR and Optical Data for Flood Delineation Using Supervised and Unsupervised Classification. Remote Sens. 2022, 14, 3718. [Google Scholar] [CrossRef]
- Sims, N.C.; Thoms, M.C. What Happens When Flood Plains Wet Themselves: Vegetation Response to Inundation on the Lower. In Proceedings of the Structure, Function and Management Implications of Fluvial Sedimentary Systems, Alice Springs, Australia, 2–6 September 2002; p. 195. [Google Scholar]
- Frazier, P.; Page, K. A Reach-scale Remote Sensing Technique to Relate Wetland Inundation to River Flow. River Res. Appl. 2009, 25, 836–849. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Demirkesen, A.C.; Evrendilek, F.; Berberoglu, S.; Kilic, S. Coastal Flood Risk Analysis Using Landsat-7 ETM+ Imagery and SRTM DEM: A Case Study of Izmir, Turkey. Environ. Monit. Assess. 2007, 131, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, M.; Jabari, S.; McGrath, H.; Coleman, D. Flood mapping using random forest and identifying the essential conditioning factors: A case study in Fredericton, New Brunswick, Canada. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V–3–2020, 609–615. [Google Scholar] [CrossRef]
- Farhadi, H.; Najafzadeh, M. Flood Risk Mapping by Remote Sensing Data and Random Forest Technique. Water 2021, 13, 3115. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface Water Extent Dynamics from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale in a Semi-Arid Region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Dey, C.; Jia, X.; Fraser, D.; Wang, L. Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine. In Proceedings of the 2009 Digital Image Computing: Techniques and Applications, Melbourne, Australia, 1–3 December 2009; pp. 291–295. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Sun, D.; Yu, Y.; Goldberg, M.D. Mapping Nighttime Flood from MODIS Observations Using Support Vector Machines. Photogramm. Eng. Remote Sens. 2012, 78, 1151–1161. [Google Scholar] [CrossRef]
- Ball, G.H.; Hall, D.J. ISODATA, a Novel Method of Data Analysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA, USA, 1965. [Google Scholar]
- Jung, Y.; Kim, D.; Kim, D.; Kim, M.; Lee, S.O. Simplified Flood Inundation Mapping Based on Flood Elevation-Discharge Rating Curves Using Satellite Images in Gauged Watersheds. Water 2014, 6, 1280–1299. [Google Scholar] [CrossRef]
- Ho, L.T.K.; Umitsu, M.; Yamaguchi, Y. Flood Hazard Mapping by Satellite Images and SRTM DEM in the Vu Gia-Thu Bon Alluvial Plain, Central Vietnam. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 275–280. [Google Scholar]
- Kumar, R.; Acharya, P. Flood Hazard and Risk Assessment of 2014 Floods in Kashmir Valley: A Space-Based Multisensor Approach. Nat. Hazard. 2016, 84, 437–464. [Google Scholar] [CrossRef]
- Kwak, Y.; Park, J.; Fukami, K. Estimating Floodwater from MODIS Time Series and SRTM DEM Data. Artif. Life Robot. 2014, 19, 95–102. [Google Scholar] [CrossRef]
- Nobre, A.D.; Cuartas, L.A.; Momo, M.R.; Severo, D.L.; Pinheiro, A.; Nobre, C.A. HAND Contour: A New Proxy Predictor of Inundation Extent. Hydrol. Process. 2016, 30, 320–333. [Google Scholar] [CrossRef]
- Manfreda, S.; Samela, C.; Gioia, A.; Consoli, G.G.; Iacobellis, V.; Giuzio, L.; Cantisani, A.; Sole, A. Flood-Prone Areas Assessment Using Linear Binary Classifiers Based on Flood Maps Obtained from 1D and 2D Hydraulic Models. Nat. Hazard. 2015, 79, 735–754. [Google Scholar] [CrossRef]
- Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic Classifiers for Flood-Prone Areas Delineation for Data-Scarce Environments. Adv. Water Resour. 2017, 102, 13–28. [Google Scholar] [CrossRef]
