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Abstract: Structure from Motion (SfM) for large-scale UAV (Unmanned Aerial Vehicle) images has
been widely used in the fields of photogrammetry and computer vision. Its efficiency, however,
decreases dramatically as well as with the memory occupation rising steeply due to the explosion
of data volume and the iterative BA (bundle adjustment) optimization. In this paper, an efficient
SfM solution is proposed to solve the low-efficiency and high memory consumption problems. First,
an algorithm is designed to find UAV image match pairs based on a graph-indexed bag-of-words
(BoW) model (GIBoW), which treats visual words as vertices and link relations as edges to build
a small-world graph structure. The small-world graph structure can be used to search the nearest-
neighbor visual word for query features with extremely high efficiency. Reliable UAV image match
pairs can effectively improve feature matching efficiency. Second, a central bundle adjustment with
object point-wise parallel construction of the Schur complement (PSCBA) is proposed, which is
designed as the combination of the LM (Levenberg–Marquardt) algorithm with the preconditioned
conjugate gradients (PCG). The PSCBA method can dramatically reduce the memory consumption
in both error and normal equations, as well as improve efficiency. Finally, by using four UAV
datasets, the effectiveness of the proposed SfM solution is verified through comprehensive analysis
and comparison. The experimental results show that compared with Colmap-Bow and Dbow2, the
proposed graph index BoW retrieval algorithm improves the efficiency of image match pair selection
with an acceleration ratio ranging from 3 to 7. Meanwhile, the parallel-constructed BA optimization
algorithm can achieve accurate bundle adjustment results with an acceleration ratio by 2 to 7 times
and reduce memory occupation by 2 to 3 times compared with the BA optimization using Ceres
solver. For large-scale UAV images, the proposed method is an effective and reliable solution.

Keywords: structure from motion; oblique photogrammetry; match pairs selection; vocabulary tree;
small-world graph; bundle adjustment

1. Introduction

With the rapid development and increasing popularity of UAVs, they have turned
out to be one of the most critical remote sensing (RS) platforms. Compared with other
RS platforms, UAVs provide the advantages of low-cost economics, easy access to data,
and ease of use, which have been widely used in forestry surveys [1], transmission line
inspection [2], architectural model reconstruction [3], and other fields. With the increasing
resolutions and decreasing weights of compact optical cameras, UAVs combined with
oblique imaging systems, namely UAV-based photogrammetry systems, can provide higher
spatial resolution images. However, most commercially available UAV platforms do not
provide precise georeferencing devices for image orientation due to limited payloads of
UAV platforms. Consequently, before its further application, the image orientation of the
precise camera pose needs to be recovered.
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SfM is a well-known technique for image orientation in the computer vision commu-
nity [4,5]. Compared with traditional photogrammetry methods, camera positions and 3D
points are automatically resolved from overlapping images by SfM, independent of the
default value of the unknowns [6]. The accuracy and usability of SfM is proved through
comparative tests with laser scanning [7,8] and diverse applications, such as architectural
legacy reconstruction [9] and terrain measurement [10]. The SfM-based image orientation
process involves three major steps: including (1) feature extraction, (2) feature matching,
and (3) the unknown parameters being solved iteratively by using the bundle adjustment.
However, with the explosive growth of UAV images, such estimation usually leads to high
computational costs [11,12]. On the one hand, when feature matching is performed by
exhaustive match pairs, the time consumption is proportional to the number of images
squarely [13]. On the other hand, the processing time and memory consumption increase
geometrically when using the traditional bundle adjustment [11].

Many solutions have been introduced to promote the efficiency of image feature
matching in SfM. Retrieving effective match pairs is the straightforward way to promote
the efficiency of feature matching [14,15]. Its aim is to minimize the amount of match pairs
in feature matching [16]. Currently, visual similarity-based image retrieval is a common
method [17,18], and vocabulary-tree-based image retrieval techniques are the widely used
method for existing open-source SfM frameworks [19–21]. The basic idea is to build a
vocabulary tree model by extracting SIFT (Scale Invariant Feature Transform) [22] features
from a series of training images in advance and using the feature descriptors to cluster the
visual words using the hierarchical K-Means algorithm [23]. After that, image features are
encoded using the vocabulary tree model by finding the nearest neighbor visual words,
and the set of image features is quantified into the vector of visual words by using a weight
calculation method, which transforms the image match pair selection problem into a simi-
larity calculation problem between the vector of visual words [24]. Colmap is a common
open-source toolkit for SfM [25]. Colamp designs several strategies for finding UAV image
match pairs, in which Colmap-Bow is one of the most common and most efficient methods.
Colmap-Bow first extracts features from the query images; then the image features find
visual words using the pretrained vocabulary tree. The set of features is converted into the
set of visual words. Finally, the "word-image" inverted index structure of the vocabulary
tree is used, and the similarity between images is expressed by the Hamming distance be-
tween descriptors within words [14]. Dbow2 is a more efficient overlapping image search
algorithm proposed in recent years and widely used to find UAV image match pairs in
SfM [26]. Dbow2 also uses a pretrained lexical tree to convert the feature set into the visual
word set, and later uses the TF–IDF (term frequency–inverse document frequency) [19]
algorithm to compute the similarity between images. Compared with traditional methods
which provide match pairs using exhaustive enumeration algorithms, Colmap-Bow and
Dbow2 not only provide reliable match pairs but also have high query efficiency.

