Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = pumice raft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8670 KiB  
Article
Spectral Discrimination of Pumice Rafts in Optical MSI Imagery
by Xi Chen, Shaojie Sun, Jun Zhao and Bin Ai
Remote Sens. 2022, 14(22), 5854; https://doi.org/10.3390/rs14225854 - 18 Nov 2022
Cited by 1 | Viewed by 2184
Abstract
Pumice rafts are considered to be a long-range drifting agent that promotes material exchange and the dispersal of marine species. Large ones can also interfere with vessel navigation and have a negative impact on the social economy and marine ecosystems. Synoptic observations from [...] Read more.
Pumice rafts are considered to be a long-range drifting agent that promotes material exchange and the dispersal of marine species. Large ones can also interfere with vessel navigation and have a negative impact on the social economy and marine ecosystems. Synoptic observations from the Multispectral Instrument (MSI) on-board Sentinel-2, with a spatial resolution of up to 10 m, provide an excellent means to monitor and track pumice rafts. In this study, the use of a Spectral-Feature-Based Extraction (SFBE) algorithm to automatically discriminate and extract pumice on the ocean surface from submarine volcano eruptions was proposed. Specifically, a Pumice Raft Index (PRI) was developed based on the spectral signatures of pumice in MSI imagery to identify potential pumice features. After pre-processing, the PRI image was then subjected to a series of per-pixel and object-based processes to rule out false-positive detections, including shallow water, striped edges, mudflats, and cloud edges. The SFBE algorithm showed excellent performance in extracting pumice rafts and was successfully applied to extract pumice rafts near the Fiji Yasawa islands in 2019 and Hunga Tonga island in 2022, with an overall pumice extraction accuracy of 95.5% and a proportion of pixels mis-extracted as pumice of <3%. The robustness of the algorithm has also been tested and proved through applying it to data and comparing its output to results from previous studies. The timely and accurate detection of pumice using the algorithm proposed here is expected to provide important information to aid in response actions and ecological assessments, and will lead to a better understanding of the fate of pumice. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

15 pages, 3147 KiB  
Article
Automatic Detection of Optical Signatures within and around Floating Tonga-Fiji Pumice Rafts Using MODIS, VIIRS, and OLCI Satellite Sensors
by Andra Whiteside, Cécile Dupouy, Awnesh Singh, Robert Frouin, Christophe Menkes and Jerome Lefèvre
Remote Sens. 2021, 13(3), 501; https://doi.org/10.3390/rs13030501 - 31 Jan 2021
Cited by 8 | Viewed by 4418
Abstract
An underwater volcanic eruption off the Vava’u island group in Tonga on 7 August 2019 resulted in the creation of floating pumice on the ocean’s surface extending over an area of 150 km2. The pumice’s far-reaching effects from its origin in [...] Read more.
An underwater volcanic eruption off the Vava’u island group in Tonga on 7 August 2019 resulted in the creation of floating pumice on the ocean’s surface extending over an area of 150 km2. The pumice’s far-reaching effects from its origin in the Tonga region to Fiji and the methods of automatic detection using satellite imagery are described, making it possible to track the westward drift of the pumice raft over 43 days. Level 2 Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), Sentinel-3 Ocean and Land Color Instrument (OLCI), and Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) imagery of sea surface temperature, chlorophyll-a concentration, quasi-surface (i.e., Rayleigh-corrected) reflectance, and remote sensing reflectance were used to distinguish consolidated and fragmented rafts as well as discolored and mesotrophic waters. The rafts were detected by a 1 to 3.5 °C enhancement in the MODIS-derived “sea surface temperature” due to the emissivity difference of the raft material. Large plumes of discolored waters, characterized by higher satellite reflectance/backscattering of particles in the blue than surrounding waters (and corresponding to either submersed pumice or associated white minerals), were associated with the rafts. The discolored waters had relatively lower chlorophyll-a concentration, but this was artificial, resulting from the higher blue/red reflectance ratio caused by the reflective pumice particles. Mesotrophic waters were scarce in the region of the pumice rafts, presumably due to the absence of phytoplanktonic response to a silicium-rich pumice environment in these tropical oligotrophic environments. As beach accumulations around Pacific islands surrounded by coral shoals are a recurrent phenomenon that finds its origin far east in the ocean along the Tongan trench, monitoring the events from space, as demonstrated for the 7 August 2019 eruption, might help mitigate their potential economic impacts. Full article
(This article belongs to the Special Issue Atmospheric Correction for Remotely Sensed Ocean Color Data)
Show Figures

Graphical abstract

Back to TopTop