Spectral Discrimination of Pumice Rafts in Optical MSI Imagery
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Satellite Data
2.3. Cloud and Land Mask
3. Methods
3.1. The Pumice Raft Index
3.2. Cloud and Land Masking
3.3. Pumice Raft Extraction
3.4. SFBE Work Flow
3.5. Pumice Raft Extraction Accuracy
4. Results
4.1. Extracted Pumice Raft
4.2. Pumice Rafts Distribution
4.3. Cross Checking
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mourhly, A.; Khachani, M.; Hamidi, A.E.; Kacimi, M.; Halim, M.; Arsalane, S. The Synthesis and Characterization of Low-Cost Mesoporous Silica SiO2 from Local Pumice Rock. Nanomater. Nanotechnol. 2015, 5, 35. [Google Scholar] [CrossRef]
- Jutzeler, M.; Marsh, R.; Carey, R.J.; White, J.D.; Talling, P.J.; Karlstrom, L. On the fate of pumice rafts formed during the 2012 Havre submarine eruption. Nat. Commun. 2014, 5, 3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, S.R.; Fiske, R.S.; Cashman, K.V. Quenching of steam-charged pumice: Implications for submarine pyroclastic volcanism. Earth Planet. Sci. Lett. 2008, 274, 40–49. [Google Scholar] [CrossRef]
- Manga, M.; Fauria, K.E.; Lin, C.; Mitchell, S.J.; Jones, M.; Conway, C.E.; Degruyter, W.; Hosseini, B.; Carey, R.; Cahalan, R.; et al. The pumice raft-forming 2012 Havre submarine eruption was effusive. Earth Planet. Sci. Lett. 2018, 489, 49–58. [Google Scholar] [CrossRef]
- Fauria, K.E.; Manga, M.; Wei, Z. Trapped bubbles keep pumice afloat and gas diffusion makes pumice sink. Earth Planet. Sci. Lett. 2017, 460, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Bryan, S.E.; Cook, A.G.; Evans, J.P.; Hebden, K.; Hurrey, L.; Colls, P.; Jell, J.S.; Weatherley, D.; Firn, J. Rapid, long-distance dispersal by pumice rafting. PLoS ONE 2012, 7, e40583. [Google Scholar] [CrossRef] [Green Version]
- Jokiel, P.L. Transport of reef corals into the Great Barrier Reef. Nature 1990, 347, 665–667. [Google Scholar] [CrossRef]
- Bryan, S.; Cook, A.; Evans, J.; Colls, P.; Wells, M.; Lawrence, M.; Jell, J.; Greig, A.; Leslie, R. Pumice rafting and faunal dispersion during 2001–2002 in the Southwest Pacific: Record of a dacitic submarine explosive eruption from Tonga. Earth Planet. Sci. Lett. 2004, 227, 135–154. [Google Scholar] [CrossRef]
- Jokiel, P.L.; Cox, E.F. Drift pumice at Christmas Island and Hawaii: Evidence of oceanic dispersal patterns. Mar. Geol. 2003, 202, 121–133. [Google Scholar] [CrossRef]
- Velasquez, E.; Bryan, S.E.; Ekins, M.; Cook, A.G.; Hurrey, L.; Firn, J. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered. Ecol. Evol. 2018, 8, 5034–5046. [Google Scholar] [CrossRef]
- Ohno, Y.; Iguchi, A.; Ijima, M.; Yasumoto, K.; Suzuki, A. Coastal ecological impacts from pumice rafts. Sci. Rep. 2022, 12, 11187. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, A.; Dupouy, C.; Singh, A.; Frouin, R.; Menkes, C.; Lefèvre, J. Automatic Detection of Optical Signatures within and around Floating Tonga-Fiji Pumice Rafts Using MODIS, VIIRS, and OLCI Satellite Sensors. Remote Sens. 2021, 13, 501. [Google Scholar] [CrossRef]
- Jutzeler, M.; Marsh, R.; van Sebille, E.; Mittal, T.; Carey, R.J.; Fauria, K.E.; Manga, M.; McPhie, J. Ongoing Dispersal of the 7 August 2019 Pumice Raft From the Tonga Arc in the Southwestern Pacific Ocean. Geophys. Res. Lett. 2020, 47, e1701121. [Google Scholar] [CrossRef]
- Fauria, K.; Jutzeler, M.; Mittal, T.; Gupta, A.; Kelly, L.; Rausch, J.; Bennartz, R.; Delbridge, B.; Retailleau, L. Simultaneous creation of a large vapor plume and pumice raft by a shallow submarine eruption. Earth Space Sci. Open Arch. 2022. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Mikelsons, K.; Wang, M.; Lance, V.; Sun, S.; Barnes, B.B.; Zhao, J.; Van der Zande, D. In search of floating algae and other organisms in global oceans and lakes. Remote Sens. Environ. 2020, 239, 111659. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Automatic extraction of Sargassum features from sentinel-2 msi images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2579–2597. [Google Scholar] [CrossRef]
- Hu, C. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: Challenges and potentials. Remote Sens. Environ. 2021, 259, 112414. [Google Scholar] [CrossRef]
- Carey, R.; Soule, S.A.; Manga, M.; White, J.D.L.; McPhie, J.; Wysoczanski, R.; Jutzeler, M.; Tani, K.; Yoerger, D.; Fornari, D.; et al. The largest deep-ocean silicic volcanic eruption of the past century. Sci. Adv. 2018, 4, e1701121. [Google Scholar] [CrossRef] [Green Version]