Most vocabulary-tree-based image retrieval algorithms involve using a KD-tree struc-
ture to find corresponding words of image features. In the last few years, all kinds of
indexing structures have been proposed for nearest-neighbor searching, including hash ta-
ble methods [27,28], tree structures [29–31], and graph-based indexing structures [32–34].
Graph-based methods are the trend for nearest-neighbor searching for high-dimensional
data, and the approximate nearest-neighbor search methods (ANNS) based on the neigh-
bor graph have a higher query efficiency than the tree-, hash-, and quantization-based
ANNS [33]. Meanwhile, the TF–IDF weights are calculated by searching the same words
between the vector of visual words of query images and the vector of visual words of all
images in the database, and then the accumulated product of the corresponding weights is
the total similarity. It will consume a lot of time to find the same visual words to calculate
the score. It is a simple operation logic, which is very suitable for parallel calculation. Thus,
this paper proposes a small-world graph structure, in which visual words are presented as
vertices, and linking relations between vertices are presented as edges. The small-world
graph structure is used to find the nearest visual words of image features, which is accel-
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erated by using GPU (Graphics Processing Unit) multithreading. In addition, this paper
proposes a TF–IDF-Match3 (term frequency–inverse document frequency of three match
optimizations) algorithm that greatly improves the computational efficiency by filling the
BoW vector of the image to the total word dimension, using shared memory in the GPU [35],
and reducing the bank conflicts of accesses between multiple threads [36]. Applying the
small-world graph structure searching and TF–IDF-Match3 algorithm, UAV match pair
retrieval can be significantly improved with competitive accuracy and efficiency.

To enhance the efficiency of bundle adjustment for large-scale UAV images and to
solve the memory occupation problem, many researchers have proposed various solutions.
These solutions are primarily represented in two typical ways, one of which is central
bundle adjustment [37], and the other is distributed bundle adjustment [38]. These
solutions all use CPU and GPU multithreading for the speedup process. The central bundle
adjustment uses the framework of the traditional bundle adjustment method. First, the
error equation is constructed, which is the Jacobian matrix corresponding to the image,
object point, and camera involved in each image point. Then, the error equation is used
to construct the normal equation. Finally, using the Schur Complement method [39], the
increments of image and camera unknowns are solved first, and then the object point’s
unknown increments are solved by backbanding the equation. The advantages of this
approach are optimizing the parameters only once per iteration, and the overall number
of iterations is small. However, the disadvantages of this approach are that when the
amount of data is large, the equations take up a lot of memory, and the equations are not
easily computed in parallel. In addition, the distributed bundle adjustment method is to
be utilized to reduce the overall memory consumption by dividing the dataset. Initially,
the entire dataset is partitioned. Next, the subdatasets are stored to each node in the
distributed system, and each node is iteratively optimized independently within each
node. Then, when all nodes have completed iterative optimization, the optimization
results within the nodes are transferred to the master node, and finally all unknowns are
optimized. A distributed system with n nodes requires n iterations of optimization for
each iteration [40]. The advantage of this method is that it can well solve the problem of
large memory occupation, and the accuracy can be kept consistent with the central bundle
adjustment accuracy. The disadvantage of this approach is that if there is a problem in the
internal computation of a node, it will lead to problems in the computation process of the
whole system. Moreover, the equipment of distributed systems is rare.

Previously, there have been many studies which demonstrated that the LM algorithm
is one of the best methods for bundle adjustment [41]. Many scholars have consistently
utilized the traditional bundle adjustment framework, which is the LM algorithm that
combines the PCG method to iteratively solve the normal equation [42]. PCG usually
utilizes the block diagonal matrix of the Schur Complement as a preconditioner, which can
reduce the number of conditions of the normal equation to reach the goal of decreasing the
number of total iterations. Compared with other common solving methods, such as the
QR algorithm and Cholesky algorithm, PCG solves faster and requires lower memory [43].
Ceres is a very high-efficiency non-linear function solver library, which is usually used
to solve the constructed cost function in UAV SfM bundle adjustment [44] and is widely
used due to its higher computation efficiency and smaller memory occupation compared
with traditional bundle adjustment [45]. When performing large-scale UAV images bundle
adjustment, Ceres usually uses the PCG solve method that displays stored error equa-
tions and uses the error equations to repeatedly construct the Schur complement method
equations at each PCG iteration. Inspired by the advantages and disadvantages of central
and distributed bundle adjustment, this paper proposes a central bundle adjustment with
object point-wise parallel construction of the Schur complement. By eliminating the mem-
ory occupation of the overall error equation and the normal equation, the error equation
and the normal equation of individual object point is temporarily calculated in parallel
to achieve the construction of the Schur complement by object point-wise. The iterative
process of conjugate gradient directly uses the Schur complement for calculation, reducing
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the number of temporary constructions of the Schur complement, and multiplying the
matrix with the vector is implemented on the GPU. This procedure can greatly reduce
memory occupation and significantly improve computational efficiency.

The major contributions of this article are categorized as follows: (1) To solve the
problem of inefficient feature matching in large-scale UAV image SfM, we propose a graph
index Bow model algorithm, which can rapidly find UAV images with overlapping regions,
provide reliable UAV image match pairs for feature matching, and significantly improve the
efficiency of large-scale UAV image feature matching. It speeds up the process of finding
nearest-neighbor visual words of image features by using a small-world graph structure.
Moreover, it improves the TF–IDF algorithm, which greatly improves the efficiency of
weight calculation by eliminating the process of finding the same words in a large number
of word vectors as well as implementing it in GPU. (2) To address the problems of low
bundle adjustment efficiency and high memory occupation in the SfM of large-scale UAV
images, we propose a central bundle adjustment with point-wise parallel construction of the
Schur complement. The sparse storage Schur complement part is filled using the temporary
error equation and the normal equation, which can achieve accurate bundle adjustment
results, improve computation efficiency, and significantly reduce memory requirements.

The structure of this paper is as follows. Section 2 introduces the overall SfM process
and details the method of finding match pairs based on the graph-indexed BoW model
and the central bundle adjustment with object point-wise parallel construction of the Schur
complement. Section 3 provides a comprehensive analysis and comparison of the improved
methods. Section 4 provides a discussion. Section 5 gives the conclusions.

