Total Phosphorus and Nitrogen Dynamics and Influencing Factors in Dongting Lake Using Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Measurements
2.3. Remote Sensing Data
2.4. Hydrometeorological Data
2.5. Principles and Methods
2.5.1. Principle of Water Quality Inversion
2.5.2. Methods of Water Quality Inversion
- 1
- Optimal feature selection
- 2
- Model establishment and evaluation
3. Results and Analysis
3.1. Feature Selection
3.2. Model Establishment and Accuracy Evaluation
3.3. Long-Time Yearly Spatial Variations of Water Quality
3.4. Seasonal Changes in Water Quality Parameters
3.5. Comparison of Water Quality Change Trends between Wet and Dry Seasons
4. Discussion
4.1. Feasibility of Long-Term Water Quality Retrieval
4.2. Factors Related to TP and TN
4.2.1. Hydrometeorological Effects
4.2.2. Human Activities Effects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Xue, Y.; Liu, P.J.; Liu, J.L.; Sun, Y.R. Annual variation characteristics of eutrophication in Dongting Lake, China. Proc. Inst. Civ. Eng.-Water Manag. 2020, 173, 208–216. [Google Scholar] [CrossRef]
- Ma, J.R.; Deng, J.M.; Qin, B.Q.; Long, S.X. Progress and prospects on cyanobacteria bloom-forming mechanism in lakes. Acta Ecol. Sin. 2013, 33, 3020–3030. [Google Scholar] [CrossRef]
- Steiberg, C.E.W.; Hartmann, H.M. Planktonic bloom forming cyanobacteria and the eutrophication of lake and rivers. Freshw. Biol. 1988, 20, 279–287. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Hou, G.L. Analysis on the Spatial-Temporal Evolution Characteristics and Spatial Network Structure of Tourism Eco-Efficiency in the Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 2577. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Sheng, S.H. Present Situation and Countermeasures of the Environmental Pollution in Dongting Lake. Anhui Agric. Sci. Bull. 2021, 27, 143–145. [Google Scholar] [CrossRef]
- Wang, L.; Bai, H.W. Research review on retrieval of water quality parameters about lake based on remote sensing techniques. GNSS World China 2013, 38, 57–61+72. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Forster, B.C.; Sha, X.W.; Xu, B.D. Remote sensing of sea water quality parameters using Landsat-TM. Int. J. Remote Sens. 1993, 14, 2759–2771. [Google Scholar] [CrossRef]
- Alparslan, E.; Aydöner, C.; Tufekci, V.; Hüseyin, T. Water quality assessment at Ömerli Dam using remote sensing techniques. Environ. Monit. Assess. 2007, 135, 391–398. [Google Scholar] [CrossRef]
- Anttila, S.; Kairesalo, T.; Pellikka, P. A feasible method to assess inaccuracy caused by patchiness in water quality monitoring. Environ. Monit. Assess. 2008, 142, 11–22. [Google Scholar] [CrossRef]
- Li, J.; Pei, Y.Q.; Zhao, S.H.; Xiao, R.L.; Sang, X.; Zhang, C.Y. A Review of Remote Sensing for Environmental Monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.L.; Shi, K.; Zhu, G.W.; Zhou, Y.Q.; Zhang, Y.B.; Guo, Y.L. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci. Total Environ. 2017, 599, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.F.; Lin, C.; Cao, Z.G.; Hu, M.Q.; Xue, K.; Chen, X.; Ma, R.H. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning? Water Res. 2022, 215, 118213. [Google Scholar] [CrossRef] [PubMed]
- He, W.Q.; Chen, S.; Liu, X.H.; Chen, J.N. Water quality monitoring in a slightly-polluted inland water body through remote sensing—Case study of the Guanting Reservoir in Beijing, China. Front. Environ. Sci. Eng. China 2018, 2, 163–171. [Google Scholar] [CrossRef]
