Monitoring of Atmospheric Carbon Dioxide over Pakistan Using Satellite Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. OCO-2 XCO2 Dataset
2.2.2. ODIAC CO2 Dataset
2.2.3. Other Datasets
- The Ozone Monitoring Instrument (OMI) NO2 tropospheric column dataset [42] from 2015 to 2020 was obtained from the EARTHDATA website (https://earthdata.nasa.gov/, accessed on 1 March 2022).
- The Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights data [43] was downloaded from (https://eogdata.mines.edu/products/vnl/, accessed on 15 February 2022).
- Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 global monthly Fire Location product (MCD14ML) from 2015 to 2020 was downloaded from (https://firms.modaps.eosdis.nasa.gov/download/, accessed on 27 February 2022).
- LandScan population density data [44] from 2015 to 2019 was downloaded from (https://landscan.ornl.gov/, accessed on 27 February 2022).
- Copernicus landcover data [45] from 2015 to 2019 was downloaded from the Copernicus Global Land Service website (https://land.copernicus.eu/global/products/lc, accessed on 11 February 2022).
2.3. Methodology
- The OCO-2 dataset comes with a quality flag to distinguish the cloud-contaminated and cloud-free XCO2 retrievals (OCO-2 Data User Guide). It is generally advised to use cloud-free observations for local- and regional-level studies because the cloud-contaminated retrievals contain biases that might compromise the quality of the results. In this study, we incorporated the cloud-free OCO-2 retrievals with the daily standard deviation of the soundings less than 1 ppm. To determine the monthly, annual, and seasonal spatiotemporal trends of atmospheric CO2, the OCO-2 XCO2 retrievals were averaged on monthly, annual, and seasonal time intervals within the 0.5 × 0.5 degree spatial grid and the spatial boundaries of the administrative units (districts and provinces). Seasons were defined based on three months, i.e., DJF (December, January, February), MAM (March, April, May), JJA (June, July, August), and SON (September, October, November). To avoid uncertainties, the administrative boundaries with fewer than 300 satellite observations were not considered in the study. Moreover, the districts with an area <1000 km2 were also not included in the study.
- Previous studies [41,46,47,48] have suggested that anthropogenic CO2 could be detected using space-borne CO2 observations. However, estimating the anthropogenic CO2 concentration through these space-based observations is a challenging task. CO2 is a greenhouse gas with a longer atmospheric life and a very large background concentration. Because of this, XCO2 retrieved through satellite-based observations varies by only about 2% from pole to pole and over the seasonal cycle. The seasonal variability and the larger background concentration of atmospheric CO2 must be removed to determine the anthropogenic CO2 concentration. To do this, XCO2 anomalies (MXCO2) were calculated using an approach suggested by [46,47]:
- The mean anthropogenic CO2 emissions for each district was calculated by averaging the ODIAC CO2 datasets from 2015 to 2019 and then summing the pixels/cells within the spatial boundaries of the districts. ODIAC results were combined with other datasets including the satellite-based XCO2 anomalies, OMI NO2 tropospheric column, nighttime lights data, and population density to study the spatial distribution of CO2 over the study area.
- The ODIAC CO2 and OCO-2-derived MXCO2 datasets were compared in terms of correlation, spatial distribution, and ranking of districts based on the mean CO2 emissions and mean MXCO2 concentration values. Moreover, the relationship of the ODIAC and OCO-2 datasets with other datasets such as population density and NO2 tropospheric column was also studied through cluster-based correlation analyses. To create the clusters, we segmented the datasets using the method described in [41,49], and then finally the correlation analyses were carried out.
3. Results
3.1. Spatial Distribution of OCO-2 XCO2 Retrievals
3.2. Spatial Distribution of MXCO2 and Anthropogenic CO2 Emissions
3.3. Correlation Analysis
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2014; Volume 9781107057, ISBN 9781107415324. [Google Scholar]
- Mustafa, F.; Bu, L.; Wang, Q.; Ali, M.A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; Guiot, J.; et al. Impacts of 1.5 C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C. An IPCC Special Report. 2018. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter3_Low_Res.pdf (accessed on 11 August 2022).