2. Methods

This paper proposes an overall workflow to achieve efficient SfM of large-scale UAV
images, as shown in Figure 1. The workflow consists of four main parts: (1) finding UAV
image match pairs based on the graph-indexed BoW model; (2) UAV image feature extrac-
tion and feature matching; (3) camera pose estimation and triangulation; and (4) central
bundle adjustment with object point-wise parallel construction of the Schur complement.
Each step in the whole workflow is described as follows:

Figure 1. The workflow of the proposed SfM solution.

2.1. Finding UAV Image Match Pairs Based on Graph-Indexed BoW Model
2.1.1. Offline Small-World Graph Structure Construction

In previous studies, using different training datasets to construct words would have
an impact on the accuracy and efficiency of image retrieval. Considering this problem, we
make certain constraints on the image selection of the training dataset and only select UAV
images with a high percentage of urban building parts as the training dataset. In this paper,
we use the urban UAV images of Qingdao city in Shandong province as the training data
for constructing visual words, which have 83,261 images and cover the area all within the
city area, and some sample images are shown in Figure 2. The whole offline construction
process is shown in Figure 3.
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Figure 2. UAV image training data collection in Qingdao, Shandong province.

Figure 3. The workflow of the offline small-world graph structure of visual word construction.

First, a set of feature descriptors is obtained by extracting local features using images
from the training dataset. SIFT is invariant to scale, rotation, illumination, and viewpoint,
and it has good perspective distortion tolerance. The SIFTGPU algorithm, which is a gpu-
accelerated algorithm for extracting SIFT features with default parameter settings, is used in
this paper [46]. The local regions of the feature points are described using 128-dimensional
feature vectors, and finally, a training dataset was acquired with 861,709,511 feature de-
scriptors. In order to build the visual word, as Nister showed, the entire set of descriptors
is clustered in an iterative way [15], where the maximum number of children per parent
node is 512 and the tree structure depth is set to 3; visual words are the leaf nodes of a tree
structure. After that, this paper constructs the small-world graph structure of visual words
using all visual words as the candidate vertex set V. The main steps include: (1) randomly
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select a vertex vi from the set of candidate vertices V; (2) insert the vertex vi into the graph,
and find the f nearest-neighbor vertices to the vertex vi in the graph, or find the maximum
number if there are fewer than f neighboring vertices; (3) build the edge connection rela-
tionship between vi and these neighboring vertices; and (4) repeat steps 1, 2, and 3 until the
set of candidate vertices is empty. The detailed construction process is shown in Figure 4.
The parameter f is the number of visual words per vertex specified to find the nearest
neighbor, which is set to 3 in this paper.

Figure 4. Small-world graph structure of visual word construction process.

2.1.2. Find Nearest Neighbor Visual Words Based on Small-World Graph Structure

Based on the constructed small-world graph structure of visual words, the feature
descriptors of query images can find the corresponding visual words, and thus the query
images can be represented by a set of visual words. One of the key steps is how to rapidly
find the corresponding visual words, which is the closest Euclidean distance visual word to
the descriptor. The proposed nearest-neighbor search algorithm based on the small-world
graph structure of visual words is shown in Algorithm 1. The basic idea of the algorithm is
as follows: G is initial visual word index, which is stored in priority queue q in descending
order of distance, and then the visual word index nearest to the query descriptor is picked
up from q (line 2), updating the candidate visual words in the priority queue topF in
descending order of distance (lines 3–9). After that, the f visual word indexes closest to the
visual word index now in the small-world graph that are inserted into q for the next search
(line 10). The visual word index is added to visited. The search loop (lines 2–17) stops
when the distance of the visual word extracted from the priority queue q with descriptor is
larger than the distance of the candidate visual word whose distance with descriptor is the
largest in topF (lines 4–5). Figure 5 represents a specific example of the process of finding
the nearest visual word based on the graph-indexed structure. The right part displays the
state for both priority queues q and topF, as well as the set visited for each iteration and the
algorithm search path from G → F → C → E.
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Algorithm 1: Finding Nearest Visual Words via Small-World Graph Structure
Input: Small-world graph structure of visual word G(V, E); a query Sift descript.;
Number of output candidates visual word F.
Output: F candidate visual words for query Sift descript.

1 Initialize a priority queue q, a set visited, and a priority queue topF;
2 while q not empty do
3 (now_dist, now_idx)← q.pop_min()
4 if topF.size = F and topF.peek_max < now_dist then
5 break
6 end
7 else
8 topF.push_heap(now_dist,now_idx)
9 end

10 foreach E ∈ (now_idx, v) do
11 if visited.exit(v) 6= true then
12 d← dist(p, v)
13 visited.insert(v)
14 q.push_heap(d, v)
15 end
16 end
17 end
18 return topF

Figure 5. Specific example of the nearest-neighbor search based on the small-world graph structure
of visual words.

The distance calculation between descriptors and visual words is the most time-
consuming step. Therefore, this paper implements the distance calculation between de-
scriptors and visual words on the GPU. A warp is used to find the nearest-neighbor visual
words of a descriptor. Figure 6 gives an example of the GPU of a warp based on the small-
world graph structure nearest-neighbor search word process, mainly divided into 3 steps:
(1) obtain the small-world graph index; (2) distance calculation; and (3) data structure
maintenance. The details are listed as follows:

• Obtain small-world graph index: We build the small-world graph structure with each
vertex fixedly connected to the 3 nearest vertices, occupying a fixed-size space, and
store the small-world graph to the GPU. We can locate words by multiplying the
fixed-size offset because each word index occupies the same size in memory.
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• Distance calculation: Obtain the corresponding visual word from the small-world
graph and calculate the distance between the descriptor and the visual word; all
threads in a warp are involved in this step. Each thread is responsible for 4 dimensions
of a descriptor and calculates the distance between 128-dimensional descriptors and
visual words in parallel, and finally, the 1st thread counts the results of all thread
calculations and exports the results to an array in shared memory as in Figure 6.

