Recognition of Ballistic Targets by Fusing Micro-Motion Features with Networks
Abstract
:1. Introduction
- For the inputted TR map and TF spectrogram, we propose a novel feature extraction module based on 1D convolution and the TSA module. The former is used to extract the multi-level features of range and frequency and the latter is used to obtain the global temporal information of range sequence and frequency sequence.
- We propose a novel optimization method named DGCCA-CL—a method to learn nonlinear transformations and minimize the intra-class distances of the deep features of multi-modality data, such that the resulting transformations are maximally informative of each other.
- A novel recognition method of ballistic targets by fusing micro-motion features is proposed and the validity and robustness of our method are verified through a series of simulation results.
2. Related Work
- A.
- micro-motion feature extraction based on network
- B.
- features fusion recognition
3. Model
3.1. Micro-Motion Model
3.2. Signal Model
4. Method
4.1. Feature Extraction Module Based on 1D Convolution and TSA
4.1.1. D-MFF Module
4.1.2. TSA Module
4.2. DGCCA-CL Module
4.3. Attention Mechanism-Based Classifier
Algorithm 1: Training the proposed model |
Input: Training dataset regularization rate learning rate , and number of iterations T Output: Projection matrices , parameters of , parameter of the attention mechanism-based classifier t = 1 while: Validation loss does not converge or t ≦ T Step 1. Calculate ← Step 2. Training and using Step 3. Training and using t ← t + 1 end while |
5. Experiment Setup and Dataset
5.1. Dataset Generation
5.2. Simulation Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Y.; Zhang, Q.; Yuan, N.; Zhu, F.; Gu, F. Three-Dimensional Precession Feature Extraction of Space Targets. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1313–1329. [Google Scholar] [CrossRef]
- Bai, X.; Xing, M.; Zhou, F.; Bao, Z. High-Resolution Three-Dimensional Imaging of Spinning Space Debris. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2352–2362. [Google Scholar] [CrossRef]
- Chen, J.; Xu, S.; Chen, Z. Convolutional neural network for classifying space target of the same shape by using RCS time series. IET Radar Sonar Navig. 2018, 12, 1268–1275. [Google Scholar] [CrossRef]
- Mai, Y.; Zhang, S.; Jiang, W.; Zhang, C.; Liu, Y.; Li, X. ISAR Imaging of Target Exhibiting Micro-Motion with Sparse Aperture via Model-Driven Deep Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Lundén, J.; Koivunen, V. Deep learning for HRRP-based target recognition in multistatic radar systems. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–6. [Google Scholar]
- Chen, V.; Li, F.; Ho, S.-S.; Wechsler, H. Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Q.; Qiu, C.; Liang, X.; Li, K. Micro-Doppler Effect Analysis and Feature Extraction in ISAR Imaging with Stepped-Frequency Chirp Signals. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2087–2098. [Google Scholar] [CrossRef]
- Zhao, M.-M.; Zhang, Q.; Luo, Y.; Sun, L. Micromotion Feature Extraction and Distinguishing of Space Group Targets. IEEE Geosci. Remote Sens. Lett. 2017, 14, 174–178. [Google Scholar] [CrossRef]
- Ai, X.; Xu, Z.; Wu, Q.; Liu, X.; Xiao, S. Parametric Representation and Application of Micro-Doppler Characteristics for Cone-Shaped Space Targets. IEEE Sens. J. 2019, 19, 11839–11849. [Google Scholar] [CrossRef]
- Hanif, A.; Muaz, M.; Hasan, A.; Adeel, M. Micro-Doppler Based Target Recognition with Radars: A Review. IEEE Sens. J. 2022, 22, 2948–2961. [Google Scholar] [CrossRef]
- Guo, X.; Ng, C.S.; de Jong, E.; Smits, A.B. Micro-Doppler based mini-UAV detection with low-cost distributed radar in dense urban environment. In Proceedings of the 2019 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019; pp. 189–192. [Google Scholar]