- Totaro, V.; Peschechera, G.; Gioia, A.; Iacobellis, V.; Fratino, U. Comparison of Satellite and Geomorphic Indices for Flooded Areas Detection in a Mediterranean River Basin. In Proceedings of the International Conference on Computational Science and Its Applications—ICCSA 2019, Saint Petersburg, Russia, 1–4 July 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 173–185. [Google Scholar]
- Mehmood, H.; Conway, C.; Perera, D. Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform. Atmosphere 2021, 12, 866. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hardy, A.; Oakes, G.; Ettritch, G. Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands. Remote Sens. 2020, 12, 1182. [Google Scholar] [CrossRef] [Green Version]
- Inman, V.L.; Lyons, M.B. Automated Inundation Mapping over Large Areas Using Landsat Data and Google Earth Engine. Remote Sens. 2020, 12, 1348. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tooth, S.; Zhang, K.; Zhao, Y. Visualisation of Flooding along an Unvegetated, Ephemeral River Using Google Earth Engine: Implications for Assessment of Channel-Floodplain Dynamics in a Time of Rapid Environmental Change. J. Environ. Manag. 2021, 278, 111559. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Gu, Y.; Jiang, W.; Xue, Y.; Hu, Q.; LaGrange, T.; Bishop, A.; Drahota, J.; Li, R. Assessing Nebraska Playa Wetland Inundation Status during 1985–2015 Using Landsat Data and Google Earth Engine. Environ. Monit. Assess. 2016, 188, 1–14. [Google Scholar] [CrossRef]
- Coltin, B.; McMichael, S.; Smith, T.; Fong, T. Automatic Boosted Flood Mapping from Satellite Data. Int. J. Remote Sens. 2016, 37, 993–1015. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Padarian, J.; Van Ogtrop, F.; Vervoort, R.W. Spatiotemporal Evaluation of Inundated Areas Using MODIS Imagery at a Catchment Scale. J. Hydrol. 2019, 573, 952–963. [Google Scholar] [CrossRef]
- Zhou, X.; Dandan, L.; Huiming, Y.; Honggen, C.; Leping, S.; Guojing, Y.; Qingbiao, H.; Brown, L.; Malone, J.B. Use of Landsat TM Satellite Surveillance Data to Measure the Impact of the 1998 Flood on Snail Intermediate Host Dispersal in the Lower Yangtze River Basin. Acta Trop. 2002, 82, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Wolski, P.; Murray-Hudson, M. Reconstruction of 1989–2005 Inundation History in the Okavango Delta from Archival LandSat TM Imagery. In Proceedings of the Globewetlands Symposium, ESA-ESRIN, Rome, Italy, 19–20 October 2006; pp. 19–20. [Google Scholar]
- Ho, L.T.K.; Yamaguchi, Y.; Umitsu, M. Delineation of Small-Scale Landforms Relative to Flood Inundation in the Western Red River Delta, Northern Vietnam Using Remotely Sensed Data. Nat. Hazard. 2013, 69, 905–917. [Google Scholar] [CrossRef]
- Sar, N.; Chatterjee, S.; Das Adhikari, M. Integrated Remote Sensing and GIS Based Spatial Modelling through Analytical Hierarchy Process (AHP) for Water Logging Hazard, Vulnerability and Risk Assessment in Keleghai River Basin, India. Model. Earth Syst. Environ. 2015, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Delgado, R.; Aragonés, D.; Afán, I.; Bustamante, J. Long-Term Monitoring of the Flooding Regime and Hydroperiod of Doñana Marshes with Landsat Time Series (1974–2014). Remote Sens. 2016, 8, 775. [Google Scholar] [CrossRef]
- Sadek, M.; Li, X. Low-Cost Solution for Assessment of Urban Flash Flood Impacts Using Sentinel-2 Satellite Images and Fuzzy Analytic Hierarchy Process: A Case Study of Ras Ghareb City, Egypt. Adv. Civ. Eng. 2019, 2019, 2561215. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Maffei, C.; Tooth, S.; Yao, G. Applying Independent Component Analysis on Sentinel-2 Imagery to Characterize Geomorphological Responses to an Extreme Flood Event near the Non-Vegetated Río Colorado Terminus, Salar de Uyuni, Bolivia. Remote Sens. 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Ghofrani, Z.; Sposito, V.; Faggian, R. Improving Flood Monitoring in Rural Areas Using Remote Sensing. Water Pract. Technol. 2019, 14, 160–171. [Google Scholar] [CrossRef]