• Data structure maintenance: The query process accesses dist, q, and topF and is visited
many times, so they are stored in shared memory. Shared memory is a high-speed
memory space in each stream processor (SM), and stream processors access it much
faster than global memory.

Figure 6. Nearest word search process on the GPU.

2.1.3. TF–IDF-Match3 Algorithm

The TF–IDF algorithm is used to calculate the similarity between images. Term Fre-
quency (TF) represents the number of occurrences of a visual word in the image, with more
occurrences representing the greater importance of the visual word. Inverse Document Fre-
quency (IDF) is a measure of the unique character of a visual word. If a visual word appears
in only a few images, the visual word has a high uniqueness. Using the TF–IDF algorithm,
the image can be expressed as a BoW vector Vd = ((id1, t1), (id2, t2), (id3, t3). . . (idk, tk)).
Then, the Equation (1) for the component element ti of BoW vector Vd:

ti =
nid
nd
∗ log

N
Ni

(1)

where nid represents the number of times word i is in indexed image d; nd represents
the total number of visual words contained in indexed image d; Ni is the number of
images containing visual word i; N represents the total number of indexed images; and idk
represents the order number of the visual word.

Traditionally, when calculating the score between the query image and the database
image, the BoW vector of the image is usually iterated. Additionally, if the same visual
words appear, the visual word weights of the query image and the corresponding visual
word weights of the database image are multiplied and accumulated to the similarity,
as shown in Figure 7. The TF–IDF-Match3 algorithm is proposed in this paper. Before
calculating the similarity value between the query image and the database image, assuming
that the total number of words is M, the BoW vector of the image is filled to the M dimension.
Its weight is assigned to zero for the visual word that does not appear, and the weights of
other visual words are kept fixed. In this case, the similarity can be calculated by simply
multiplying the BoW vectors in a cycle and then summing them up, as shown in Figure 8.
Implementing this computation process on the GPU, a thread is responsible for computing
the similarity between the query image and an image in the database, and the following
GPU optimization is used to compute the score: (1) The BoW vector of the query image
needs to compute the score with all images in the database, and there are frequent accesses.
So, the BoW vector of the query image is copied to a shared memory; (2) all threads in the
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block will access the shared memory at the same time and bank conflict will occur, which
allows only one thread to access the bank and the other threads will have to wait. This will
significantly reduce the computational efficiency. Therefore, we add one dimension to the
query image BoW vector and assign it to zero. After that, multiple threads can access the
channels separately, reducing the number of bank conflicts; (3) Using float4 type to store
BoW vector, compared with a float type, multibyte vector load or store only need to issue
a single instruction; the ratio of bytes per instruction is higher, and the total instruction
latency of a particular memory transaction is lower, reducing the number of transaction
requests and improving computational efficiency.

Figure 7. TF–IDF similarity calculation method.

Figure 8. TF–IDF-Match3 similarity calculation method.

2.2. Feature Extraction and Feature Matching

SIFT feature descriptors can effectively cope with lighting and scale changes, rotational
transformations, etc. Therefore, this paper uses SiftGPU for feature extraction of UAV
images. After that, feature matching needs to be performed. For the two feature descriptors
extracted on two images, the Euclidean distance between their corresponding feature
vectors can be calculated to evaluate the similarity of these two feature descriptors. In
this paper, we adopt the RANSAC-based feature matching method [47] to calculate the
homography matrix to describe the transformation relationship of the feature descriptors in
two images. The matching error is reduced by continuously updating the matching points
and the homography matrix, and finally a homography matrix with minimum matching
error and a matching relationship satisfying this homography matrix is calculated, which
effectively constrains the distribution of matching feature descriptors and improves the
robustness of feature matching.

2.3. The Central Bundle Adjustment with Object Point-Wise Parallel Construction of
Schur Complement
2.3.1. LM Algorithm

The function of a bundle adjustment is mainly to solve the unknown vectors of
object point, image, and camera that are closest to the true value through continuous
update iterations. The image unknown vector is composed of internal orientation elements
and external orientation elements. The camera unknown vector consists of focal length,
principal point, and distortion parameters. The object point unknown vector is made up of
coordinates. It has been shown in many earlier studies [41] that bundle adjustment actually
solves the normal equation continuously, and the normal equation is given in Equation (2).(

JTJ + λ∗DTD
)

∆x = −JTe (2)
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where J represents the Jacobian matrix. D is the damping element parameter matrix, which
is the diagonal matrix of JTJ. λ is the parameter to adjust the damping element step. Vector
∆x is the increment value of unknowns, and e is the projection residual vector.

2.3.2. Object Point-Wise Parallel Construction of Schur Complement

In this paper, the internal and external orientation elements of the images, camera
parameters, and object points are used as unknown parameters. The Jacobian matrix can
also be divided into three categories: J = [JL, JP, JC], damping matrix D = [DL, DP, DC],
and correction vector ∆x = [∆xL, ∆xP, ∆xC]. L, P, and C indicate the object point part,
image part, and camera part. After that, Equation (3) can be deduced from Equation (2):

JT
LJL + λDT

LDL JT
LJP JT

LJC

JT
PJL JT

PJP + λDT
PDP JT

PJC

JT
CJC JT

CJP JT
CJC + λDT

CDC




∆xL

∆xP

∆xC

 =


−JT

Le

−JT
Pe

−JT
Ce

 (3)

Let U = JT
LJL + λDT

LDL, V =

[
JT
PJP + λDT

pDp JT
pJC

JT
CJP JT

CJC + λDT
CDC

]
, W =

[
JT
LJP, JT

LJC
]
,

IL = −JT
Le, Ipc =

[
−JT

Pe

−JT
Ce

]
, the above Equation (3) can be further simplified as Equation (4):