- Xia, S.; Jiang, H.; Cai, W.; Yang, J.; Zhang, C.; Chen, W. Research on Micro-motion Modeling and Feature Extraction of Passive Bistatic Radar Based on CMMB Signal. J. Phys. Conf. Ser. 2022, 2213, 012013. [Google Scholar] [CrossRef]
- Wang, S.; Li, M.; Yang, T.; Ai, X.; Liu, J.; Andriulli, F.P.; Ding, D. Cone-Shaped Space Target Inertia Characteristics Identification by Deep Learning with Compressed Dataset. IEEE Trans. Antennas Propag. 2022, 70, 5217–5226. [Google Scholar] [CrossRef]
- Choi, I.-O.; Park, S.-H.; Kim, M.; Kang, K.-B.; Kim, K.-T. Efficient discrimination of ballistic targets with micromotions. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1243–1261. [Google Scholar] [CrossRef]
- Persico, A.R.; Clemente, C.; Gaglione, D.; Ilioudis, C.V.; Cao, J.; Pallotta, L.; De Maio, A.; Proudler, I.; Soraghan, J.J. On model, algorithms, and experiment for micro-Doppler-based recognition of ballistic targets. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1088–1108. [Google Scholar] [CrossRef] [Green Version]
- Persico, A.R.; Ilioudis, C.V.; Clemente, C.; Soraghan, J.J. Novel Classification Algorithm for Ballistic Target Based on HRRP Frame. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3168–3189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Li, G.; Clemente, C.; Soraghan, J.J. Multi-aspect micro-Doppler signatures for attitude-independent L/N quotient estimation and its application to helicopter classification. IET Radar Sonar Navig. 2017, 11, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, G. Detection of multiple micro-drones via cadence velocity diagram analysis. Electron. Lett. 2018, 54, 441–443. [Google Scholar] [CrossRef]
- Kim, B.K.; Kang, H.S.; Park, S.O. Drone classification using convolutional neural networks with merged Doppler images. IEEE Geosci. Remote Sens. Lett. 2016, 14, 38–42. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Hu, X.; Zhang, Y. Classification of Space Micromotion Targets with Similar Shapes at Low SNR. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Kim, Y.; Moon, T. Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 8–12. [Google Scholar] [CrossRef]
- Wei, N.; Zhang, L.; Zhang, X. A Weighted Decision-Level Fusion Architecture for Ballistic Target Classification in Midcourse. Phase. Sens. 2022, 22, 6649. [Google Scholar] [CrossRef]
- Tian, X.; Bai, X.; Xue, R.; Qin, R.; Zhou, F. Fusion Recognition of Space Targets with Micromotion. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3116–3125. [Google Scholar] [CrossRef]
- Lee, J.I.; Kim, N.; Min, S.; Kim, J.; Jeong, D.K.; Seo, D.W. Space Target Classification Improvement by Generating Micro-Doppler Signatures Considering Incident Angle. Sensors 2022, 22, 1653. [Google Scholar] [CrossRef]
- Jung, K.; Lee, J.-I.; Kim, N.; Oh, S.; Seo, D.-W. Classification of Space Objects by Using Deep Learning with Micro-Doppler Signature Images. Sensors 2021, 21, 4365. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.O.; Kim, S.H.; Jung, J.H.; Kim, K.T.; Park, S.H. Efficient recognition method for ballistic warheads by the fusion of feature vectors based on flight phase. J. Korean Inst. Electromagn. Eng. Sci. 2019, 30, 487–497. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, W.; Yu, Y.; Turner, K.; Derr, T.; Wang, M.; Ntoutsi, E. Interpretable visual understanding with cognitive attention network. In International Conference on Artificial Neural Networks; Springer: Cham, Switzerland, 2021; pp. 555–568. [Google Scholar]
- Shu, X.; Yang, J.; Yan, R.; Song, Y. Expansion-squeeze-excitation fusion network for elderly activity recognition. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5281–5292. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Y.; Tang, S.; Wu, J.; Li, W. Variational Autoencoder with CCA for Audio-Visual Cross-Modal Retrieval. arXiv 2021, arXiv:2112.02601. [Google Scholar]