- Reuter, M.; Buchwitz, M.; Schneising, O.; Krautwurst, S.; O’Dell, C.W.; Richter, A.; Bovensmann, H.; Burrows, J.P. Towards Monitoring Localized CO Emissions from Space: Co-Located Regional CO2 and NO2 Enhancements Observed by the OCO-2 and S5P Satellite. Atmos. Chem. Phys. 2019, 19, 9371–9383. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Dolman, A.J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P.J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G.; et al. Current Systematic Carbon-Cycle Observations and the Need for Implementing a Policy-Relevant Carbon Observing System. Biogeosciences 2014, 11, 3547–3602. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.G.; Akimoto, H.; Bottenheim, J.; Buchmann, B.; Galbally, I.E.; Gilge, S.; Helmig, D.; Koide, H.; Lewis, A.C.; Novelli, P.C.; et al. The Global Atmosphere Watch Reactive Gases Measurement Network. Elementa 2015, 3, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the COllaborative Carbon Column Observing Network (COCCON): Long-Term Stability and Ensemble Performance of the EM27/SUN Fourier Transform Spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Velazco, V.A.; Deutscher, N.M.; Morino, I.; Uchino, O.; Bukosa, B.; Ajiro, M.; Kamei, A.; Jones, N.B.; Paton-Walsh, C.; Griffith, D.W.T. Satellite and Ground-Based Measurements of XCO2 in a Remote Semiarid Region of Australia. Earth Syst. Sci. Data 2019, 11, 935–946. [Google Scholar] [CrossRef] [Green Version]
- Toon, G.; Blavier, J.-F.; Washenfelder, R.; Wunch, D.; Keppel-Aleks, G.; Wennberg, P.; Connor, B.; Sherlock, V.; Griffith, D.; Deutscher, N.; et al. Total Column Carbon Observing Network (TCCON). In Proceedings of the Advances in Imaging, Vancouver, BC, Canada, 26–30 April 2009; p. JMA3. Available online: https://opg.optica.org/abstract.cfm?URI=FTS-2009-JMA3 (accessed on 11 August 2022).
- Wang, Q.; Mustafa, F.; Bu, L.; Yang, J.; Fan, C.; Liu, J.; Chen, W. Monitoring of Atmospheric Carbon Dioxide over a Desert Site Using Airborne and Ground Measurements. Remote Sens. 2022, 14, 5224. [Google Scholar] [CrossRef]
- Grieco, G.; Masiello, G.; Serio, C.; Jones, R.L.; Mead, M.I. Infrared Atmospheric Sounding Interferometer Correlation Interferometry for the Retrieval of Atmospheric Gases: The Case of H2O and CO2. Appl. Opt. 2011, 50, 4516. [Google Scholar] [CrossRef]
- Crevoisier, C.; Heilliette, S.; Chédin, A.; Serrar, S.; Armante, R.; Scott, N.A. Midtropospheric CO2 Concentration Retrieval from AIRS Observations in the Tropics. Geophys. Res. Lett. 2004, 31, 17. [Google Scholar] [CrossRef]
- Engelen, R.J. Estimating Atmospheric CO2 from Advanced Infrared Satellite Radiances within an Operational 4D-Var Data Assimilation System: Methodology and First Results. J. Geophys. Res. 2004, 109, D19309. [Google Scholar] [CrossRef]
- Buchwitz, M.; de Beek, R.; Noël, S.; Burrows, J.P.; Bovensmann, H.; Bremer, H.; Bergamaschi, P.; Körner, S.; Heimann, M. Carbon Monoxide, Methane and Carbon Dioxide Columns Retrieved from SCIAMACHY by WFM-DOAS: Year 2003 Initial Data Set. Atmos. Chem. Phys. 2005, 5, 3313–3329. [Google Scholar] [CrossRef] [Green Version]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer on the Greenhouse Gases Observing Satellite for Greenhouse Gases Monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat Mission: Preliminary Global Observations. Sci. Bull. 2018, 63, 1200–1207. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, T.; Morino, I.; Yoshida, Y.; Saito, M.; Noda, H.; Ohyama, H.; Niwa, Y.; Yashiro, H.; Kamei, A.; Kawazoe, F.; et al. Early Results of GOSAT-2 Level 2 Products. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019; Volume 2019, p. A52H-02. [Google Scholar]
- Eldering, A.; Taylor, T.E.; O’Dell, C.W.; Pavlick, R. The OCO-3 Mission: Measurement Objectives and Expected Performance Based on 1 Year of Simulated Data. Atmos. Meas. Tech. 2019, 12, 2341–2370. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, D.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2021; Germanwatch: Berlin, Germany, 2021; pp. 13–14. Available online: https://germanwatch.org/sites/default/files/Global%20Climate%20Risk%20Index%202021_1.pdf (accessed on 11 August 2022).