[
U W

WT V

][
∆xL

∆xPC

]
=

[
IL

IPC

]
(4)

From Equation (4), we know that W is a sparse matrix of block stores. U and V are
block matrices with non-sparse store on the diagonal. Because the number of object point
unknown vectors is much larger than the total number of image and camera unknown
vectors, before solving the unknown vectors, the object point unknowns are first brought
into Equation (5) as the known vectors to solve for the image unknowns ∆xP and camera
unknowns ∆xC. Then, the image and camera unknowns are brought into Equation (6) to
solve for the object point unknowns ∆xL. The matrix V−WTU−1 W is known as the Schur
complement. The following expressions for Equations (5) and (6) are given:(

V−WTU−1 W
)

∆xPC = IPC −WTU−1IL (5)

∆xL = U−1(IL −W∆xPC) (6)

According to the above, constructing the Schur complement is the most important
part of the bundle adjustment. Because of the separable character of the object points, we
propose a central bundle adjustment with object point-wise parallel construction of the
Schur complement, which mainly includes the following steps: (1) Apply the memory
space for the Schur complement: before performing the bundle adjustment, it is required to
iterate through the array of image points corresponding to a single object point. By using
the image IDs and camera IDs corresponding to the image points in the image point array,
we can know which matrix blocks in the Schur complement need to be filled. In this way,
the memory space occupied by the total dataset of the Schur complement can be requested.
(2) Calculate the Jacobian matrix and the projected residual matrix for a single object point:
calculate the Jacobian matrix for each image point in the array of image points involved
in a single object point, that is J = [JL, JP, JC] and e. (3) Calculate the normal equation
of a single object point: the calculated part of the normal equation V block, directly filled
into the Schur complement to the diagonal block. (4) Fill in the Schur complement for a
single object point: use the U block and W block part of the normal equation for a single
object point, filling in the remaining part. (5) Release the memory occupied by single object
points: release the memory of error equation and normal equation of single object points.
Steps (2), (3), (4), and (5) are accelerated using CPU multithreading. When a single object
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point the Schur complement is constructed, the memory occupied by the temporary error
equation and the temporary normal equation can be released, greatly reducing memory
requirements. Figure 9 represents a specific example of the process of filling in the Schur
complement directly at a single object point.

2.3.3. Preconditioned Conjugate Gradient

The most popular method for solving large systems of linear equations is to use CG
algorithms for iterative solve. In this paper, the CG method is used to solve the Schur
complement. In Equation (5), let A = V−WTU−1W, b = IPC −WTU−1IL, y = ∆xPC, then
it can be rewritten as Equation (7):

M−1Ay = M−1 b (7)

The above process is known as the PCG method. Within this paper, the preprocessing
process uses the block diagonal of the Schur complement. During the conjugate gradient
iterative solution, the matrix–vector multiplication operation is performed directly using the
previously constructed Schur complement, and this computation process is implemented
on the GPU. More information on the PCG algorithm can be found in the following
articles [48–50].

Figure 9. Cont.
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Figure 9. Single object points directly fill in the Schur complement.

3. Experimental Results

To test the performance of the proposed algorithm, experiments are executed using
four datasets of UAV image, as in Table 1. To begin with, we evaluate the performance
of the algorithm based on the graph-indexed BoW model to find UAV image match pairs
in terms of retrieval accuracy, efficiency, and the number of match pairs and compare
its performance with the traditional BoW model retrieval algorithms in Colmap [25] and
Dbow2 [26]. Then, after the completed triangulation in SfM, the central bundle adjustment
with object point-wise parallel construction of the Schur complement is adopted. In terms
of overall memory occupation, efficiency, and accuracy, it is compared with the mainstream
Ceres non-linear solver library for central bundle adjustment [51]. The C++ programming
language was used to implement all the algorithms in this paper. The algorithms were
implemented on a windows platform computer with an Intel Core i7-9900K CPU at 3.6 GHz
and a GeForce GTX 1060 graphics card with 6G of graphics cache.

Table 1. Details of the experimental dataset.

Item Name Dataset 1 Dataset 2 Dataset 3 Dataset 4

UAV type Multirotor Multirotor Multirotor Multirotor
Flight height (m) 347.1 153.8 192.9 87.1

Camera mode ILCE-6000 ILCE-7RM4 ILCE-5100 ILCE-5100
Number of cameras 3 5 5 5
Focal length (mm) 25 56 35 35

Camera mount angle (degree) nadir:0
oblique: −45\45

nadir:0
oblique: −45\45

nadir:0
oblique: −45\45

nadir:0
oblique: −45\45

Number of images 1030 5665 20,297 77,357
Image size

(pixel × pixel)
6000 × 4000 9504 × 6336 6000 × 4000 6000 × 4000

GSD (cm) 5.36 1.08 5.7 1.21
Image point number 885,822 3,079,359 24,371,628 40,835,177
Object point number 209,624 736,774 3,869,464 6,534,761
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3.1. Datasets

The first dataset covers an industrial area including low-rise cottages and roads, as
shown in Figure 10a. One nadir camera and two oblique cameras were used to acquire 1030
images. The camera models are all Sony ILCE-6000, with the oblique camera rotated by 45◦.
The size of this camera is 6000 × 4000. The UAV flight altitude was 347.1 m, and the GSD
(ground sampling distance) of the acquired UAV images was about 5.36 cm. In addition,
25 GCPS (ground control points) were measured using the Hi-Target iRTK2 GPS receiver
to accurately estimate the absolute orientation, and the flight path map and control point
layout is shown in Figure 11a.

(a) (b)

(c) (d)

Figure 10. Four datasets of UAV experiments. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4.