- Bangira, T.; Iannini, L.; Menenti, M.; Van Niekerk, A.; Vekerdy, Z. Flood Extent Mapping in the Caprivi Floodplain Using Sentinel-1 Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5667–5683. [Google Scholar] [CrossRef]
- Sivanpillai, R.; Jacobs, K.M.; Mattilio, C.M.; Piskorski, E.V. Rapid Flood Inundation Mapping by Differencing Water Indices from Pre-and Post-Flood Landsat Images. Front. Earth Sci. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Gao, W.; Shen, Q.; Zhou, Y.; Li, X. Analysis of Flood Inundation in Ungauged Basins Based on Multi-Source Remote Sensing Data. Environ. Monit. Assess. 2018, 190, 1–13. [Google Scholar] [CrossRef]
- Shen, X.; Wang, D.; Mao, K.; Anagnostou, E.; Hong, Y. Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sens. 2019, 11, 879. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.J.-P.; Moller, D.K. Microwave Remote Sensing of Flood Inundation. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 84–95. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L. The State of the Art of Spaceborne Remote Sensing in Flood Management. Nat. Hazard. 2017, 85, 1223–1248. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, P.; Mousivand, A.; Bresciani, M. Aquatic Vegetation Indices Assessment through Radiative Transfer Modeling and Linear Mixture Simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 113–127. [Google Scholar] [CrossRef]
- Villa, P.; Bresciani, M.; Bolpagni, R.; Pinardi, M.; Giardino, C. A Rule-Based Approach for Mapping Macrophyte Communities Using Multi-Temporal Aquatic Vegetation Indices. Remote Sens. Environ. 2015, 171, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Jaskuła, J.; Sojka, M. Assessing Spectral Indices for Detecting Vegetative Overgrowth of Reservoirs. Pol. J. Environ. Stud. 2019, 28, 4199–4211. [Google Scholar] [CrossRef]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of Surface Water Extraction Performances of Different Classic Water Indices Using OLI and TM Imageries in Different Situations. Geo Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Cooley, S.W.; Smith, L.C.; Stepan, L.; Mascaro, J. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef] [Green Version]
- Pricope, N.G.; Hidalgo, C.; Pippin, J.S.; Evans, J.M. Shifting Landscapes of Risk: Quantifying Pluvial Flood Vulnerability beyond the Regulated Floodplain. J. Environ. Manag. 2022, 304, 114221. [Google Scholar] [CrossRef]
- Wang, Z.; Vivoni, E.R. Mapping Flash Flood Hazards in Arid Regions Using CubeSats. Remote Sens. 2022, 14, 4218. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Internal Market Entrepreneurship and SMEs. Copernicus Market Report: February 2019; Publications Office: Luxembourg City, Luxembourg, 2019; Available online: https://data.europa.eu/doi/10.2873/011961 (accessed on 14 February 2022).
Landsat 4- , 5-TM | Landsat 7-ETM+ | Landsat 8-OLI | Sentinel-2 MSI | Terra–Aqua MODIS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Band | Band Number | W (μm) | R (m) | Band Number | W (μm) | R (m) | Band Number | W (μm) | R (m) | Band Number | W (μm) | R (m) | Band Number | W (μm) | R (m) |
Blue | Band 1 | 0.45–0.52 | 30 | Band 1 | 0.45–0.52 | 30 | Band 2 | 0.45–0.51 | 30 | Band 2 | 0.46–0.52 | 10 | Band 3 | 0.46–0.48 | 500 |
Green | Band 2 | 0.52–0.60 | 30 | Band 2 | 0.52–0.60 | 30 | Band 3 | 0.53–0.59 | 30 | Band 3 | 0.55–0.58 | 10 | Band 4 | 0.55–0.57 | 500 |
Red | Band 3 | 0.63–0.69 | 30 | Band 3 | 0.63–0.69 | 30 | Band 4 | 0.64–0.67 | 30 | Band 4 | 0.64–0.67 | 10 | Band 1 | 0.62–0.67 | 250 |