- Eldering, A.; Wennberg, P.O.; Crisp, D.; Schimel, D.S.; Gunson, M.R.; Chatterjee, A.; Liu, J.; Schwandner, F.M.; Sun, Y.; O’Dell, C.W.; et al. The Orbiting Carbon Observatory-2 Early Science Investigations of Regional Carbon Dioxide Fluxes. Science 2017, 358, eaam5745. [Google Scholar] [CrossRef] [Green Version]
- Shim, C.; Han, J.; Henze, D.K.; Yoon, T. Identifying Local Anthropogenic CO2 Emissions with Satellite Retrievals: A Case Study in South Korea. Int. J. Remote Sens. 2019, 40, 1011–1029. [Google Scholar] [CrossRef] [Green Version]
- Lei, R.; Feng, S.; Danjou, A.; Broquet, G.; Wu, D.; Lin, J.C.; O’Dell, C.W.; Lauvaux, T. Fossil Fuel CO2 Emissions over Metropolitan Areas from Space: A Multi-Model Analysis of OCO-2 Data over Lahore, Pakistan. Remote Sens. Environ. 2021, 264, 112625. [Google Scholar] [CrossRef]
- Wu, D.; Lin, J.C.; Oda, T.; Kort, E.A. Space-Based Quantification of per Capita CO2 Emissions from Cities. Environ. Res. Lett. 2020, 15, 035004. [Google Scholar] [CrossRef]
- Labzovskii, L.D.; Jeong, S.-J.; Parazoo, N.C. Working towards Confident Spaceborne Monitoring of Carbon Emissions from Cities Using Orbiting Carbon Observatory-2. Remote Sens. Environ. 2019, 233, 111359. [Google Scholar] [CrossRef]
- Nassar, R.; Hill, T.G.; McLinden, C.A.; Wunch, D.; Jones, D.B.A.; Crisp, D. Quantifying CO2 Emissions From Individual Power Plants From Space. Geophys. Res. Lett. 2017, 44, 10045–10053. [Google Scholar] [CrossRef]
- Bilal, M.; Mhawish, A.; Nichol, J.E.; Qiu, Z.; Nazeer, M.; Ali, A.; de Leeuw, G.; Levy, R.C.; Wang, Y.; Chen, Y.; et al. Air Pollution Scenario over Pakistan: Characterization and Ranking of Extremely Polluted Cities Using Long-Term Concentrations of Aerosols and Trace Gases. Remote Sens. Environ. 2021, 264, 112617. [Google Scholar] [CrossRef]
- Crisp, D.; Miller, C.E.; DeCola, P.L. NASA Orbiting Carbon Observatory: Measuring the Column Averaged Carbon Dioxide Mole Fraction from Space. J. Appl. Remote Sens. 2008, 2, 023508. [Google Scholar] [CrossRef]
- Crisp, D.; Pollock, H.; Rosenberg, R.; Chapsky, L.; Lee, R.; Oyafuso, F.; Frankenberg, C.; Dell, C.; Bruegge, C.; Doran, G.; et al. The On-Orbit Performance of the Orbiting Carbon Observatory-2 (OCO-2) Instrument and Its Radiometrically Calibrated Products. Atmos. Meas. Tech. 2017, 10, 59–81. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 Retrieval Algorithm-Part 1: Description and Validation against Synthetic Observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef] [Green Version]