- Tahmoush, D. Micro-range micro-Doppler for classification. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–4. [Google Scholar]
- Wang, S.; Song, J.; Lien, J.; Poupyrev, I.; Hilliges, O. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 851–860. [Google Scholar]
- Liu, Q.; Zhang, X.; Liu, Y. Hierarchical Sequential Feature Extraction Network for Radar Target Recognition Based on HRRP. In Proceedings of the 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 20–22 July 2022; pp. 167–171. [Google Scholar]
- Han, L.; Feng, C. Micro-Doppler-based space target recognition with a one-dimensional parallel network. Int. J. Antennas Propag. 2020, 128–135. [Google Scholar] [CrossRef]
- Lei, P.; Wang, J.; Guo, P.; Cai, D. Automatic classification of radar targets with micro-motions using entropy segmentation and time-frequency features. AEU-Int. J. Electron. Commun. 2011, 65, 806–813. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, J.L.; Zheng, W.L.; Lu, B.L. Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 715–729. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, C.; Ji, J.; Li, X. MMF: A Multi-scale MobileNet based fusion method for infrared and visible image. Infrared Phys. Technol. 2021, 119, 103894. [Google Scholar] [CrossRef]
- Liang, T.; Lin, G.; Feng, L.; Zhang, Y.; Lv, F. Attention is not Enough: Mitigating the Distribution Discrepancy in Asynchronous Multimodal Sequence Fusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 8148–8156. [Google Scholar]
- Hou, M.; Tang, J.; Zhang, J.; Kong, W.; Zhao, Q. Deep multimodal multilinear fusion with high-order polynomial pooling. In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32, pp. 12136–12145. [Google Scholar]
- Nguyen, D.K.; Okatani, T. Improved fusion of visual and language representations by dense symmetric co-attention for visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–21 October 2018; pp. 6087–6096. [Google Scholar]
- An, B.; Zhang, W.; Liu, Y. Hand gesture recognition method based on dual-channel convolutional neural network. In Proceedings of the 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021; pp. 529–533. [Google Scholar]
- Zhou, P.; Yang, W.; Chen, W.; Wang, Y.; Jia, J. Modality attention for end-to-end audio-visual speech recognition. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6565–6569. [Google Scholar]
- Zadeh, A.; Chen, M.; Poria, S.; Cambria, E.; Morency, L.-P. Tensor fusion network for multimodal sentiment analysis. arXiv 2017, arXiv:1707.07250. [Google Scholar]
- Qiu, J.-L.; Liu, W.; Lu, B.-L. Multi-view emotion recognition using deep canonical correlation analysis. In International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2018; pp. 221–231. [Google Scholar]
- Lin, W.; Gao, X. Feature fusion for inverse synthetic aperture radar image classification via learning shared hidden space. Electron. Lett. 2021, 57, 986–988. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, Y.; Zhou, F. High-Resolution Radar Imaging in Complex Environments Based on Bayesian Learning with Mixture Models. IEEE Trans. Geosci. Remote Sens. 2019, 57, 972–984. [Google Scholar] [CrossRef]
- Han, X.; Zhong, Y.; Cao, L.; Zhang, L. Pre-trained AlexNetarchitecture with pyramid pooling and supervision for highspatial resolution remote sensing image scene classification. Remote Sens. 2017, 9, 848. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Wang, H.; Hu, Z. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons. Neural Comput. 2018, 30, 447–476. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Hotelling, H. Relations Between Two Sets of Variates. Breakthr. Stat. 1992, 162–190. [Google Scholar] [CrossRef]
- Horst, P. Generalized Canonical Correlations and Their Applications to Experimental Data. J. Clin. Psychol. 1961, 17, 331–347. [Google Scholar] [CrossRef]
- Andrew, G.; Arora, R.; Bilmes, J.; Livescu, K. Deep canonical correlation analysis. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1247–1255. [Google Scholar]