- Wu, C.F.; Wu, J.P.; Qi, J.G.; Zhang, L.S.; Huang, H.Q.; Lou, L.P.; Chen, Y.X. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Chen, J.; Quan, W.T. Using Landsat/TM Imagery to Estimate Nitrogen and Phosphorus Concentration in Taihu Lake, China. IEEE J.-Stars 2011, 5, 273–280. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H. Retrieval of total phosphorus concentration in the surface waters of Poyang lake based on remote sensing and analysis of its spatial-temporal characteristics. J. Nat. Resour. 2013, 28, 2169–2177. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Park, M.H. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. J. Environ. Sci. 2014, 26, 1831–1836. [Google Scholar] [CrossRef]
- Gao, Y.N.; Gao, J.F.; Yin, H.B.; Liu, C.S.; Xia, T.; Wang, J.; Huang, Q. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. J. Environ. Manag. 2015, 151, 33–43. [Google Scholar] [CrossRef]
- Du, C.; Li, Y.M.; Wang, Q.; Zhu, L.; Lv, H. Inversion Model and Daily Variation of Total Phosphorus Concentrations in Taihu Lake Based on GOCI Data. Environ. Sci. 2016, 37, 862–872. [Google Scholar] [CrossRef]
- Du, C.G.; Wang, Q.; Li, Y.M.; Lyu, H.; Zhu, L.; Zheng, Z.B.; Wen, S.; Liu, G.; Guo, Y.L. Estimation of total phosphorus concentration using a water classification method in inland water. Int. J. Appl. Earth Obs. Geoinf. 2018, 17, 29–42. [Google Scholar] [CrossRef]
- Xiong, J.F.; Lin, C.; Ma, R.H.; Cao, Z.G. Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze. Remote Sens. 2019, 11, 2068. [Google Scholar] [CrossRef] [Green Version]
- Lei, K.; Zeng, B.H.; Wang, Q. Monitoring the surface water quality of Taihu Lake based on the data of CBERS-1. J. Environ. Sens. 2004, 24, 376–380. [Google Scholar] [CrossRef]
- Xu, L.J.; Huang, C.C.; Li, Y.M.; Chen, X. Deriving Concentration of TN, TP based on Hyper Spectral Reflectivity. Remote Sens. Technol. Appl. 2013, 28, 681–688. [Google Scholar] [CrossRef]
- Shang, W.; Jin, S.G.; He, Y.; Zhang, Y.Y.; Li, J. Spatial–Temporal Variations of Total Nitrogen and Phosphorus in Poyang, Dongting and Taihu Lakes from Landsat-8 Data. Water-Sui 2021, 13, 1704. [Google Scholar] [CrossRef]
- Guo, H.W.; Huang, J.H.; Chen, B.W.; Guo, X.L.; Singh, V.P. A machine learning-based strategy for estimating non-optically active water quality parameters using Sentinel-2 imagery. Int. J. Remote Sens. 2021, 45, 1841–1866. [Google Scholar] [CrossRef]
- Chen, G.M. Ammonium molybdate spectrophotometric method for determination of total phosphorus in municipal sewage sludge. China Water Wastewater 2006, 22, 85–86. [Google Scholar] [CrossRef]
- Xiao, Y.D. Alkaline potassium persulfate digestion UV spectrophotometric method for determination of total nitrogen in water by the method. Guangdong Chem. Ind. 2012, 39, 165–166. [Google Scholar] [CrossRef]
- Vanhellemont, G.; Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284. [Google Scholar] [CrossRef]
- Vanhellemont, G.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Hu, C.M. Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: A statistical assessment. Remote Sens. Environ. 2016, 174, 301–313. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.M. Land adjacency effects on MODIS Aqua top-of-atmosphere radiance in the shortwave infrared: Statistical assessment and correction. J. Geophys. Res.-Oceans 2017, 122, 4802–4818. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, J.S.; Zhang, B.; Lee, Z.P.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.L.; Wu, Y.H.; Zhu, L.P.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.C.; Baker, K.S. The bio-optical state of ocean waters and remote sensing. Limnol. Oceanogr. 1978, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Tang, J.; Dai, J.; Zhang, Y.; Song, Q. Absorption and scattering properties of water body in Taihu Lake, China: Absorption. Int. J. Remote Sens. 2006, 19, 4277–4304. [Google Scholar] [CrossRef]
- Zaneveld, J.R.V. Light and water: Radiative transfer in natural waters. Bull. Am. Meteorol. Soc. 1995, 76, 60–63. Available online: https://www.jstor.org/stable/26231610 (accessed on 1 August 2022).
