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Abstract: Ballistic target recognition is of great significance for space attack and defense. The micro-
motion features, which contain spatial and motion information, can be regarded as the foundation of
the recognition of ballistic targets. To take full advantage of the micro-motion information of ballistic
targets, this paper proposes a method based on feature fusion to recognize ballistic targets. The
proposed method takes two types of data as input: the time–range (TR) map and the time–frequency
(TF) spectrum. An improved feature extraction module based on 1D convolution and time self-
attention is applied first to extract the multi-level features at each time instant and the global temporal
information. Then, to efficiently fuse the features extracted from the TR map and TF spectrum, deep
generalized canonical correlation analysis with center loss (DGCCA-CL) is proposed to transform the
extracted features into a hidden space. The proposed DGCCA-CL possesses better performance in
two aspects: small intra-class distance and compact representation, which is crucial to the fusion of
multi-modality data. At last, the attention mechanism-based classifier which can adaptively focus
on the important features is employed to give the target types. Experiment results show that the
proposed method outperforms other network-based recognition methods.

Keywords: ballistic target recognition; micro-Doppler; feature fusion; deep generalized canonical
correlation analysis; center loss

1. Introduction

Space target defense is an important aspect of modern combat. Ballistic targets (such
as warheads, decoys, etc.) pose a significant threat to homeland security, and ballistic target
recognition becomes the key to missile defense [1,2]. The common radar signatures used for
ballistic target recognition include radar cross-section (RCS) [3], inverse synthetic aperture
radar (ISAR) image [4], high-resolution range profile (HRRP) map [5], and so on. By
analyzing these radar feature data, parameters such as the structure size, motion trajectory,
and flight speed of the targets can be obtained, and the identification and classification of
the targets can be further realized. However, with the development of target feature control
technology, the decoys released during the flight of ballistic missiles are very close to the
warhead in terms of geometry, flight speed, RCS, etc., which decreases the recognition
performance based on traditional radar features. Additionally, the mining and identification
of the fine features of ballistic targets have become the focus of research.

Micro-motion refers to the small reciprocating motion of the target or its components
in addition to the translation of the main body [6]. Affected by dynamics, ballistic targets
experience micro-motion such as spin, coning, nutation, and tumbling outside of high-
speed translation [7]. Compared with traditional characteristics of ballistic targets, the
micro-motion feature reflects the unique structural information and motion characteristics
of the ballistic targets, which can be regarded as an important basis for the recognition of
ballistic targets [8,9]. Micro-motion causes subtle changes in the range and frequency of
the targets—or scattering center movement—which are known as micro-range and micro-
Doppler [10]. Micro-range is generally represented as HRRP sequence and TR map, while
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micro-Doppler is mainly represented as TF spectrum and cadence velocity diagram (CVD)
map [11]. Currently, ballistic target recognition based on micro-range and micro-Doppler
features has become a major research direction [12,13].

The current ballistic target recognition methods can be mainly divided into two
categories: methods based on manual feature extraction and methods based on neural
network feature extraction. The first category extracts physical features (e.g., target shape,
structure, and motion) for recognition [10,14–16]. Ai et al. proposed a method named
genetic algorithm-general parameterized time–frequency transform (GA-GPTF) to extract
the micro-Doppler curve and estimate parameters accurately, which provided an additional
method for ballistic target recognition [10]. Authors in [15] achieved the classification of
warheads and decoys by computing seven features such as mean, standard deviation, etc., in
the CVD map. Persico et al. proposed a new method based on the inverse Radon transform
of the target signatures to classify different ballistic targets, which was represented by the
feature of micro-range obtained in a whole period of the coning of ballistic targets [16].
However, the methods based on manual feature extraction require features designed by
experts and their performance is limited when the scenario changes.

The second category designs deep neural networks, which automatically learn features
from the training data and achieve recognition. Compared with the methods based on
manual feature extraction, deep networks could automatically draw significant features of
the targets and avoid the impact of human errors on the results, and have been studied by
many scholars [13,17–21]. Kim and Moon creatively used convolutional neural networks
(CNNs) to recognize space targets with the micro-Doppler spectrum [21]. Authors in [13]
used truncated singular value decomposition (SVD) to compress the TF dataset and further
enhance the recognition accuracy of inertia characteristics of the targets by their designed
network. Wang et al. inputted a processed TR map into the designed CNN for recognition,
and the recognition rate of five micro-motion forms under the signal-to-noise ratio (SNR)
of −10 dB reached 80% [20]. However, the above methods use a single feature image of
the micro-motion target for classification, which can cause the unstable performance of
the classifier because the characteristics of targets and the observation parameters of radar
may change.

To improve the stability and robustness of ballistic target recognition, fusion-based
recognition methods are recently proposed, which are mainly divided into the decision-level
fusion method and the feature-level fusion method [22]. The decision-level fusion method
makes decisions by weighted fusion of classification results of different features [22,23].
However, this kind of fusion method loses a large amount of detailed information. Com-
pared with decision-level fusion, feature-level fusion retains the details of different forms
of data and has a stronger expressive ability [24–26]. The feature maps obtained by feeding
the CVD map and TF spectrogram are spliced along the same dimension to achieve the clas-
sification of spatial targets [24,25]. By splicing the targets’ macro-motion and micro-motion
features after weighting, Choi et al. effectively identified targets and decoys [26].