- Coca, J.; Ohde, T.; Redondo, A.; García-Weil, L.; Santana-Casiano, M.; González-Dávila, M.; Arístegui, J.; Nuez, E.F.; Ramos, A.G. Remote sensing of the El Hierro submarine volcanic eruption plume. Int. J. Remote Sens. 2014, 35, 6573–6598. [Google Scholar] [CrossRef]
- Brandl, P.A.; Schmid, F.; Augustin, N.; Grevemeyer, I.; Arculus, R.J.; Devey, C.W.; Petersen, S.; Stewart, M.; Kopp, H.; Hannington, M.D. The 6–8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. J. Volcanol. Geotherm. Res. 2020, 390, 106695. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Mittal, T.; Fauria, K.E.; Subramaniam, A.; Jutzeler, M. Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery. Front. Earth Sci. 2022, 10, 838532. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 9–13. [Google Scholar]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Urai, M.; Machida, S. Discolored seawater detection using ASTER reflectance products: A case study of Satsuma-Iwojima, Japan. Remote Sens. Environ. 2005, 99, 95–104. [Google Scholar] [CrossRef]
- Mantas, V.M.; Pereira, A.; Morais, P.V. Plumes of discolored water of volcanic origin and possible implications for algal communities. The case of the Home Reef eruption of 2006 (Tonga, Southwest Pacific Ocean). Remote Sens. Environ. 2011, 115, 1341–1352. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Chambolle, A. An Algorithm for Total Variation Minimization and Applications. J. Math. Imaging Vis. 2004, 20, 89–97. [Google Scholar] [CrossRef]
- ESA, V.B.; Szantoi, Z.; Gascon, F. Copernicus Sentinel-2 Mission: Calibration and Validation activities. GSICS Q 2020, 14, 1. [Google Scholar]
- Liu, Y.; Xu, B.; Zhi, W.; Hu, C.; Dong, Y.; Jin, S.; Lu, Y.; Chen, T.; Xu, W.; Liu, Y. Space eye on flying aircraft: From Sentinel-2 MSI parallax to hybrid computing. Remote Sens. Environ. 2020, 246, 111867. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Extracting oil slick features from VIIRS nighttime imagery using a Gaussian filter and morphological constraints. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2051–2055. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.J.; Fauria, K.E.; Houghton, B.F.; Carey, R.J. Sink or float: Microtextural controls on the fate of pumice deposition during the 2012 submarine Havre eruption. Bull. Volcanol. 2021, 83, 80. [Google Scholar] [CrossRef]
Study Case | Location | Image | Date |
---|---|---|---|
Case 1 | Fiji Yasawa islands | L1C_T60KWG_A013397_20190929T223009 | 29 September 2019 |
L1C_T60KXG_A013397_20190929T223009 | 29 September 2019 | ||
Case 2 | Hunga Tonga island | L1C_T01KFT_A025423_20220117T215909 | 17 January 2022 |
L1C_T01KET_A025423_20220117T215909 | 17 January 2022 |
Commission Error | Omission Error | |
---|---|---|
Pumice | 0.024 | 0.068 |
Others | 0.065 | 0.022 |
Overall Accuracy = 95.5% | ||
Kappa Coefficient = 0.909 |
Case | Location | Image | Date | References |
---|---|---|---|---|
Volcano 0403-091 eruption in August 2019 | Late Island | L1C_T01KFV_A012696_20190811T220043 | 11 August 2019 | Whiteside et al. [12] Zheng et al. [22] Jutzeler et al. [13] |
L1C_T01KGV_A012696_20190811T220043 | 11 August 2019 | |||
L1C_T01KFV_A012839_20190821T220042 | 21 August 2019 | Whiteside et al. [12] | ||
L1C_T01KEV_A012839_20190821T220042 | 21 August 2019 | |||
Unknown source | Rabaul, Papua New Guinea | L1C_T56MMA_A025138_20200415T001721 | 15 April 2020 | Zheng et al. [22] |
L1C_T56MMA_A016301_20200420T001716 | 20 April 2020 |
Threshold | Determined Values | Test Values | Overall Accuracy | Kappa Coefficient |
---|---|---|---|---|
Tpri | 0.003 | 0.006 | 89.0% | 0.780 |
0 | 92.3% | 0.845 | ||
Tsw | −0.15 | 0 | 84.8% | 0.697 |
−0.3 | 95.0% | 0.900 | ||
Tse | −0.02 | 0 | 94.4% | 0.887 |
−0.04 | 95.3% | 0.906 | ||
Tce | Std_492 | 2 × Std_492 | 94.9% | 0.899 |
0 | 94.7% | 0.893 | ||
T’se | Std_665 | 2 × Std_665 | 94.9% | 0.899 |
0 | 95.0% | 0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Sun, S.; Zhao, J.; Ai, B. Spectral Discrimination of Pumice Rafts in Optical MSI Imagery. Remote Sens. 2022, 14, 5854. https://doi.org/10.3390/rs14225854
Chen X, Sun S, Zhao J, Ai B. Spectral Discrimination of Pumice Rafts in Optical MSI Imagery. Remote Sensing. 2022; 14(22):5854. https://doi.org/10.3390/rs14225854
Chicago/Turabian StyleChen, Xi, Shaojie Sun, Jun Zhao, and Bin Ai. 2022. "Spectral Discrimination of Pumice Rafts in Optical MSI Imagery" Remote Sensing 14, no. 22: 5854. https://doi.org/10.3390/rs14225854
APA StyleChen, X., Sun, S., Zhao, J., & Ai, B. (2022). Spectral Discrimination of Pumice Rafts in Optical MSI Imagery. Remote Sensing, 14(22), 5854. https://doi.org/10.3390/rs14225854