Efficient SfM for Large-Scale UAV Images Based on Graph-Indexed BoW and Parallel-Constructed BA Optimization
Abstract
:1. Introduction
2. Methods
2.1. Finding UAV Image Match Pairs Based on Graph-Indexed BoW Model
2.1.1. Offline Small-World Graph Structure Construction
2.1.2. Find Nearest Neighbor Visual Words Based on Small-World Graph Structure
Algorithm 1: Finding Nearest Visual Words via Small-World Graph Structure |
- Obtain small-world graph index: We build the small-world graph structure with each vertex fixedly connected to the 3 nearest vertices, occupying a fixed-size space, and store the small-world graph to the GPU. We can locate words by multiplying the fixed-size offset because each word index occupies the same size in memory.
- Distance calculation: Obtain the corresponding visual word from the small-world graph and calculate the distance between the descriptor and the visual word; all threads in a warp are involved in this step. Each thread is responsible for 4 dimensions of a descriptor and calculates the distance between 128-dimensional descriptors and visual words in parallel, and finally, the 1st thread counts the results of all thread calculations and exports the results to an array in shared memory as in Figure 6.
- Data structure maintenance: The query process accesses , q, and and is visited many times, so they are stored in shared memory. Shared memory is a high-speed memory space in each stream processor (SM), and stream processors access it much faster than global memory.
2.1.3. TF–IDF-Match3 Algorithm
2.2. Feature Extraction and Feature Matching
2.3. The Central Bundle Adjustment with Object Point-Wise Parallel Construction of Schur Complement
2.3.1. LM Algorithm
2.3.2. Object Point-Wise Parallel Construction of Schur Complement
2.3.3. Preconditioned Conjugate Gradient
3. Experimental Results
3.1. Datasets
3.2. The Performance of Finding UAV Image Match Pairs Based on Small-World Index Structure
3.3. The Performance of Central Bundle Adjustment with Object Point-Wise Parallel Construction of Schur Complement
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Jiang, M.; Yao, Y.; Zhang, L.; Lin, J. Use of UAV oblique imaging for the detection of individual trees in residential environments. Urban For. Urban Green. 2015, 14, 404–412. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, W.; Huang, W.; Yang, L. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line. Remote Sens. 2017, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Aicardi, I.; Chiabrando, F.; Grasso, N.; Lingua, A.M.; Noardo, F.; Spanò, A. UAV Photogrammetry with Oblique Images: First Analysis on Data Acquisition and Processing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Jiang, C.; Jiang, W. Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS J. Photogramm. Remote Sens. 2020, 167, 230–251. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. In ACM Siggraph 2006 Papers; Association for Computing Machinery: New York, NY, USA, 2006; pp. 835–846. [Google Scholar]
- Caroti, G.; Martinez Espejo Zaragoza, I.; Piemonte, A. Accuracy assessment in structure from motion 3D reconstruction from UAV-born images: The influence of the data processing methods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Schneider, D.; Strauß, B. Generation and comparison of TLS and SFM based 3d models of solid shapes in hydromechanic research. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 925. [Google Scholar] [CrossRef] [Green Version]
- Ippoliti, E.; Meschini, A.; Sicuranza, F. Structure from motion systems for architectural heritage. A survey of the internal logGia Court. Palazzo Dei Capitani, Ascoli Piceno, Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 53. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, T.N.; Midgley, N.G.; Graham, D.J.; Labadz, J. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales. Geomorphology 2014, 226, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Li, S.; Jia, W.; Li, S.; Liu, X. Robust bundle adjustment for large-scale structure from motion. Multimed. Tools Appl. 2017, 76, 21843–21867. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, F.; Zhu, J.; Zuo, Z. A fast and accurate bundle adjustment method for very large-scale data. Comput. Geosci. 2020, 142, 104539. [Google Scholar] [CrossRef]
- Shen, T.; Zhu, S.; Fang, T.; Zhang, R.; Quan, L. Graph-based consistent matching for structure-from-motion. In Proceedings of the European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, 8–16 October 2016; pp. 139–155. [Google Scholar]
- Jiang, S.; Jiang, W.; Guo, B. Leveraging vocabulary tree for simultaneous match pair selection and guided feature matching of UAV images. ISPRS J. Photogramm. Remote Sens. 2022, 187, 273–293. [Google Scholar] [CrossRef]
- Nister, D.; Stewenius, H. Scalable recognition with a vocabulary tree. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), IEEE, New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2161–2168. [Google Scholar]
- Jiang, S.; Jiang, W. Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion. ISPRS J. Photogramm. Remote Sens. 2017, 132, 140–161. [Google Scholar] [CrossRef]