The feature-level fusion method retains the details of different forms of data and has
a strong expressive ability, which is widely used in various fields. Tang et al. proposed a
novel cognitive attention network (CAN) for visual commonsense reasoning to achieve
interpretable visual understanding, which was based on a designed image–text fusion
module to fuse information from images and text collectively and a novel inference module
to encode commonsense among image, query, and response [27]. Authors in [28] proposed
a novel expansion–squeeze–excitation fusion network (ESE-FN) to realize human activity
recognition, which learned modal and channel-wise attention for attentively fusing the
multiple features in the modal and channel-wise ways. To realize audiovisual cross-modal
retrieval, Zhang et al. constructed a joint embedding subspace for the input audio data
and visual data, in which the mutuality of audiovisual information was reinforced and
the cross-modal discrepancy from inter-modal information was simultaneously eliminated.
In addition, the proposed architecture was verified appreciably better than the existing
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cross-modal retrieval methods by experiments [29]. No research has yet proved that these
fusion methods can be applied to the field of ballistic target recognition.

In conclusion, the current ballistic target recognition methods have the following
two problems: (1) Most of the micro-motion target recognition methods based on deep
networks are directly migrated from the field of optical image target recognition, ignoring
the characteristics of micro-motion feature data. Not only is the interpretability poor, but
there is still improvement needed in the optimization and extraction of features. (2) Current
fusion recognition methods for micro-motion targets possess the problem of losing a large
amount of target detail information or ignoring the intrinsic relationship among feature
vectors, and the recognition performance and robustness are poor.

To solve the above problems and make good use of the micro-motion information of
the ballistic targets, we propose a feature fusion-based ballistic target recognition method
which contains the feature extraction module, DGCCA-CL module, and the attention
mechanism-based classifier. Specifically, we treat the TR map and TF spectrogram as a
high-dimensional time series, and the one-dimensional range sequence and frequency
sequence are obtained at each time instant, respectively. Then, we use the designed feature
extraction module to extract the features of the TR and TF time series, respectively, which
outputs a two-channel range and frequency features. The feature extraction module firstly
extracts the multi-level features of range and frequency, respectively, through the designed
module named one-dimensional multi-level features fusion (1D-MFF), and then uses
the time self-attention (TSA) module to extract their global temporal information. The
DGCCA-CL module enhances the correlation of the output features of the two channels
by mapping them into a shared hidden subspace, and reduces the variance of features
within classes by penalizing the distance between the deep features and their corresponding
class centers. The attention mechanism-based classifier, which can adaptively select the
important features of the two-channel range and frequency features, is employed to provide
the final classification results. Our main contributions are as follows:

1. For the inputted TR map and TF spectrogram, we propose a novel feature extraction
module based on 1D convolution and the TSA module. The former is used to extract
the multi-level features of range and frequency and the latter is used to obtain the
global temporal information of range sequence and frequency sequence.

2. We propose a novel optimization method named DGCCA-CL—a method to learn
nonlinear transformations and minimize the intra-class distances of the deep fea-
tures of multi-modality data, such that the resulting transformations are maximally
informative of each other.

3. A novel recognition method of ballistic targets by fusing micro-motion features is
proposed and the validity and robustness of our method are verified through a series
of simulation results.

The paper is organized as follows. Section 2 introduces the related work. Section 3
establishes the micro-motion model and signal model of ballistic targets. Section 4 intro-
duces the proposed method in detail. Section 5 establishes a simulation dataset and verifies
the validity of the proposed method through multiple groups of experiments. Section 6
discusses and analyzes the experimental results. Section 7 presents the conclusion.

2. Related Work

We survey some works related to micro-motion feature extraction based on network
and features fusion recognition.

A. micro-motion feature extraction based on network

Compared with manual feature extraction, feature extraction methods based on neural
networks can automatically extract significant features of the targets and avoid the impact
of human errors on the results, which has become the main manner of feature extraction
in micro-motion target recognition methods. Current micro-motion feature extraction
methods based on neural networks are mostly performed by CNN [19–26,30,31]. Wang et al.
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performed feature extraction on the TR map based on the designed CNN [20], and Kim et al.
used Googlenet to perform feature extraction on the CVD map of the targets [19]. However,
these methods are directly migrated from the field of optical image target recognition,
ignoring the unique feature information of radar images, and the interpretability is poor.
To solve the problem, Wang et al. combined the advantages of CNN and recurrent neural
network (RNN), which can simultaneously extract range-Doppler features and time series
features of gesture motion repressively [32]. Authors in [33] used long short-term memory
(LSTM) to extract time sequential features of HRRP sequences. Han et al. used a one-
dimensional convolutional neural network to extract the features of the frequency, and then
used LSTM to extract the time series features among frequencies, which achieves better
results compared to other classic CNNs [34].

In this work, the TF spectrogram and TR map that reflect the change of micro-motion
speed and micro-motion range of the targets are used for recognition. It is important to
extract the temporal features and select the most significant information. Though existing
networks can process this type of data to some extent, they are not well-designed, leading
to redundant parameters or low recognition performance. In view of this, we first design
a novel feature extraction module based on 1D convolution and the time self-attention
(TSA) module. The 1D convolution is used to extract the multi-level features of range
and frequency, respectively, and then the TSA module is used to extract their global
temporal information.