NIR | Band 4 | 0.76–0.90 | 30 | Band 4 | 0.77–0.90 | 30 | Band 5 | 0.85–0.88 | 30 | Band 8 | 0.78–0.90 | 10 | NIR 1 Band 2 | 0.84–0.88 | 250 |
NIR 2 Band 5 | 1.23–1.25 | 500 | |||||||||||||
SWIR 1 | Band 5 | 1.55–1.75 | 30 | Band 5 | 1.55–1.75 | 30 | Band 6 | 1.57–1.65 | 30 | Band 11 | 1.57–1.65 | 20 | Band 6 | 1.63–1.65 | 500 |
SWIR 2 | Band 7 | 2.08–2.35 | 30 | Band 7 | 2.09–2.35 | 30 | Band 7 | 2.11–2.29 | 30 | Band 12 | 2.10–2.28 | 20 | Band 7 | 2.11–2.16 | 500 |
Data Access | USGS EarthExplorer data portal [36] https://earthexplorer.usgs.gov/ (accessed on 4 February 2022) | Sentinel Scientific Data Hub [37] https://scihub.copernicus.eu/ (accessed on 4 February 2022) | USGS EarthExplorer data portal [36] https://earthexplorer.usgs.gov/ (accessed on 4 February 2022) NASA Earthdata Search [38] https://search.earthdata.nasa.gov/search (accessed on 4 February 2022) LAADS DAAC Archive [39] https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 4 February 2022) |
Satellite/Sensor | Sample References |
---|---|
Landsat (MSS, TM, ETM+, and OLI) | Sims and Thoms [72]; Zhou et al. [98]; Wang et al. [62]; Hudson and Colditz [43]; Wang [61]; Gianinetto et al. [65]; Wolski and Murray-Hudson [99]; Villa and Gianinetto [68]; Demirkesen et al. [75]; Frazier and Page [73]; Dey et al. [79]; Jung et al. [44]; Thomas et al. [46]; Ho et al. [100]; Jung et al. [82]; Sar et al. [101]; Thomas et al. [47]; Chignell et al. [41]; Díaz-Delgado et al. [102]; Li et al. [57]; Tulbure et al. [78]; Kumar and Acharya [84]; Tang et al. [95]; Nandi et al. [45]; Totaro et al. [89]; Li et al. [58]; Sajjad et al. [67]; Inman and Lyons [93]; Hardy et al. [92]; Ghansah et al. [42]; Farhadi and Najafzadeh [77]; Li et al. [94]; Mehmood et al. [90]. |
MODIS (Aqua/Terra) | Timár et al. [52]; Islam et al. [50]; Yan et al. [60]; Amarnath et al. [49]; Haq et al. [66]; Zhang et al. [80]; Kwak e al. [85]; Ogilvie et al. [51]; Atif et al. [63]; Thito et al. [48]; Coltin et al. [96]; Colditz et al. [59]; Fuentes et al. [97]. |
Sentinel-2 (MSI) | Kordelas et al. [53]; Cuca and Barazzetti [64]; Kordelas et al. [54]; Ludwig et al. [55]; Sadek and Li [103]; Solovey [56]; Esfandiari et al. [9]. |
Index Formula | NDVI | NDWI | NDMI | MNDWI | WRI | MNDWI7 | |
Reference | Rouse et al. [33] | McFeeters [34] | Gao [104] | Xu [26] | Shen and Li [107] | Ji et al. [106] | |
Landsat 5-TM 7-ETM+ | |||||||
Landsat 8-OLI | |||||||
Sentinel-2 MSI | |||||||
Terra–Aqua MODIS | |||||||
Index Formula | AWEInsh | AWEIsh | |||||
Reference | Feyisa et al. [105] | Feyisa et al. [105] | |||||
Landsat 5-TM 7-ETM+ | |||||||
Landsat 8-OLI | |||||||
Sentinel-2 MSI | |||||||
Terra–Aqua MODIS |
Reference Map | ||||
---|---|---|---|---|
Class | Water | Non-Water | Row Total | |
Classified Map | Water | TP | FP | CW |
Non-water | FN | TN | CNW | |
Column total | RW | RNW | T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albertini, C.; Gioia, A.; Iacobellis, V.; Manfreda, S. Detection of Surface Water and Floods with Multispectral Satellites. Remote Sens. 2022, 14, 6005. https://doi.org/10.3390/rs14236005
Albertini C, Gioia A, Iacobellis V, Manfreda S. Detection of Surface Water and Floods with Multispectral Satellites. Remote Sensing. 2022; 14(23):6005. https://doi.org/10.3390/rs14236005
Chicago/Turabian StyleAlbertini, Cinzia, Andrea Gioia, Vito Iacobellis, and Salvatore Manfreda. 2022. "Detection of Surface Water and Floods with Multispectral Satellites" Remote Sensing 14, no. 23: 6005. https://doi.org/10.3390/rs14236005
APA StyleAlbertini, C., Gioia, A., Iacobellis, V., & Manfreda, S. (2022). Detection of Surface Water and Floods with Multispectral Satellites. Remote Sensing, 14(23), 6005. https://doi.org/10.3390/rs14236005