The second dataset was collected in a rural area. This area mainly includes some
high-level residential buildings and roads, and green vegetation surrounds the residential
buildings, as shown in Figure 10b. The UAV platform carried a nadir camera and four
oblique cameras for photography, acquiring 5665 images. The camera models are all Sony
ILCE-7RM4, with the oblique camera rotated by 45◦. The size of this camera is 9504 × 6336.
The UAV flight altitude was 153.8 m, the GSD of the acquired UAV images was about
1.08 cm, and the flight path map is shown in Figure 11b.

The third dataset was taken on a suburban road. The road is mainly filled with some
low cottages and some green vegetation, as shown in Figure 10c. The UAV platform
carried a nadir camera and four oblique cameras for photography, acquiring 20,297 images.
The camera models are all Sony ILCE-5100, with the oblique camera rotated by 45◦. The size
of this camera is 6000 × 4000. The UAV flight altitude was 153.8 m, and the GSD of the
acquired UAV images was about 1.08 cm. The flight path map is shown in Figure 11c.

The fourth dataset was taken in a rural area. The area mainly consists of low-building
clusters, agricultural land, and bare land, as shown in Figure 10d. The UAV platform
carried a nadir camera and four oblique cameras for photography, acquiring 77,357 images.
The camera models are all Sony ILCE-5100, with the oblique camera rotated by 45°. The size
of this camera is 6000 × 4000. The UAV flight altitude was 87.1m, and the GSD of the
acquired UAV images was about 5.7 cm. The flight path map is shown in Figure 11d.



Remote Sens. 2022, 14, 5619 14 of 23

(a) (b)

(c) (d)

Figure 11. Flight path map of the experimental dataset. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3.
(d) Dataset 4.

3.2. The Performance of Finding UAV Image Match Pairs Based on Small-World Index Structure

To obtain reference UAV image match pairs, this paper uses Smart3D commercial
software to perform aerial triangulation on each dataset, after which the image match pairs
with a number of connected points more than 30 are marked as reference match pairs.
Among them, the retrieval accuracy metric uses the ratio of the number of correct images n
among the top m images in terms of similarity to the query image to the number of actual
reference images m. In this paper, m is set to 30 for all datasets. If the reference images are
fewer than 30, the maximum number is taken, and the maximum number of images with
the highest similarity is also taken for the query images.

The accuracy of match pair selection and the average number of correct match pairs for
a single image is given in Figure 12. To visually represent the query results more obviously,
Figure 13 represents the retrieval results of one query image from four datasets using the
algorithm of this paper. The input query image is the image with yellow edges. The query
image uses the graph index BoW model algorithm to find other images in the dataset that
have overlapping areas with it. Therefore, images with green edges represent images in the
dataset that have overlapping areas with the query image, which are retrieved images.
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(a) (b)

Figure 12. Match pair retrieval accuracy and average number of correct match pairs for a single image.
(a) Retrieval accuracy. (b) Average number of correct match pairs.

(a) (b)

(c) (d)

Figure 13. Example of retrieval result from four datasets. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3.
(d) Dataset 4.

From the perspective of the accuracy of match pair selection, the method proposed
in this paper has the highest retrieval accuracy in four experimental datas, which reaches
96.5%, 92.41%, 85.74%, and 80.32% for the four datasets, respectively. Colmap-BoW ranks
second in retrieval accuracy for the four datasets, and Dbow2 has the lowest retrieval accu-
racy. From the perspective of the average number of correct match pairs for a single image,
the method proposed in this paper has the most average number of correct match pairs in
four experimental datas, and the average number of correct match pairs for the retrieval of
the four datasets reached 26.21, 28.75, 22.82, and 19.11, respectively. Colmap-BoW ranks
second in the average number of correctly match pairs retrieved for the four datasets, with
Dbow2 having the lowest average number of correctly match pairs retrieved. It can be
concluded that the image features are more accurate in searching for the corresponding
visual words using the graph structure, and therefore the BoW vector expression of the
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image is more accurate. So, the average number of correct match pairs and the retrieval
accuracy are higher.

Table 2 gives detailed information on the time taken to search for visual words and
calculate scores during match pairs retrieval. From the perspective of the efficiency of
finding the nearest visual word, the method of finding nearest-neighbor visual words
based on small-world graph structure has the highest retrieval efficiencies in the four
experimental datasets, which reach 0.82 min, 14.05 min, 98.69 min, and 568.74 min for the
four datasets, respectively. Colmap-BoW and Dbow2 are approximately equally efficient
on the four datasets. This shows that finding nearest-neighbor visual words based on the
small-world graph structure of visual word is more efficient than K-Means search. From
the perspective of calculating the image similarity score, the TF–IDF-Match3 algorithm
proposed in this paper has the highest calculating efficiencies in the four experimental
datasets, which reach 0.167 min, 1.044 min, 5.73 min, and 17.024 min for the four datasets,
respectively. Dbow2 ranks second in the efficiency of calculating scores for the four datasets.
On dataset 3 and dataset 4, Colmap-Bow took more than 24 h, so the calculation efficiency
is only compared with dataset 1 and dataset 2, both of which were the lowest. It can be
concluded that the TF–IDF-Match3 algorithm can effectively improve calculation efficiency.

Table 2. Match pair retrieval specific time consumption.