B. features fusion recognition

Because feature fusion can combine and utilize the detailed information of multiple
modalities, it is widely used in visual understanding, cross-modal retrieval, emotion analy-
sis, target recognition, and other fields [27–29,35–39]. As one of the important applications,
recognition based on feature fusion has attracted more and more scholars’ attention and
research. Some works [25,40,41] fused and recognized the features extracted from different
modal data through simple splicing, which easily lead to data redundancy. Zhou et al.
added an attention mechanism to highlight the weight of different modal features on
classification when splicing features [41]. However, the above methods do not consider the
relevant information between modal features and ignore the internal relationship among
eigenvectors. To use the relevant information between different modal features, Zadeh et al.
calculated the correlation between elements of different modalities through the tensor
outer product between modalities for feature fusion [38]. Hou et al. proposed a feature
fusion method named polynomial tensor pool block (PTP), which multiplied each tensor
connection by order P and then performed low-order decomposition. It could describe
the local and global correlation between multimodal data at the fine-grained level [42].
However, the above matrix methods greatly increased the dimension of the feature vector,
causing the models to be too large and difficult to train.

The fusion recognition methods based on typical correlation analysis (CCA) extract
the relevant features of different modal feature data by maximizing their correlation in
subspace. Qiu et al. adopted deep canonical correlation analysis (DCCA) for multimodal
emotion recognition and obtained significant performance improvement with respect to
three emotion recognition tasks [43]. However, DCCA can only maximize the correlation
between two different modalities due to the limitation of the CCA constraint. To extend
DCCA from two modalities to arbitrarily numerous modalities, Lin et al. introduce deep
generalized correlation constraints analysis (DGCCA) to ISAR image classification [44].
However, DGCCA-based fusion methods ignore the role of label information in supervised
classification. To utilize the label information of the data and enhance the clustering effect
in supervised classification, in this paper, we propose the DGCCA-CL module, which
introduces center loss on the basis of DGCCA. At the same time, we design an attention-
based classifier to achieve the effective classification of ballistic targets by adaptively
assigning weights to different modalities.
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3. Model
3.1. Micro-Motion Model

The micro-motion forms of space ballistic targets include spin, coning, nutation, and
tumbling. Radar targets can generally be represented by multiple scattering centers. In the
local coordinate system of target, we make pl = [xl , yl , zl ]

T represent the initial position of
the lth scattering center, ψ represents the direction vector of radar line of sight (LOS), and
Rrot(t) represents the motion-dependent rotation matrix. Then, the time-varying position
vector can be represented as Rrot(t)pl . The instantaneous slant range Rl(t) is the inner
product between ψ and Rrot(t)pl , i.e.,:

Rl(t) = 〈Rrot(t)pl , ψ〉 (1)

where 〈 〉 represents the inner product [3].

3.2. Signal Model

According to [45], after range compression, we can obtain the radar echoes as:

g(r, t) = ∑
l

σla
(

2B
c
(r− ∆Rl(t))

)
· exp

(
−j

4π

λ
∆Rl(t)

)
(2)

where σl is the back-scattering coefficient of the lth scattering center, a(0) = 1 and the
rest depends on the autocorrelation or other filtering of the waveform, B is the signal
bandwidth, c is the light speed, ∆Rl(t) = Rl(t)− Rre f is the slant range between the lth
scattering center and the distance Rre f of the reference point, λ = c/ fc is the wavelength of
the transmitted signal, and fc is the carrier frequency. By summing the echoes along the
range bin, the target echoes of narrowband radar can be generated as:

gn(t) = ∑
l

σl exp
(
−j

4π

λ
∆Rl(t)

)
(3)

As an effective time–frequency transform method, short-time Fourier transform (STFT)
is usually applied to the radar echo to obtain the time–frequency spectrogram. The main
idea is that a window function h(t) is used to extract the signal in a small time interval,
and then a fast Fourier transform (FFT) is used to analyze the signal frequency in each time
interval. By applying STFT to the radar echo gn(t), the time–frequency distribution can be
represented as:

STFT(t1, ω) =
∫

gn
(
t′
)
h
(
t1 − t′

)
exp

(
−jωt′

)
dt′ (4)

where t1 and ω represent the time and Doppler variables, respectively.

4. Method

The overall network architecture of the proposed method can be shown in Figure 1,
which includes the feature extraction module based on 1D convolution and TSA, the
DGCCA-CL module, and the attention mechanism-based classifier. For the input TR
map and TF spectrogram, firstly they are divided into the range sequence and frequency
sequence in the time dimension, respectively, and then the multi-level features of range
and frequency are extracted and further fused in the 1D-MFF module, and their temporal
relationships are extracted by the TSA module, respectively. The DGCCA-CL module
maps the output features of the two channels into a shared hidden subspace for unified
representation and reduces the differences in intra-class features at the same time. In the
attention mechanism-based classifier module, the adaptive feature fusion is carried out on
the features of two channels by using the attention mechanism, and the classification is
achieved with the softmax function.
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4.1. Feature Extraction Module Based on 1D Convolution and TSA

Unlike the popular 2D convolution used in computer vision, we would like to use 1D
convolution to extract the feature data of micro-motion at each instant. Furthermore, the
temporal correlation information can be preserved for subsequent processing. In this paper,
we treat the TR map and the TF spectrogram as a high-dimensional time series, i.e., at each
time instant, we have a one-dimensional range sequence and frequency sequence. The
feature extraction module includes the 1D-MFF module and the TSA module. The 1D-MFF
module is used to extract and fuse the range and frequency features at different levels,
respectively. In addition, the TSA module extracts the global temporal information among
1D feature map sequence of range and frequency, respectively. In the previous image
recognition networks, the convolutional layer often adopts a two-dimensional structure
and ignores the temporal correlation among the range sequence and frequency sequence,
which is related to the motion of targets.