- Datta, R.; Joshi, D.; Li, J.; Wang, J.Z. Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. (Csur) 2008, 40, 1–60. [Google Scholar] [CrossRef]
- Halawani, A.; Teynor, A.; Setia, L.; Brunner, G.; Burkhardt, H. Fundamentals and Applications of Image Retrieval: An Overview. Datenbank-Spektrum 2006, 18, 6. [Google Scholar]
- Sivic, J.; Zisserman, A. Video Google: A text retrieval approach to object matching in videos. In Proceedings of the Computer Vision, IEEE International Conference on, IEEE Computer Society, Tunis, Tunisia, 14–18 July 2003; Volume 3, p. 1470. [Google Scholar]
- Radenović, F.; Tolias, G.; Chum, O. CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples. In Proceedings of the European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, 8–16 October 2016; pp. 3–20. [Google Scholar]
- Rupnik, E.; Nex, F.; Remondino, F. Automatic orientation of large blocks of oblique images. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, ISPRS HannoverWorkshop 2013, Hannover, Germany, 21–24 May 2013. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Arai, K.; Ridho, A. Hierarchical K-Means: An Algorithm for Centroids Initialization for K-Means; Saga University: Saga, Japan, 2007. [Google Scholar]
- Sivic, J.; Zisserman, A. Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 591–606. [Google Scholar] [CrossRef] [Green Version]
- Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Gálvez-López, D.; Tardos, J.D. Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 2012, 28, 1188–1197. [Google Scholar] [CrossRef]
- Gionis, A.; Indyk, P.; Motwani, R. Similarity search in high dimensions via hashing. In Proceedings of the Vldb, Edinburgh, UK, 7–10 September 1999; Volume 99, pp. 518–529. [Google Scholar]
- Weiss, Y.; Fergus, R.; Torralba, A. Multidimensional spectral hashing. In Proceedings of the European Conference on Computer Vision, Springer, Florence, Italy, 7–13 October 2012; pp. 340–353. [Google Scholar]
- Cayton, L. Fast nearest neighbor retrieval for bregman divergences. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 112–119. [Google Scholar]
- Finkel, R.A.; Bentley, J.L. Quad trees a data structure for retrieval on composite keys. Acta Inform. 1974, 4, 1–9. [Google Scholar] [CrossRef]
- Curtin, R.R.; Ram, P.; Gray, A.G. Fast exact max-kernel search. In Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, Austin, TX, USA, 2–4 May 2013; pp. 1–9. [Google Scholar]
- Malkov, Y.A.; Yashunin, D.A. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 824–836. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Xiang, C.; Wang, C.; Cai, D. Fast approximate nearest neighbor search with the navigating spreading-out graph. arXiv 2017, arXiv:1707.00143. [Google Scholar] [CrossRef]
- Malkov, Y.; Ponomarenko, A.; Logvinov, A.; Krylov, V. Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 2014, 45, 61–68. [Google Scholar] [CrossRef]
- Nickolls, J.; Dally, W.J. The GPU computing era. IEEE Micro 2010, 30, 56–69. [Google Scholar] [CrossRef]
- Gou, C.; Gaydadjiev, G.N. Elastic pipeline: Addressing GPU on-chip shared memory bank conflicts. In Proceedings of the 8th ACM International Conference on Computing Frontiers, Ischia, Italy, 3–5 May 2011; pp. 1–11. [Google Scholar]
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In Proceedings of the International Workshop on Vision Algorithms, Springer, Heraklion, Greece, 21–22 September 1999; pp. 298–372. [Google Scholar]
- Eriksson, A.; Bastian, J.; Chin, T.J.; Isaksson, M. A consensus-based framework for distributed bundle adjustment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1754–1762. [Google Scholar]
- Zhang, F. The Schur Complement and Its Applications; Springer Science & Business Media: Berlin, Germany, 2006; Volume 4. [Google Scholar]
- Zhang, R.; Zhu, S.; Fang, T.; Quan, L. Distributed very large scale bundle adjustment by global camera consensus. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 29–38. [Google Scholar]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Dellaert, F.; Carlson, J.; Ila, V.; Ni, K.; Thorpe, C.E. Subgraph-preconditioned conjugate gradients for large scale SLAM. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Taipei, Taiwan, 18–22 October 2010; pp. 2566–2571. [Google Scholar]
- Liu, Q.; Li, X. Preconditioned conjugate gradient methods for the solution of indefinite least squares problems. Calcolo 2011, 48, 261–271. [Google Scholar] [CrossRef]
- Ye, Z.; Li, G.; Liu, H.; Cui, Z.; Bao, H.; Zhang, G. CoLi-BA: Compact Linearization based Solver for Bundle Adjustment. IEEE Trans. Vis. Comput. Graph. 2022, 28, 3727–3736. [Google Scholar] [CrossRef]
- Alismail, H.; Browning, B.; Lucey, S. Photometric bundle adjustment for vision-based slam. In Proceedings of the Asian Conference on Computer Vision, Springer, Taipei, Taiwan, 20–24 November 2016; pp. 324–341. [Google Scholar]
- Wu, C. A GPU Implementation of Scale Invariant Feature Transform (SIFT). 2017. Available online: https://cir.nii.ac.jp/crid/1573105976089193856 (accessed on 15 March 2022).