- Crisp, D.; Fisher, B.M.; O’Dell, C.; Frankenberg, C.; Basilio, R.; Bösch, H.; Brown, L.R.; Castano, R.; Connor, B.; Deutscher, N.M.; et al. The ACOS CO2 Retrieval Algorithm—Part II: Global X CO2 Data Characterization. Atmos. Meas. Tech. 2012, 5, 687–707. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, M.C.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 Measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, C.W.; Eldering, A.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Fisher, B.; Frankenberg, C.; Kiel, M.; Lindqvist, H.; Mandrake, L.; et al. Improved Retrievals of Carbon Dioxide from Orbiting Carbon Observatory-2 with the Version 8 ACOS Algorithm. Atmos. Meas. Tech. 2018, 11, 6539–6576. [Google Scholar] [CrossRef] [Green Version]
- Kiel, M.; Dell, C.W.O.; Fisher, B.; Eldering, A.; Nassar, R.; Macdonald, C.G.; Wennberg, P.O.; O’Dell, C.W.; Fisher, B.; Eldering, A.; et al. How Bias Correction Goes Wrong: Measurement of XCO2 Affected by Erroneous Surface Pressure Estimates. Atmos. Meas. Tech. 2019, 12, 2241–2259. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, F.; Wang, H.; Bu, L.; Wang, Q.; Shahzaman, M.; Bilal, M.; Zhou, M.; Iqbal, R.; Aslam, R.; Ali, A.; et al. Validation of GOSAT and OCO-2 against In Situ Aircraft Measurements and Comparison with CarbonTracker and GEOS-Chem over Qinhuangdao, China. Remote Sens. 2021, 13, 899. [Google Scholar] [CrossRef]
- ODell, C.; Eldering, A.; Gunson, M.; Crisp, D.; Fisher, B.; Kiel, M.; Kuai, L.; Laughner, J.; Merrelli, A.; Nelson, R.; et al. Improvements in XCO2 Accuracy from OCO-2 with the Latest ACOS V10 Product; 2021; p. EGU21-10484. Available online: https://doi.org/10.5194/egusphere-egu21-10484 (accessed on 11 August 2022). [CrossRef]
- Oda, T.; Maksyutov, S. A Very High-Resolution (1 Km × 1 Km) Global Fossil Fuel CO2 Emission Inventory Derived Using a Point Source Database and Satellite Observations of Nighttime Lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Oda, T.; Maksyutov, S.; Andres, R.J. The Open-Source Data Inventory for Anthropogenic CO2 Version 2016 (ODIAC2016): A Global Monthly Fossil Fuel CO2 Gridded Emissions Data Product for Tracer Transport Simulations and Surface Flux Inversions. Earth Syst. Sci. Data 2018, 10, 87–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, T. ODIAC Fossil Fuel CO2 Emissions Dataset 2015; Center for Global Environmental Research, National Institute for Environmental Studies: Tsukuba, Ibaraki, Japan, 2015. [Google Scholar] [CrossRef]
- Boden, T.A.; Andres, R.J.; Marland, G. Environmental System Science Data Infrastructure for a Virtual Ecosystem. In Global, Regional, and National Fossil-Fuel CO2 Emissions (1751–2014) (v. 2017); Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, Tenn, USA, 2017. Available online: https://cdiac.ess-dive.lbl.gov/trends/emis/overview_2014.html (accessed on 11 August 2022).