Taking the input TF spectrogram as an example, firstly, the input TF spectrogram
F ∈ R3×F×N is divided into one-dimensional sequence F1, F2 · · · FN ∈ R3×F×1 along
the time dimension, where F and N represent the height and width of the input TF spectro-
gram, respectively. For each one-dimensional feature map Fi (i = 1, 2 · · · N), the 1D-MFF
module is used to extract and fuse its features of different levels to acquire feature maps
F1
′, F2

′ · · · FN
′. Then we concatenate the obtained feature maps along the time dimen-

sion and the output feature sequence is F ′ ∈ R256×1×N , which is obtained by:

F ′ = Concat(F1
′, F2

′ · · · FN
′) (5)

Then, the TSA module is used to exploit the relation of one-dimensional sequence to
capture the global temporal cue:

F ′t f = TSA(F ′) (6)

In the same way, the feature F ′tr can be obtained by taking the TR map as input.

4.1.1. D-MFF Module

Deep learning has successfully played a significant role in the domain of object recog-
nition. As a method of deep learning, CNN transforms original data into more abstract
features via a nonlinear model. Many scholars have designed CNNs with different struc-
tures to achieve target classification, such as Alexnet [46], VGG-19 [47], Googlenet [48], and
Resnet-34 [49].

Unfortunately, these networks perform classification by extracting deep features
through a deep frame structure that ignores details contained in shallow features and
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does not reflect frequency change information over time. In order to utilize the shallow
and deep features of the original image, we introduce one-dimensional multi-level features
fusion (1D-MFF).

Figure 2 shows the structure of the 1D-MFF module, in which the input one-dimensional
feature map Fi (i = 1, 2 · · · N) proceeds sequentially through four one-dimensional con-
volution layers, extracting features at different depth levels to obtain feature maps Fi_1,
Fi_2, Fi_3, and Fi_4. The feature maps obtained by different layers of convolution layers
contain features with different details and semantic information. Fi_1, Fi_2, Fi_3, and Fi_4
are converted into feature maps F ′

i_1
∈ R32×1×1, F ′

i_2
∈ R128×1×1, F ′

i_3
∈ R512×1×1, and

F ′
i_4
∈ R2048×1×1 through the adaptive global average pooling. Then, F ′

i_1
, F ′

i_2
, F ′

i_3
, and

F ′
i_4

are spliced along the channel dimension and, finally, are fused and compressed through
1 × 1 convolution.
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4.1.2. TSA Module

Inspired by the good performance of the self-attention mechanism [50] in spatial
context modeling, we generalize it to capture the context–temporal relation among the 1D
feature sequence. Based on the relation, we can further obtain the global temporal cue.

1D feature sequenceF ′ is linearly mapped with two parameter matrices Wb ∈ RDb×256

and Wh ∈ RDh×256 with the same dimension to obtain feature maps B and H. The transpose
of B and H are multiplied and the result is normalized by the softmax function to obtain the
attention mask M, which stores the contextual relation among all the frequency features.
The process can be represented as:

M = Softmax

(
(Wb · F ′)

T · (Wh · F ′)√
Db

)
(7)
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Finally, M is applied to re-weight K to embed extra global temporal cue, where K
is obtained by multiplying the parameter matrix Wk ∈ R256×256 and F ′. At the same
time, the residual structure is introduced to add supplementary information to the original
feature F ′ point by point, and accelerate the training of network. The calculation formula
is as follows:

F ′t f = F
′ + K ·M (8)

4.2. DGCCA-CL Module

Multi-modal data of the same target often possess a large difference in low-level
features, but have a strong correlation in high-level semantic space. Based on this idea,
subspace learning can be generated from a shared hidden space by assuming high-level
correlated features of multi-modal data. The shared hidden space composes the high-level
semantic representations. In addition, we can better handle the redundancy of data and
complementarity of multi-source information based on a unified representation in the
shared hidden space.

As a typical subspace learning method, canonical correlation analysis (CCA) was first
proposed in 1936 [51]. The main idea is to find the paired projection for different views
to maximize the correlation between them. There are currently many improvements and
applications based on CCA. To overcome the limitation that CCA can only compute the
correlation between two views, generalized canonical correlation analysis (GCCA) [52] ex-
tracts correlated features by projecting features from multiple views into a shared subspace.
However, in many practical applications, the true relationship between views may be
nonlinear. Deep canonical correlation analysis (DCCA) [53] and deep generalized canonical
correlation analysis (DGCCA) [54] use the neural network to draw nonlinear features of
different view data for projection on the basis of CCA and GCCA, respectively. However,
in the above methods, the application of labels in supervised classification is ignored.