- Benton, A.; Khayrallah, H.; Gujral, B.; Reisinger, D.A.; Zhang, S.; Arora, R. Deep Generalized Canonical Correlation Analysis. In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), Florence, Italy, 15 January 2019; Association for Computational Linguistics: Florence, Italy, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- de Santana Correia, A.; Colombini, E.L. Attention, please! A survey of neural attention models in deep learning. Artif. Intell. Rev. 2022, 1–88. [Google Scholar] [CrossRef]
- Tang, W.; Yu, L.; Wei, Y.; Tong, P. Radar Target Recognition of Ballistic Missile in Complex Scene. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Dai, J.; Wang, J. Recognition of Warheads Based on Features of Range Profiles in Ballistic Missile Defense. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Bai, X.; Bao, Z. Imaging of Rotation-Symmetric Space Targets Based on Electromagnetic Modeling. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1680–1689. [Google Scholar] [CrossRef]
- Yu, T.; Meng, J.; Yuan, J. Multi-View Harmonized Bilinear Network for 3D Object Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 186–194. [Google Scholar] [CrossRef]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-View Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar] [CrossRef]
- Joze HR, V.; Shaban, A.; Iuzzolino, M.L.; Koishida, K. MMTM: Multimodal transfer module for CNN fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13289–13299. [Google Scholar]
- Fu, Z.; Liu, F.; Wang, H.; Qi, J.; Fu, X.; Zhou, A.; Li, Z. A cross-modal fusion network based on self-attention and residual structure for multimodal emotion recognition. arXiv 2022, arXiv:2111.02172. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Target | Initial Elevation Angle (°) | Spin Frequency (Hz) | Precession Frequency (Hz) | Precession Angle (°) | Nutation Frequency (Hz) | Nutation Angle (°) | Tumbling Frequency (Hz) |
---|---|---|---|---|---|---|---|
Warhead 1 | 20:5:50 | 0.25:0.25:3 | 1.5:0.5:3.5 | 3:0.5:6 | 1.5 | 2 | - |
Warhead 2 | 20:5:50 | 0.25:0.25:3 | 1.5:0.5:3.5 | 3:0.5:6 | 2.5 | 3 | - |
Warhead 3 | 20:5:50 | 0.25:0.25:3 | 2.5:0.5:4.5 | 4.5:0.5:7.5 | - | - | - |
Decoy 1 | 20:5:50 | 0.25:0.25:3 | 3.5:0.5:5.5 | 6:0.5:9 | - | - | - |
Decoy 2 | 20:5:50 | - | - | - | - | - | 0.05:0.05:10.5 |
Decoy 3 | 20:5:50 | - | - | - | - | - | 0.05:0.05:10.5 |
Method | Parameters (M) | Input | Accuracy (%) | |
---|---|---|---|---|
Signal channel | Alexnet | 14.59 | TR | 78.96 |
TF | 80.16 | |||
VGG-19 | 83.65 | TR | 82.72 | |
TF | 83.36 | |||
Googlenet | 16.32 | TR | 83.72 | |
TF | 85.75 | |||
Resnet-34 | 21.80 | TR | 87.68 | |
TF | 88.62 | |||
1D-PNet | 6.92 | TR | 87.70 | |
TF | 88.93 | |||
1D-MFF + TSA | 4.32 | TR | 88.33 | |
TF | 89.45 | |||
Dual Channel | DCRNN | 11.38 | TR + TF | 90.86 |
MHBN | 40.71 | TR + TF | 95.61 | |
MVCNN | 23.52 | TR + TF | 93.64 | |
MMTM | 25.94 | TR + TF | 93.92 | |
CFN-SR | 26.30 | TR + TF | 96.03 | |
Method in [44] | 20.00 | TR + TF | 96.23 | |
Proposed method | 9.87 | TR + TF | 98.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, W.; Jiang, W. Recognition of Ballistic Targets by Fusing Micro-Motion Features with Networks. Remote Sens. 2022, 14, 5678. https://doi.org/10.3390/rs14225678
Yang L, Zhang W, Jiang W. Recognition of Ballistic Targets by Fusing Micro-Motion Features with Networks. Remote Sensing. 2022; 14(22):5678. https://doi.org/10.3390/rs14225678
Chicago/Turabian StyleYang, Lei, Wenpeng Zhang, and Weidong Jiang. 2022. "Recognition of Ballistic Targets by Fusing Micro-Motion Features with Networks" Remote Sensing 14, no. 22: 5678. https://doi.org/10.3390/rs14225678
APA StyleYang, L., Zhang, W., & Jiang, W. (2022). Recognition of Ballistic Targets by Fusing Micro-Motion Features with Networks. Remote Sensing, 14(22), 5678. https://doi.org/10.3390/rs14225678