- Chen, J.; Zhao, F.; Zeng, N.; Oda, T. Comparing a Global High-Resolution Downscaled Fossil Fuel CO2 Emission Dataset to Local Inventory-Based Estimates over 14 Global Cities. Carbon Balance Manag. 2020, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, F.; Bu, L.; Wang, Q.; Yao, N.; Shahzaman, M.; Bilal, M.; Aslam, R.W.; Iqbal, R. Neural-Network-Based Estimation of Regional-Scale Anthropogenic CO2 Emissions Using an Orbiting Carbon Observatory-2 (OCO-2) Dataset over East and West Asia. Atmos. Meas. Tech. 2021, 14, 7277–7290. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Veefkind, P. OMI/Aura Nitrogen Dioxide (NO2) Total and Tropospheric Column 1-Orbit L2 Swath 13 × 24 Km; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2012. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Bright, E.A.; Rose, A.N.; Urban, M.L.; McKee, J. LandScan 2017 High-Resolution Global Population Data Set; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2018. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Hakkarainen, J.; Ialongo, I.; Tamminen, J. Direct Space-based Observations of Anthropogenic CO2 Emission Areas from OCO-2. Geophys. Res. Lett. 2016, 43, 11400–11406. [Google Scholar] [CrossRef]
- Hakkarainen, J.; Ialongo, I.; Maksyutov, S.; Crisp, D. Analysis of Four Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2. Remote Sens. 2019, 11, 850. [Google Scholar] [CrossRef]
- Yang, S.; Lei, L.; Zeng, Z.; He, Z.; Zhong, H. An Assessment of Anthropogenic CO2 Emissions by Satellite-Based Observations in China. Sensors 2019, 19, 1118. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, F.; Bu, L.; Wang, Q.; Shahzaman, M.; Bilal, M.; Aslam, R.W.; Dong, C. Spatiotemporal Investigation of Near-Surface CO2 and Its Affecting Factors over Asia. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Anthwal, A.; Joshi, V.; Joshi, S.C.C.; Sharma, A.; Kim, K.-H. Atmospheric Carbon Dioxide Levels in Garhwal Himalaya, India. J. Korean Earth Sci. Soc. 2009, 30, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Sreenivas, G.; Mahesh, P.; Subin, J.; Kanchana, A.L.; Rao, P.V.N.; Dadhwal, V.K. Influence of Meteorology and Interrelationship with Greenhouse Gases (CO2 and CH4) at a Suburban Site of India. Atmos. Chem. Phys. 2016, 16, 3953–3967. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.X.; Zhou, L.X.; Tans, P.P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T. In Situ Measurement of Atmospheric CO2 at the Four WMO/GAW Stations in China. Atmos. Chem. Phys. 2014, 14, 2541–2554. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Nayak, R.K.; Dadhwal, V.K.; Kant, Y.; Ali, M.M. Temporal Variations of Atmospheric CO2 in Dehradun, India during 2009. Air Soil Water Res. 2012, 6, 37–45. [Google Scholar] [CrossRef]
- Golkar, F.; Al-Wardy, M.; Saffari, S.F.; Al-Aufi, K.; Al-Rawas, G. Using OCO-2 Satellite Data for Investigating the Variability of Atmospheric CO2 Concentration in Relationship with Precipitation, Relative Humidity, and Vegetation over Oman. Water 2019, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three Decades of Global Methane Sources and Sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Nalini, K.; Uma, K.N.; Sijikumar, S.; Tiwari, Y.K.; Ramachandran, R. Satellite- and Ground-Based Measurements of CO2 over the Indian Region: Its Seasonal Dependencies, Spatial Variability, and Model Estimates. Int. J. Remote Sens. 2018, 39, 7881–7900. [Google Scholar] [CrossRef]
- Finance Division Pakistan. Pakistan Economic Survey 2018–2019; Finance Division, Government of Pakistan, 44000 Islamabad, Pakistan: 2019. Available online: https://finance.gov.pk/survey/chapters_19/Economic_Survey_2018_19.pdf (accessed on 12 March 2022).
- InpaperMagazine 2018. Available online: https://www.dawn.com/news/1382881 (accessed on 14 April 2022).