To utilize the label information of the data and enhance the clustering effect in super-
vised classification, we propose the DGCCA-CL module, which introduces center loss on
the basis of DGCCA. For the samples of each class, center loss studies a center of the deep
features and penalizes the distance between the deep features of the samples’ data in the
same modality and their corresponding class centers. DGCCA-CL enhances the intra-class
correlation and reduces the variance of features within classes on the basis of DGCCA.

Let X1, X2, . . . Xm represent the input data of m modalities and Xp ∈ Rd×n (p = 1,
2, . . . m) indicate the instance for the pth modality. n is the number of instances and d
represents the dimensions of extracted features. fp(Xp) ∈ Ro×n represents the output
feature that Xp goes through the feature extraction module and fp(Xpq) ∈ Ro is the output
feature of qth instance in Xp (in this paper, m is equal to 2, f1(X1q) and f1(X1q) represents the
output features of the TR map and TF spectrogram though the feature extraction module,
respectively). The DGCCA-CL function can be represented as:

Lcorr =
m
∑

p=1

[
‖ G−U>p fp

(
Xp
)
‖2

F
+ 1

2n

n
∑

q=1
‖ fp

(
Xpq

)
− cpyq ‖

2
2

]
,

subject to GG> = I,
(9)

where G ∈ Rr×n represents the shared representation, Up ∈ Ro×r represents a linear
transformation of the pth modality, r represents the size of the projection to the subspace
dimension, and cpyq ∈ Ro represents the yq

th class center of deep features.

According to [54], we can solve the solution of
m
∑

p=1
‖G−U>p fp(Xp)‖

2
F

by solving an

eigenvalue problem. Specifically, a scaled empirical covariance matrix of the pth network
output can be defined as Cpp = fp(Xp) fp(Xp)

T ∈ Ro×o; Pp = fp(Xp)
TC−1

pp fp(Xp) ∈ Rn×n

is the corresponding projection matrix. It is easy to determine that Pp is symmetric and
idempotent. Because Pp is positive semidefinite, D = ∑m

p=1 Pp is also positive semidefinite.
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It is obvious that the rows of G are the top r (orthonormal) eigenvectors of D, and Up =
C−1

pp fp(Xp)GT . Then, the objective function can be written as:

m

∑
p=1

[
‖ G−U>p fp

(
Xp
)
‖2

F
+

1
2n

n

∑
q=1
‖ fp

(
Xpq

)
− cpyq ‖

2
2

]

=
m

∑
p=1
‖ G− G fp

(
Xp
)>C−1

pp fp
(
Xp
)
‖

2

F
+

1
2n

m

∑
p=1

n

∑
q=1
‖ fp

(
Xpq

)
− cpyq ‖

2
2

= mr− Tr
(

GDG>
)
+

1
2n

m

∑
p=1

n

∑
q=1
‖ fp

(
Xpq

)
− cpyq ‖

2
2

(10)

By taking the derivative of Lcorr with respect to fp(Xp), we obtain the following:

∂Lcorr
∂ fp(Xp)

=
∂(mr−Tr(GDG>))

∂ fp(Xp)

= 2UpG− 2UpUT
p fp(Xp)

(11)

And the gradients of Lcorr with respect to fp(Xpq) and update equation of cpyq are
computed as:

∂Lcorr

∂ fp(Xpq)
=

1
n

(
fp(Xpq)− cpyq

)
(12)

∆cpj =

n
∑

q=1
δ
(
yq = j

)
·
(
cpq − fp

(
Xpq

))
1 +

m
∑

q=1
δ
(
yq = j

) (13)

where δ(condition) = 1 if the condition is satisfied, and δ(condition) = 0 if not.
For the gradient of 2UpG− 2UpUT

p fp(Xp), the gradient is the difference between the
r-dimensional auxiliary representation G embedded into the subspace spanned by the
columns of Up (the first term) and the projection of the actual data in fp(Xp) onto the
subspace mentioned above (the second term). Intuitively, if the auxiliary representation G
is far away from the modal-specific representation UT

p fp(Xp), then the network weights

will receive a large update. For the gradient of 1
n

(
fp(Xpq)− cpyq

)
, if the extracted features

are far from the center point of the class, it will also receive a larger update.

4.3. Attention Mechanism-Based Classifier

In recent years, the neural networks based on the attention mechanism have been ap-
plied successfully in multiple domains such as text translation, object recognition, etc. [55].
We propose an attention mechanism-based classifier for multi-modality ballistic target
classification. The purpose of the attention mechanism-based classifier is to adaptively
select the important features of the two-channel range and frequency features, and to
provide a more efficient fuse recognition result.

Let Fq ∈ Ro×m represent a matrix consisting of the qth instance of each output layer[
f1(X1q), f2(X2q), . . . fm(Xmq)

]
, where fp(Xp) is the output features of pth modality. The

joint representation of all the qth instances is formed by the weighted sum of the vectors
in Fq:

β = sigmoid(Fq) (14)

α = softmax(wT β) (15)

rq = FqαT (16)

where w ∈ Ro is the trained parameter vector and wT is the transpose of w. The dimensions
of α and rq are m and o, respectively.
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In this model, a softmax classifier is used to predict the label
∧
yq for the fusion-

extracted features:
p
(
yq = c

∣∣rq
)
= softmax

(
WT

c rj + bc

)
(17)

∧
yq =

J
argmax

c=1
p
(
yq = c

∣∣rq
)

(18)

The model is trained using cross entropy, which can be defined as follows:

Lce =
1
n

n

∑
q=1

CrossEntropy
(

yq,
∧
yq

)
(19)

In Algorithm 1, we sum up the learning details of our method.