- Ma, R.; Tang, J.; Duan, H.; Pan, D. Progress in lake water color remote sensing. J. Lake Sci. 2009, 21, 143–158. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Zhen, L.; Tong, Q. Hyperspectral remote sensing inland water quality monitoring study. In Proceedings of the Sixth Workshop on Imaging Spectroscopy Technology and Applications, Lijiang, China, 1 June 2006. [Google Scholar]
- Ammenberg, P.; Flink, P.; Lindell, T.; Pierson, D.; Strombeck, N. Bio-optical modelling combined with remote sensing to assess water quality. Int. J. Remote Sens. 2002, 23, 1621–1638. [Google Scholar] [CrossRef]
- Hu, X.H.; Yang, L.; Li, Y.; Zhang, L.; Fei, E.H. Development of determination of total nitrogen in water. Environ. Prot. Xinjiang 2015, 37, 35–37+44. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, G.W.; Qin, B.Q.; Gao, G. Influence of nitrogen-phosphorus ratio on dominance of bloom-forming cyanobacteria. China Environ. Sci. 2011, 31, 1676–1683. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.F.; Johnson, B.A.; Tian, Q.J.; Wang, Y.; Verrelst, J.; Mu, X.H.; Gu, X.F. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef] [PubMed]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H.Q. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with erts. NASA Spec. Publ. 1974, 351, 309–317. [Google Scholar]
- Zhang, Y.S.; Odeh, I.O.A.; Han, C.F. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Hunt , E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.; Perry, E.M.; Akhmedov, B. RGB-NDVI color composites for monitoring the change in mangrove area at the Maubesi Nature Reserve, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Pujiono, E.; Kwak, D.; Lee, W.; Sulistyanto; Kim, S.; Lee, J.Y.; Lee, S.H.; Park, T.; Kim, M. RGB-NDVI color composites for monitoring the change in mangrove area at the Maubesi Nature Reserve, Indonesia. For Sci. Technol. 2013, 9, 171–179. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, W. Water quality monitoring and evaluation using remote sensing techniques in China: A systematic review. Ecosyst. Health Sustain. 2019, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Guo, H.W.; Huang, J.J.; Zhu, X.; Zhang, Z. Comprehensive comparison performances of Landsat-8 atmospheric correction methods for inland and coastal waters. Geocarto Int. 2022, 1–22. [Google Scholar] [CrossRef]
- Guo, H.; Tian, S.; Huang, J.J.; Zhu, X.; Wang, B.; Zhang, Z. Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive. ISPRS J. Photogramm. Remote Sens. 2022, 183, 451–469. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Yuan, D.; Song, X. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery. Water-Sui 2018, 7, 6551–6573. [Google Scholar] [CrossRef] [Green Version]
- Geng, M.M.; Wang, K.L.; Yang, N.; Qian, Z.; Li, F.; Zou, Y.; Chen, X.S.; Deng, Z.M.; Xie, Y.H. Is water quality better in wet years or dry years in river-connected lakes? A case study from Dongting Lake, China. Environ. Pollut. 2021, 290, 118115. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, G.B.; Li, D.H.; Liu, Y.D. Temperature may be the dominating factor on the alternant succession of Aphanizomenon flos-aquae and Microcystis aeruginosa in Dianchi Lake. Fresen Environ. Bull. 2010, 19, 846–853. [Google Scholar] [CrossRef]
- Hu, G.W.; Zhang, M.; Liu, Z.; Xu, J.H.; Fan, Z. Analysis of water quality change and its formation mechanism of Dongting Lake. J. Water Resour. Water Eng. 2019, 30, 39–45. [Google Scholar] [CrossRef]
- Zhao, X.; Christianson, L.E.; Harmel, D.; Pittelkow, C.M. Assessment of drainage nitrogen losses on a yield-scaled basis. Field Crops Res. 2016, 199, 156–166. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, Z.D.; Jiang, J.H. Impacts of operation of the Three Gorges Reservoir on the lake water level of Lake Dongting. J. Lake Sci. 2011, 23, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.X.; Shi, G.M.; Peng, X.L. Study on the provider and receiver of eco-compensation for water environment in Dongting lake based on the source of pollutants. Chin. J. Environ. Manag. 2016, 8, 25–31. [Google Scholar] [CrossRef]
- Ji, X.H.; Zheng, S.X.; Shi, L.H.; Liu, Z.B. Systematic Studies of Nitrogen Loss from Paddy Soils Through Leaching in the Dongting Lake Area of China. Pedosphere 2011, 21, 753–762. [Google Scholar] [CrossRef]