Metric Method Dataset 1 Dataset 2 Dataset 3 Dataset 4

Retrieval word
efficiency (min)

Colmap-BoW 2.5108 29.729 204.15 1052.04

Dbow2 2.3689 29.404 201.92 1048.66

GIBoW 0.8232 14.054 98.69 568.74

Compute image
score efficiency (min)

Colmap-BoW 12.1224 177.27175 NULL NULL

Dbow2 4.21 35.93 205.77 1125.70

GIBoW 0.167 1.044 5.73 17.024

overall retrieval
time (min)

Colmap-BoW 15.4832 215.75 NULL NULL

Dbow2 7.2789 66.335 412.69 2212.36

GIBoW 0.9912 15.489 105.24 589.762

Figure 14 gives the relative ratio of the overall time consumption of the three algo-
rithms on the four experimental datasets. From the perspective of overall time consumption,
the proposed algorithm in this paper has the highest efficiency. On Dataset 1, the proposed
algorithm is 7.3 times and 15.6 times more efficient than Dbow2 and Colmap-Bow; on
Dataset 2, the proposed algorithm is 4.3 and 13.9 times more efficient than Dbow2 and
Colmap-Bow. On Datasets 3 and 4, Colmap-Bow took more than 24 h, which is not mean-
ingful for comparison and belongs to the invalid dataset. So, the proposed algorithm is only
compared with Dbow2, which improves 3.9 times and 3.8 times on dataset 3 and dataset
4, respectively. It can be seen that the proposed algorithm improves the computation
efficiency by 3–7 times on the effective datasets.

3.3. The Performance of Central Bundle Adjustment with Object Point-Wise Parallel Construction
of Schur Complement

In this paper, the framework of the LM algorithm is combined with PCG to iteratively
solve the Schur complement. Among them, the upper limits of the number of iterations of
the LM algorithm are set to 20, and the upper limits of the number of iterations of the PCG
operation are set to 300.
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Figure 14. Overall retrieval efficiency relative ratio.

Figure 15 shows the relative ratio of peak memory occupation and the relative ratio
of efficiency for the two bundle adjustment algorithms on the four experimental datasets.
From the perspective of peak memory occupation, it can be shown in Table 3 that the
proposed algorithm has a peak memory occupation of 556.7 MB, while the Ceres algorithm
has a peak occupation of 1263.3 MB on dataset 1, with a significantly lower peak memory
requirement. Moreover, it can be shown in Figure 15 that the proposed algorithm reduces
by 2.27 times the peak memory occupation compared with the Ceres algorithm on dataset
1. On dataset 2, the proposed algorithm occupies a peak memory of 1756.1MB, and Ceres
occupies a peak memory of 4151.7 MB, which reduces 2.36 times. On dataset 3, the proposed
algorithm occupies a peak memory of 10,504.2MB, and Ceres occupies a peak memory of
29,727.6 MB, which reduces 2.83 times. On dataset 4, the proposed algorithm occupies a
peak memory of 17,221.8 MB, and Ceres occupies a peak memory of 49,786.8 MB, which
reduces 2.89 times. It can be clearly inferred that as the number of data increases, the
more significantly the memory occupation is reduced, and the proposed algorithm reduces
the memory occupation peak by 2–3 times compared with Ceres. From the perspective
of the computation efficiency, it can be shown in Table 3 that the proposed algorithm
takes 18.141 s overall, while the Ceres algorithm takes 54.655 s overall on dataset 1, with a
substantial increase in efficiency. Moreover, it can be shown in Figure 15 that the proposed
algorithm has 3.01 times higher efficiency than the Ceres algorithm. On dataset 2, the
proposed algorithm took 47.129 s overall, and Ceres took 195.12 s overall, which is an
improvement of 4.14 times. On dataset 3, the proposed algorithm took 179.21 s overall,
and Ceres took 812.4 MB overall, which is an improvement of 4.53 times. On dataset 4, the
proposed algorithm took 639.82 s overall, and Ceres took 4023.66 s overall, which is an
improvement of 6.29 times. It can be clearly inferred that the proposed algorithm improves
the efficiency by 2–7 times compared with Ceres. From the perspective of the average
projection residual of image points after bundle adjustment, the algorithm proposed in this
paper and the Ceres algorithm can achieve the same accuracy and efficiency and meet the
bundle adjustment requirements.

(a) (b)

Figure 15. Bundle adjustment efficiency and memory relative ratio. (a) BA efficiency relative ratio.
(b) BA memory occupation relative ratio.
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Table 3. Bundle adjustment details metric.

Metric Method Dataset 1 Dataset 2 Dataset 3 Dataset 4

Peak Occupied
Memory (MB)

Ceres 1263.3 4151.7 29727.6 49786.8

PSCBA 556.7 1756.1 10,504.2 17,221.8

Efficiency (s)
Ceres 54.655 195.12 812.4 4023.66

PSCBA 18.141 47.129 179.21 639.82

Total Average
Residua Value (m)

Ceres 0.030894 0.045496 0.041592 0.056102

PSCBA 0.026834 0.045495 0.041272 0.056001

To evaluate the accuracy of the geo-referenced model after bundle adjustment, ground
control points are used to assist the experimental process. There are two types of ground
control points in this paper, one is called CPS(control points), and its function is to convert
the reference coordinate system of the model to the world coordinate system, this process is
called absolute orientation. The other one is called check point, and its role is to check the
accuracy of the dataset bundle adjustment results. In this experiment, 25 ground control
points were measured in dataset 1. The control points numbered 2, 5, 6, 7, and 10 are used as
control points to assist in absolute orientation, which restores the entire scene and converts
to a geo-referenced coordinate system. The remaining control points are used as check
points. The image points in the bundle adjustment dataset are used for forward intersection,
and the coordinates of the intersected object points are compared with the coordinates of
the check points, and this residual value is used to evaluate the accuracy of the bundle
adjustment results. In this paper, the residual results are analyzed and evaluated in terms
of minimum, maximum, mean, and root mean square errors (RMSEs). Table 4 presents the
dataset 1 results for the minimum, maximum, and absolute mean values in the X, Y, and Z
directions. It can be shown that in the algorithm of this paper, the maximum, minimum,
and average values in the X, Y, and Z directions are the same as the Ceres algorithm, and
the overall average value in the Z direction of this paper is more accurate than the Ceres
algorithm. Figure 16 shows the residual RMSEs in the X, Y, and Z directions. It can be seen
that in the algorithm in this paper and the Ceres algorithm, the projected residuals in X,
Y, and Z directions are the same, and the residual plots show almost the same trend. To
visually represent the bundle adjustment results more obviously, Figure 17 represents the
results of using the algorithm of this paper from four datasets. The image on the left is the
coordinates measured by the model, and on the right are the coordinates of the ground
control points measured outdoors, and it can be shown that the two results are essentially
the same. The experimental results for the other three experimental datasets are similar to
dataset 1. Additionally, the results of the proposed algorithm and Ceres are the same and
meet the bundle adjustment requirements, so they are not described too much in the paper.
Thus, we can draw the conclusion that the algorithm of this paper is fully accurate to meet
the requirements of bundle adjustment.