Algorithm 1: Training the proposed model

Input: Training dataset f1(X1), f2(X2), . . . fm(Xm)
regularization rate η learning rate ξ, and number of iterations T

Output: Projection matrices U1, U2, . . . Um, cpyq , parameters θp of fp, parameter θ of the
attention mechanism-based classifier

t = 1
while: Validation loss does not converge or t 5 T

Step 1. Calculate U1, U2, . . . Um, G

Lcorr =
m
∑

p=1

[
‖ G−U>p fp

(
Xp
)
‖2

F
+ 1

2n

n
∑

q=1
‖ fp

(
Xpq

)
− cpyq ‖

2
2

]
U1, U2, . . . Um, G← argmin

U1,...,Um ,Uy ,G
Lcorr

Step 2. Training θi and cpyq using Lcorr
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Because it is hard to acquire the real measurement data of the ballistic targets, and 

the traditional radar cross-section measurement method in the darkroom requires the in-

stallation of expensive sensors and supporting facilities and environment, which is une-

conomical and difficult to implement [56], we use the electromagnetic calculation tool to 

acquire the dynamic RCS echo of the targets, and then process the data set according to 

the method in Section 3. Finally, we design multiple sets of experiments to confirm the 

validity of our method for micro-motion target recognition. 

5.1. Dataset Generation 

In the experiment, we construct 3D models of three typical warheads and three com-

mon decoys with the same surface material, and set their micro-motion parameters ac-

cording to the existing literature [14]. Figure 3 shows the 3D models of six targets, named 

warhead 1, warhead 2, warhead 3, decoy 1 (conical decoy), decoy 2 (cylindrical decoy), 

and decoy 3 (spherical decoy). The specific micro-motion parameters of the six targets can 

be shown in Table 1, in which warhead 1 and warhead 2 perform nutation motion, 

fp(Xp)Lcorr ← 2UpG− 2UpUT
p fp(Xp)
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Step 3. Training θp and θ using Lce

θp ← (1− η)θp − ξ
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5. Experiment Setup and Dataset

Because it is hard to acquire the real measurement data of the ballistic targets, and
the traditional radar cross-section measurement method in the darkroom requires the
installation of expensive sensors and supporting facilities and environment, which is
uneconomical and difficult to implement [56], we use the electromagnetic calculation tool
to acquire the dynamic RCS echo of the targets, and then process the data set according
to the method in Section 3. Finally, we design multiple sets of experiments to confirm the
validity of our method for micro-motion target recognition.

5.1. Dataset Generation

In the experiment, we construct 3D models of three typical warheads and three
common decoys with the same surface material, and set their micro-motion parameters
according to the existing literature [14]. Figure 3 shows the 3D models of six targets, named
warhead 1, warhead 2, warhead 3, decoy 1 (conical decoy), decoy 2 (cylindrical decoy), and
decoy 3 (spherical decoy). The specific micro-motion parameters of the six targets can be
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shown in Table 1, in which warhead 1 and warhead 2 perform nutation motion, warhead 3
and decoy 1 perform coning motion, and decoy 2 and decoy 3 perform tumbling motion.
We obtained 14,700 examples altogether.
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Figure 3. The geometric models of the six targets. (a) Warhead 1; (b) warhead 2; (c) warhead 3;
(d) decoy 1; (e) decoy 2; (f) decoy 3.

Since the six targets are rotationally symmetric and axisymmetric, the azimuth of the
target can be fixed as 0 degrees; the radar LOS is changed from 0 degrees to 360 degrees. In
addition, the interval is 0.2 degrees of the local coordinate system. Moreover, the operating
frequency of the radar is set to X band (8–12 GHz), which can detect centimeter-level
displacement changes when the targets move [57]. The physical optics method was used to
calculate the static RCS data of the six targets. The static RCS (dB) of six targets with the
radar frequency of 10Ghz is shown in Figure 4. Figure 5 shows the variation of six targets’
wideband HRRPs with the elevation angle.
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Table 1. Setting of the micro-motion parameters.

Target
Initial

Elevation
Angle (◦)

Spin
Frequency

(Hz)

Precession
Frequency

(Hz)

Precession
Angle (◦)

Nutation
Frequency

(Hz)

Nutation
Angle (◦)

Tumbling
Frequency

(Hz)

Warhead 1 20:5:50 0.25:0.25:3 1.5:0.5:3.5 3:0.5:6 1.5 2 -

Warhead 2 20:5:50 0.25:0.25:3 1.5:0.5:3.5 3:0.5:6 2.5 3 -

Warhead 3 20:5:50 0.25:0.25:3 2.5:0.5:4.5 4.5:0.5:7.5 - - -

Decoy 1 20:5:50 0.25:0.25:3 3.5:0.5:5.5 6:0.5:9 - - -

Decoy 2 20:5:50 - - - - - 0.05:0.05:10.5

Decoy 3 20:5:50 - - - - - 0.05:0.05:10.5
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Figure 4. Variation of the static RCS (dB) of six targets with the elevation angle. (a) Warhead 1;
(b) warhead 2; (c) warhead 3; (d) decoy 1; (e) decoy 2; (f) decoy 3.