Parameters | Refs. | Bands (nm) |
---|---|---|
TP | He et al. (2008) [15] | 485, 560, 830, 2230 |
Wu et al. (2010) [16] | 485, 560, 660 | |
Chen and Quan (2012) [17] | 485, 560, 830, 2230 | |
Liu and Jiang (2013) [18] | 645, 859, 469, 555 | |
Isenstein and Park (2014) [19] | 660, 2220 | |
Gao et al. (2015) [20] | 475, 560, 660, 830 | |
Du et al. (2016) [21] | 490, 680, 745, 865 | |
Li et al. (2017) [13] | 443, 482, 561, 655 | |
Du et al. (2018) [22] | 798, 803, 827 | |
Xiong et al. (2019) [23] | 859, 1240 | |
TN | Lei et al. (2004) [24] | 555, 830, 660 |
He et al. (2008) [15] | 660, 1145, 2215 | |
Wu et al. (2010) [16] | 485, 560, 660 | |
Chen and Quan (2012) [17] | 440, 485, 565, 655 | |
Xu et al. (2013) [25] | 455, 528, 1015 | |
Gao et al. (2015) [20] | 830, 475, 560 | |
Li et al. (2017) [13] | 485, 655, 870 | |
Shang et al. (2021) [26] | 440, 485, 565, 655, 865, 2200 |
Data | Frequency | Time Range | Unit |
---|---|---|---|
Precipitation | 1 m | 1996–2021 | mm |
Temperature | 1 m | 1996–2021 | °C |
Water level | 1 d | 1996–2021 | m |
Flow | 1 d | 1996–2021 | m3/s |
Indices | Features | Formulas | References | |
---|---|---|---|---|
F1-band | F1-6 | Individual spectral band | B1-6 | -- |
F2-band | F7-21 | Band ratio | Bi/Bj (i < j, i, j = 1,2,3,4,5,6) | -- |
F22 | Normalized Difference Water Index (NDWI) | (B2 − B4)/(B2 + B4) | McFeeters, 1996 [45] | |
F23 | Modified Normalized Difference Water Index (MNDWI) | (B2 − B5)/(B2 + B5) | Xu, 2005 [46] | |
F24 | Normalized Difference Vegetation Index (NDVI) | (B4 − B3)/(B4 + B3) | Rouse et al., 1983 [47] | |
F25 | Blue NDVI | (B4 − B1)/(B4 + B1) | Zhang et al., 2009 [48] | |
F3-Band | F26 | Chlorophyll vegetation index | B4 × B3/B2 | Hunt Jr et al., 2008 [49] |
F27 | Green-Blue NDVI | (B4 − B2 + B1)/(B4 + B2 + B1) | Pujiono et al., 2013 [50] | |
F28 | Red-Blue NDVI | (B4 − B1 + B3)/(B4 + B3 + B1) | Pujiono et al., 2013 [50] |
Refs. | Study Area | Satellite | Parameter | Method | N | R2 | RMSE (mg/L) | MRE |
---|---|---|---|---|---|---|---|---|
Xiong et al. (2022) [14] | TaiHu Lake | MODIS | TP | Extremely gradient Boosting | 120 | 0.60 | 0.07 | 0.43 |
Guo et al. (2022) [53] | Simcoe Lake | Landsat | Multimodal deep learning | 303 | / | / | 0.37 | |
Shang et al. (2021) [26] | Dongting Lake | Landsat | Multiple Linear Models | 28 | 0.58 | 0.0042 | / | |
Xiong et al. (2019) [23] | Hongze Lake | MODIS | Direct derivation algorithm | 57 | 0.75 | 0.029 | 0.39 | |
Liu et al. (2015) [54] | Cihu Lake | IKONOS | Multiple Linear Models | 21 | 0.84 | 0.17 | / | |
This study | Dongting Lake | Landsat | Machine learning model | 289 | 0.70 | 0.057 | 0.23 | |
Guo et al. (2022) [53] | Simcoe Lake | Landsat | TN | Multimodal deep learning | 303 | / | / | 0.23 |
Shang et al. (2021) [26] | Dongting Lake | Landsat | Multiple Linear Models | 28 | 0.65 | 0.15 | / | |
Li et al. (2017) [13] | Landsat | Empirical algorithms | 22 | 0.58 | 0.183 | 0.14 | ||
Liu et al. (2015) [54] | Cihu Lake | IKONOS | Multiple Linear Models | 21 | 0.85 | 2.5 | / | |
This study | Dongting Lake | Landsat | Machine learning model | 260 | 0.73 | 0.48 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jin, S.; Wang, N.; Zhao, J.; Guo, H.; Pellikka, P. Total Phosphorus and Nitrogen Dynamics and Influencing Factors in Dongting Lake Using Landsat Data. Remote Sens. 2022, 14, 5648. https://doi.org/10.3390/rs14225648
Zhang Y, Jin S, Wang N, Zhao J, Guo H, Pellikka P. Total Phosphorus and Nitrogen Dynamics and Influencing Factors in Dongting Lake Using Landsat Data. Remote Sensing. 2022; 14(22):5648. https://doi.org/10.3390/rs14225648
Chicago/Turabian StyleZhang, Yuanyuan, Shuanggen Jin, Ning Wang, Jiarui Zhao, Hongwei Guo, and Petri Pellikka. 2022. "Total Phosphorus and Nitrogen Dynamics and Influencing Factors in Dongting Lake Using Landsat Data" Remote Sensing 14, no. 22: 5648. https://doi.org/10.3390/rs14225648
APA StyleZhang, Y., Jin, S., Wang, N., Zhao, J., Guo, H., & Pellikka, P. (2022). Total Phosphorus and Nitrogen Dynamics and Influencing Factors in Dongting Lake Using Landsat Data. Remote Sensing, 14(22), 5648. https://doi.org/10.3390/rs14225648