- Lei, R.; Feng, S.; Lauvaux, T. Country-Scale Trends in Air Pollution and Fossil Fuel CO2 Emissions during 2001–2018: Confronting the Roles of National Policies and Economic Growth. Environ. Res. Lett. 2021, 16, 014006. [Google Scholar] [CrossRef]
- Energy, N. 2018. Available online: https://www.nsenergybusiness.com/projects/diamer-bhasha-dam-hydropower-project/ (accessed on 14 April 2022).
- Graham-Rowe, D. 2005. Available online: https://www.newscientist.com/article/dn7046-hydroelectric-powers-dirty-secret-revealed/ (accessed on 20 March 2022).
- Kamal, A.; Yingjie, M.; Ali, A. Significance of Billion Tree Tsunami Afforestation Project and Legal Developments in Forest Sector of Pakistan. Int. J. Law Soc. 2019, 1, 157–165. [Google Scholar] [CrossRef]
- World Economic Forum. Pakistan Has Planted over a Billion Trees; World Economic Forum: Cologny, Switzerland, 2018; Available online: https://www.weforum.org/agenda/2018/07/pakistan-s-billion-tree-tsunami-is-astonishing (accessed on 21 April 2022).
- Taylor, T.E.; O’Dell, C.W.; Crisp, D.; Kuze, A.; Lindqvist, H.; Wennberg, P.O.; Chatterjee, A.; Gunson, M.; Eldering, A.; Fisher, B.; et al. An Eleven Year Record of XCO2 Estimates Derived from GOSAT Measurements Using the NASA ACOS Version 9 Retrieval Algorithm. In Atmosphere—Atmospheric Chemistry and Physics. 2021. Available online: https://doi.org/10.5194/essd-14-325-2022 (accessed on 11 August 2022). [CrossRef]
- Saad, A.; Ijaz, M.; Asghar, M.U.; Yamin, L. China-Pakistan Economic Corridor and Its Impact on Rural Development and Human Life Sustainability. Observations from Rural Women. PLoS ONE 2020, 15, e0239546. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Hagan, D.F.T.; Ali, A.; Ali, G.; Zhang, Y.; Jan, M.A.; Bhatti, A.S.; Xie, W. Daytime and Nighttime Heat Wave Characteristics Based on Multiple Indices over the China–Pakistan Economic Corridor. Clim. Dyn. 2019, 53, 6329–6349. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Jan, M.A.; Zhang, Y.; Xie, W.; Xie, X. Observed Changes in Maximum and Minimum Temperatures over China-Pakistan Economic Corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, N.; Mustafa, F.; Bu, L.; Xu, M.; Wang, Q.; Shahzaman, M.; Bilal, M.; Ullah, S.; Feng, Z. Monitoring of Atmospheric Carbon Dioxide over Pakistan Using Satellite Dataset. Remote Sens. 2022, 14, 5882. https://doi.org/10.3390/rs14225882
An N, Mustafa F, Bu L, Xu M, Wang Q, Shahzaman M, Bilal M, Ullah S, Feng Z. Monitoring of Atmospheric Carbon Dioxide over Pakistan Using Satellite Dataset. Remote Sensing. 2022; 14(22):5882. https://doi.org/10.3390/rs14225882
Chicago/Turabian StyleAn, Ning, Farhan Mustafa, Lingbing Bu, Ming Xu, Qin Wang, Muhammad Shahzaman, Muhammad Bilal, Safi Ullah, and Zhang Feng. 2022. "Monitoring of Atmospheric Carbon Dioxide over Pakistan Using Satellite Dataset" Remote Sensing 14, no. 22: 5882. https://doi.org/10.3390/rs14225882
APA StyleAn, N., Mustafa, F., Bu, L., Xu, M., Wang, Q., Shahzaman, M., Bilal, M., Ullah, S., & Feng, Z. (2022). Monitoring of Atmospheric Carbon Dioxide over Pakistan Using Satellite Dataset. Remote Sensing, 14(22), 5882. https://doi.org/10.3390/rs14225882