In order to obtain the dynamic RCS sequence when the targets move, we adopt the
correlation angle method with short time-consumption and high accuracy for symmetric
structural targets [25]. This method is not concerned with turning the target in the actual
direction. Specifically, for all possible incident angles, a lookup table is used to configure
the RCS value of a fixed-direction target and the relative angle between the incident angle;
the direction of the object is used as an input parameter. To avoid Doppler ambiguity, the
PRF is 600 and the observation time is 2 s.

By calculating the equivalent elevation angle (that is, the angle between the radar LOS
and the target rotational symmetry axis) [58], the corresponding broadband range static
data is obtained, and the dynamic echo matrix is generated. Finally, the dynamic data
matrix is processed to obtain the TR maps and TF spectrums of the six targets, as shown in
Figures 6 and 7.
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Figure 7. TF spectrums of the six targets. (a) Warhead 1; (b) warhead 2; (c) warhead 3; (d) decoy 1;
(e) decoy 2; (f) decoy 3.

5.2. Simulation Results

To verify the effectiveness of the proposed method, we randomly divide the TR map
and TF spectrogram data set into the training set and test set with a ratio of 7:3. The training
set and test set contain 10,290 and 4410 samples, respectively. Four classic signal channel
CNNs are selected for comparison: Alexnet, VGG-19, Googlenet, and Resnet-34. We
select ballistic target recognition methods that include one-dimensional parallel network
(1D-PNet) [33] and dual-channel residual neural network (DCRNN) [40]. At the same
time, we select three kinds of multi-view fusion methods that include the multi-view
harmonized bilinear network (MHBN) [59], the multi-view convolutional neural networks
(MVCNN) [60], multimodal transfer module (MMTM) [61], cross-modal fusion network
based on self-attention and residual structure (CFN-SR) [62] and the method in [44] that is
based on attention and DGCCA. Table 2 shows the results of the experiment.

From Table 2, we can see that in terms of the single-channel neural networks, the
proposed feature extraction module 1D-MFF+TSA has the least number of parameters. The
accuracy of the single-channel network is higher when the TF spectrum is the input than
the TR map is used as the input, which can be seen that the features of the TF spectrum for
the classification of targets are more separable.

At the same time, we can see that the accuracy of dual-channel networks is higher
than the signal channel networks due to the fusion of the features of the TR map and TF
spectrum in the dual channel, which proves the fundamental advantage of multi-feature
fusion recognition. Increasing the feature information and achieving effective fusion
is conducive for improving the recognition accuracy. In addition, compared with the
advanced micro-motion target recognition methods and multi-modal fusion recognition
methods, the proposed method still has advantages in parameters and recognition accuracy.

To explore the influence of different modules in the proposed method on recognition,
we conduct ablation contrast experiments for the feature extraction module and DGCCA-CL
module, respectively.
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Table 2. Performance comparison of various methods.

Method Parameters (M) Input Accuracy (%)

Signal
channel

Alexnet 14.59
TR 78.96

TF 80.16

VGG-19 83.65
TR 82.72

TF 83.36

Googlenet 16.32
TR 83.72

TF 85.75

Resnet-34 21.80
TR 87.68

TF 88.62

1D-PNet 6.92
TR 87.70

TF 88.93

1D-MFF + TSA 4.32
TR 88.33

TF 89.45

Dual
Channel

DCRNN 11.38 TR + TF 90.86
MHBN 40.71 TR + TF 95.61

MVCNN 23.52 TR + TF 93.64
MMTM 25.94 TR + TF 93.92
CFN-SR 26.30 TR + TF 96.03

Method in [44] 20.00 TR + TF 96.23
Proposed method 9.87 TR + TF 98.91

Figure 8 shows the recognition results of different network structures used for feature
extraction. Due to the fusion of multi-level features and the extraction of the global temporal
cues for the range feature sequence and frequency feature sequence, the proposed method
can achieve a recognition rate of 98.91%.
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Moreover, we research the way that the DGCCA-CL module affects the distribution
of the fused features and recognition. In addition, we use the T-SNE algorithm [63],
which is one of the best feature downscaling and visualization methods to visualize the
distribution of fused features. Figure 9 shows the visualization results with different
methods after optimization.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 23 
 

 

Moreover, we research the way that the DGCCA-CL module affects the distribution 
of the fused features and recognition. In addition, we use the T-SNE algorithm [63], which 
is one of the best feature downscaling and visualization methods to visualize the distri-
bution of fused features. Figure 9 shows the visualization results with different methods 
after optimization. 

It can be seen that the addition of the canonical correlation analysis makes the fea-
tures among classes become more distinguishing than the cross-entropy loss. In addition, 
compared with the DCCA and DGCCA, DGCCA-CL can reduce the distance of intra-class 
features and enhance the discriminative power of deep features significantly. 