Table 4. Metric of ground control points after bundle adjustment for dataset 1.

Method Min (m) Max (m) Mean (m)

X Y Z X Y Z X Y Z

Ceres −0.016 −0.015 −0.052 0.0183 0.0121 0.0515 0.002 0.0027 0.0070

PSCBA −0.016 −0.0123 −0.0523 0.0183 0.0122 0.0514 0.002 0.0027 0.0068
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(a) (b)

(c)

Figure 16. Each residual plot in the X, Y, and Z directions for dataset 1: (a) the residual plot in the X
direction; (b) the residual plot in the Y direction; (c) the residual plot in the Z direction.

(a) (b)

(c) (d)

Figure 17. A sample of control points from four datasets. In each subplot, the left side is measured
model coordinates , and the right side is outdoor ground control point coordinates. (a) Dataset 1.
(b) Dataset 2. (c) Dataset 3. (d) Dataset 4.

4. Discussion

In this paper, an efficient solution for large-scale UAV image SfM is proposed to solve
the problems of the high memory consumption and low efficiency of large-scale UAV
image SfM. It consists of two main aspects, including the selection of UAV image match
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pairs based on the graph-indexed BoW model and a central bundle adjustment with object
point-wise parallel construction of the Schur complement algorithm. The results show
that the proposed method is an efficient and low memory consumption SfM solution for
large-scale UAV images, and the image points cloud results are shown in Figure 18. Two
sides of its performance can be considered.

To begin with, using the graph index BoW model algorithm can find match pairs
of UAV images with overlapping regions, which can provide reliable match pairs for
feature matching and significantly improve the efficiency of feature matching. This can
be explained in two aspects. On the one hand, it avoids exhaustive listing of all image
match pairs, effectively removes the match pairs without overlapping regions, and reduces
the total number of match pairs to be feature matched. On the other hand, those match
pairs with small or narrow overlapping areas are effectively removed, reducing the number
of false matches. Effective match pair selection can effectively solve this problem. For
the four experimental datasets, compared with Colmap-Bow and Dbow2, the acceleration
ratio of this paper’s method to select match pairs reaches 3–7 times, as shown in Figure 14.
To compare the accuracy issue, we can see that the match pair retrieval accuracies of the
method in this paper are the highest, as shown in Figure 12.

(a) (b)

(c) (d)

Figure 18. Image points cloud of the experimental dataset. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3.
(d) Dataset 4.

Then, the central bundle adjustment with object point-wise parallel construction of the
Schur complement algorithm can not only improve efficiency but also reduce the overall
memory occupation requirement compared with Ceres’ non-linear solution library for
solving. On the one hand, the overall memory requirement is reduced by constructing
a temporary error equation and temporary normal equation for the object points, and
then releasing the temporary memory after filling in the Schur complement. On the other
hand, during the conjugate gradient iterative solution process, the process of construction
of the Schur complement using the error equation for each iteration is eliminated, and
the previously constructed Schur complement is used instead, which can significantly
improve the overall efficiency. The speed-up ratio of this method reaches 2–7 times with
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four experimental datasets, and the memory occupation is reduced by 2–3 times, as shown
in Figure 15. Additionally, the same accuracy can be achieved with Ceres.

5. Conclusions

In this paper, we propose an efficient SfM solution for large-scale UAV images, which
finds image match pairs based on the graph-indexed BoW model and executes BA opti-
mization with object point-wise parallel construction of the Schur complement. The graph
index BoW model algorithm is used to search for UAV image match pairs which do not rely
on location parameter information and do not require exhaustive computation. The central
bundle adjustment with object point-wise parallel construction of the Schur complement
algorithm improves the efficiency of the traditional bundle adjustment and significantly
reduces memory consumption. Finally, by comprehensively analyzing and comparing
four UAV datasets captured using different oblique multicamera systems to evaluate the
proposed SfM solution, the experimental results show that the graph index BoW model
can efficiently and accurately select match pairs with overlapping areas, and the central
bundle adjustment with object point-wise parallel construction of the Schur complement
algorithm can efficiently and accurately obtain the bundle adjustment result. The method
proposed in this paper is an efficient solution for the SfM of large-scale UAV images.

Although the proposed graph index BoW model algorithm is advantageous in terms
of efficiency, there is the problem of losing some real match pairs in feature matching.
As shown in Figure 12, the accuracy of match pairs tends to decrease as the amount of
data increases. This problem can be explained by the pretrained vocabulary tree. On
the one hand, the increase in data volume leads to more kinds of image features, but the
pretrained vocabulary tree model does not cover all kinds of image features. So, the image
features may find the wrong visual words, which reduces retrieval accuracy. On the other
hand, the depth and number of branches of the pretrained vocabulary tree determine the
total number of clustered visual words, and as the data volume increases, different image
features may find the same visual words, which reduces the retrieval accuracy. Therefore,
future research can focus on the types of pretrained images and the size of the vocabulary
tree to improve match pair accuracy further.
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