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, Y.; Zhou, S.; Zhu, J.; Xiong, X. Bundle block adjustment of large-scale remote sensing data with Block-based Sparse Matrix Compression combined with Preconditioned Conjugate Gradient. Comput. Geosci. 2016, 92, 70–78. [Google Scholar] [CrossRef]
- Agarwal, S.; Snavely, N.; Seitz, S.M.; Szeliski, R. Bundle adjustment in the large. In Proceedings of the European Conference on Computer Vision, Springer, Heraklion, Greece, 5–11 September 2010; pp. 29–42. [Google Scholar]
- Wu, C.; Agarwal, S.; Curless, B.; Seitz, S.M. Multicore bundle adjustment. In Proceedings of the CVPR 2011, IEEE, Washington, DC, USA, 20–25 June 2011; pp. 3057–3064. [Google Scholar]
- Agarwal, S.; Mierle, K. Ceres Solver. 2012. Available online: https://github.com/ceres-solver/ceres-solver (accessed on 15 March 2022).
Item Name | Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 |
---|---|---|---|---|
UAV type | Multirotor | Multirotor | Multirotor | Multirotor |
Flight height (m) | 347.1 | 153.8 | 192.9 | 87.1 |
Camera mode | ILCE-6000 | ILCE-7RM4 | ILCE-5100 | ILCE-5100 |
Number of cameras | 3 | 5 | 5 | 5 |
Focal length (mm) | 25 | 56 | 35 | 35 |
Camera mount angle (degree) | nadir:0 oblique: −45∖45 | nadir:0 oblique: −45∖45 | nadir:0 oblique: −45∖45 | nadir:0 oblique: −45∖45 |
Number of images | 1030 | 5665 | 20,297 | 77,357 |
Image size (pixel × pixel) | 6000 × 4000 | 9504 × 6336 | 6000 × 4000 | 6000 × 4000 |
GSD (cm) | 5.36 | 1.08 | 5.7 | 1.21 |
Image point number | 885,822 | 3,079,359 | 24,371,628 | 40,835,177 |
Object point number | 209,624 | 736,774 | 3,869,464 | 6,534,761 |
Metric | Method | Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 |
---|---|---|---|---|---|
Retrieval word efficiency (min) | Colmap-BoW | 2.5108 | 29.729 | 204.15 | 1052.04 |
Dbow2 | 2.3689 | 29.404 | 201.92 | 1048.66 | |
GIBoW | 0.8232 | 14.054 | 98.69 | 568.74 | |
Compute image score efficiency (min) | Colmap-BoW | 12.1224 | 177.27175 | NULL | NULL |
Dbow2 | 4.21 | 35.93 | 205.77 | 1125.70 | |
GIBoW | 0.167 | 1.044 | 5.73 | 17.024 | |
overall retrieval time (min) | Colmap-BoW | 15.4832 | 215.75 | NULL | NULL |
Dbow2 | 7.2789 | 66.335 | 412.69 | 2212.36 | |
GIBoW | 0.9912 | 15.489 | 105.24 | 589.762 |
Metric | Method | Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 |
---|---|---|---|---|---|
Peak Occupied Memory (MB) | Ceres | 1263.3 | 4151.7 | 29727.6 | 49786.8 |
PSCBA | 556.7 | 1756.1 | 10,504.2 | 17,221.8 | |
Efficiency (s) | Ceres | 54.655 | 195.12 | 812.4 | 4023.66 |
PSCBA | 18.141 | 47.129 | 179.21 | 639.82 | |
Total Average Residua Value (m) | Ceres | 0.030894 | 0.045496 | 0.041592 | 0.056102 |
PSCBA | 0.026834 | 0.045495 | 0.041272 | 0.056001 |
Method | Min (m) | Max (m) | Mean (m) | ||||||
---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | X | Y | Z | |
Ceres | −0.016 | −0.015 | −0.052 | 0.0183 | 0.0121 | 0.0515 | 0.002 | 0.0027 | 0.0070 |
PSCBA | −0.016 | −0.0123 | −0.0523 | 0.0183 | 0.0122 | 0.0514 | 0.002 | 0.0027 | 0.0068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Jiang, S.; Liu, Y.; Xue, W.; Guo, B. Efficient SfM for Large-Scale UAV Images Based on Graph-Indexed BoW and Parallel-Constructed BA Optimization. Remote Sens. 2022, 14, 5619. https://doi.org/10.3390/rs14215619
Liu S, Jiang S, Liu Y, Xue W, Guo B. Efficient SfM for Large-Scale UAV Images Based on Graph-Indexed BoW and Parallel-Constructed BA Optimization. Remote Sensing. 2022; 14(21):5619. https://doi.org/10.3390/rs14215619
Chicago/Turabian StyleLiu, Sikang, San Jiang, Yawen Liu, Wanchang Xue, and Bingxuan Guo. 2022. "Efficient SfM for Large-Scale UAV Images Based on Graph-Indexed BoW and Parallel-Constructed BA Optimization" Remote Sensing 14, no. 21: 5619. https://doi.org/10.3390/rs14215619
APA StyleLiu, S., Jiang, S., Liu, Y., Xue, W., & Guo, B. (2022). Efficient SfM for Large-Scale UAV Images Based on Graph-Indexed BoW and Parallel-Constructed BA Optimization. Remote Sensing, 14(21), 5619. https://doi.org/10.3390/rs14215619