 
(a) (b) 

  
(c) (d) 

Figure 9. Feature distributions for different optimization methods. (a) CrossEntropy loss ( ceL ); (b) 

ceL  + DCCA; (c) ceL  + DGCCA; (d) ceL  + DGCCA-CL. ● Warhead 1 ● Warhead 2 ● Warhead 3 ● 

Decoy 1 ● Decoy 2 ● Decoy 3. 

Figure 10 shows the variation of the recognition rate of different optimization meth-
ods with the number of iterations. We can see that the addition of CCA can not only ac-
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Moreover, the network optimized by DGCCA-CL has the fastest convergence rate among 

Figure 9. Feature distributions for different optimization methods. (a) CrossEntropy loss (Lce);
(b) Lce + DCCA; (c) Lce + DGCCA; (d) Lce + DGCCA-CL. • Warhead 1 • Warhead 2 • Warhead 3
• Decoy 1 • Decoy 2 • Decoy 3.

It can be seen that the addition of the canonical correlation analysis makes the fea-
tures among classes become more distinguishing than the cross-entropy loss. In addition,
compared with the DCCA and DGCCA, DGCCA-CL can reduce the distance of intra-class
features and enhance the discriminative power of deep features significantly.

Figure 10 shows the variation of the recognition rate of different optimization methods
with the number of iterations. We can see that the addition of CCA can not only accelerate
the convergence of the network, but also improve the accuracy of the network. Moreover,
the network optimized by DGCCA-CL has the fastest convergence rate among the contrast-
ing subspace methods, and its accuracy increases by about 3% compared with DGCCA.
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For space ballistic target recognition, the SNR is a significant factor affecting the
recognition accuracy. Therefore, to evaluate the robustness of the proposed method to
noise, we add Gaussian noise to raw echoes and obtain five SNRs, i.e., −10 dB, −5 dB, 0 dB,
5 dB, and 10 dB. Finally, we obtain the TR map and TF spectrogram data set with different
SNRs. In addition, the training set and test set with different SNRs are divided in the same
manner as the original data set. Figure 11 shows the specific recognition results.
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As can be seen from Figure 11, the larger the SNR is, the higher the recognition
accuracy of the networks is. When the SNR is in the range of −10~10 dB, the accuracy
of the proposed method for ballistic targets is always higher than in other networks. In
addition, the accuracy of the proposed network for ballistic targets is still higher than 85%
with the SNR of −10 dB. At the same time, we can see that since that DGCCA-CL extracts
TF spectrum features and target-related information from the RT map and discards noises,
the corresponding recognition rate declines more gently when the SNR decreases.

Figure 12 shows the confusion matrix of our method for six targets with the SNR of
−10 dB, which shows the classification effect of our method more clearly. We can see that it
is easier to distinguish decoy 2 and decoy 3 than other targets because the tumbling motion
shows obvious features. Moreover, because of the similarity of coning and nutation and
the similarity of shapes, misclassification mostly happens among warhead 1, warhead 2,
warhead 3, and decoy1.
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6. Discussion

For the input TR map and TF spectrum, this paper first proposes a feature extraction
module based on 1D convolution and time self-attention. Compared with the popular
2D convolution used in target recognition, the proposed feature extraction module uses
1D convolution to extract the feature of micro-motion and further uses time self-attention
to extract the temporal correlation information, which is more explanatory. Experiment
results show that the proposed feature extraction module possesses a lower number of
parameters and higher accuracy than other popular 2D CNNs.

The dual-channel networks possess higher accuracy than the single-channel networks
due to the fusion of the features of the TR map and TF spectrum in the dual channel, which
proves the fundamental advantage of multi-feature fusion recognition. Increasing the
target feature information and achieving effective fusion helps to completely describe the
movement of the target and is conducive to improving the accuracy of recognition.

The addition of CCA can not only accelerate the convergence of the network, but also
improve the recognition rate of the network. The proposed DGCCA-CL module combines
the advantages of CCA and center loss. Because it can extract the relevant deep features
of the two channels and reduce the intra-class instance of instances at the same time, it
presents greater advantages than other methods based on CCA at the convergence speed
of the network and recognition.
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Moreover, based on the above advantages, the proposed method has better robustness
under low SNR, which makes it more applicable in the field of ballistic target recognition.

7. Conclusions

In this paper, we propose a recognition method for ballistic targets based on micro-
motion feature fusion. The proposed method takes the TR map and TF spectrum as
input. The multi-level features with respect to time are extracted through an improved
feature extraction module based on 1D convolution and time self-attention. Then, in
order to combine the TR and TF features efficiently, deep canonical correlation analysis
enhanced with center loss (DGCCA-CL) is proposed to transform the extracted features
into a hidden space. The proposed DGCCA-CL module possesses better performance
for multi-modality feature fusion in two aspects: small intra-class distance and compact
representation. Furthermore, an attention mechanism-based classifier is used to adaptively
select the important features for target recognition.

Compared with previous target recognition methods, it can extract more distinguish-
able micro-motion information from the TR map and the TF spectrum, and further fuse
the features extracted from the two channels, with a higher recognition rate and robust-
ness. Finally, experiment results show that our method outperforms other network-based
recognition methods. The proposed method demonstrates good recognition performance
with the SNR of −10~10 dB, but the recognition rate at low SNR still needs to be improved,
which will become the major work of our next research.
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