Evaluation of Wildfire Occurrences in Pakistan with Global Gridded Soil Properties Derived from Remotely Sensed Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Properties
2.3. Elevation, Fire Data
2.4. Data Processing
3. Results
3.1. Wildfires with Soil Properties (SP) at 1.0° Grid Scale
3.2. Regional Wildfires with Soil Properties at Monthly Scale
3.3. Soil Properties versus Elevation in Explaining Regional Wildfires
3.4. Combining Soil Properties and Elevation to Explain and Estimate Regional Wildfires
4. Discussion
4.1. Wildfires with Soil Properties
4.2. SP versus Elevation in Explaining Wildfires
4.3. Combining Elevation and Indices to Explain and Estimate Wildfires
4.4. Sources of Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, Y.; Irulappa Pillai Vijayakumar, D.B.; Ouzennou, H.; Raulier, F.; Leduc, A.; Gauthier, S. Projections of future forest age class structure under the influence of fire and harvesting: Implications for forest management in the boreal forest of eastern Canada. For. Int. J. For. Res. 2017, 90, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Boucher, Y.; Auger, I.; Noël, J.; Grondin, P.; Arseneault, D. Fire is a stronger driver of forest composition than logging in the boreal forest of eastern Canada. J. Veg. Sci. 2017, 28, 57–68. [Google Scholar] [CrossRef]
- Sparks, A.M.; Kolden, C.A.; Smith, A.; Boschetti, L.; Johnson, D.M.; Cochrane, M.A. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences 2018, 15, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
- Tzanis, C.; Tsivola, E.; Efstathiou, M.; Varotsos, C. Forest fires pollution impact on the solar UV irradiance at the ground. Fresenius Environ. Bull 2009, 18, e2158. [Google Scholar]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The impact of boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 2021, 4, 252–260. [Google Scholar] [CrossRef]
- Bergeron, Y.; Cyr, D.; Girardin, M.P.; Carcaillet, C. Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: Collating global climate model experiments with sedimentary charcoal data. Int. J. Wildland Fire 2010, 19, 1127–1139. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Govender, N.; Trollope, W.S.; van Wilgen, B.W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 2006, 43, 748–758. [Google Scholar] [CrossRef]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Lin, F.; Liu, A. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Appl. Geogr. 2016, 66, 12–21. [Google Scholar] [CrossRef]
- Xiong, Q.; Luo, X.; Liang, P.; Xiao, Y.; Xiao, Q.; Sun, H.; Pan, K.; Wang, L.; Li, L.; Pang, X. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. For. Ecol. Manag. 2020, 474, 118381. [Google Scholar] [CrossRef]
- Carlson, J.; Burgan, R. Review of users’ needs in operational fire danger estimation: The Oklahoma example. Int. J. Remote Sens. 2003, 24, 1601–1620. [Google Scholar] [CrossRef]
- Viegas, D.X. Slope and wind effects on fire propagation. Int. J. Wildland Fire 2004, 13, 143–156. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R., Jr.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Possell, M.; Bell, T.L. The influence of fuel moisture content on the combustion of Eucalyptus foliage. Int. J. Wildland Fire 2012, 22, 343–352. [Google Scholar] [CrossRef]
- Molaudzi, O.D.; Adelabu, S.A. Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas. South Afr. J. Geomat. 2018, 7, 222–242. [Google Scholar] [CrossRef] [Green Version]
- Hamadeh, N.; Daya, B.; Hilal, A.; Chauvet, P. An analytical review on the most widely used meteorological models in forest fire prediction. In Proceedings of the 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Beirut, Lebanon, 29 April–1 May 2015. [Google Scholar]
- Van Wagner, C.E. (Ed.) Development and Structure of the Canadian Forest Fire Weather Index System; Canadian Forestry Service, Headquarters, Ottawa. Forestry Technical Report 35; Canadian Forest Service Publications: Ottawa, ON, Canada, 1987; p. 19927. 35p. [Google Scholar]
- Sulova, A.; Jokar Arsanjani, J. Exploratory analysis of driving force of wildfires in Australia: An application of machine learning within Google Earth engine. Remote Sens. 2020, 13, 10. [Google Scholar] [CrossRef]
- Chowdhury, E.H.; Hassan, Q.K. Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS J. Photogramm. Remote Sens. 2015, 104, 224–236. [Google Scholar] [CrossRef]
- McBratney, A.B.; MacMillan, R.A.; Carré, F. Digital Soil Mapping. In Handbook of Soil Science; Li, H., Ed.; CRC: Boca Raton, FL, USA, 2011; p. 1/45. [Google Scholar]
- Boettinger, J.L.; Howell, D.W.; Moore, A.C.; Hartemink, A.E.; Kienast-Brown, S. (Eds.) Digital Soil Mapping: Bridging Research, Environmental Application, and Operation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Shepherd, K.D.; Walsh, M.G. Infrared spectroscopy—Enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J. Near Infrared Spectrosc. 2007, 15, 1–19. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Brown, D.J.; Shepherd, K.D. Soil Spectroscopy: An Opportunity to Be Seized. Glob. Chang. Biol. 2015, 21, 10–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nickless, D. Terra and Aqua MODIS products available from NASA GES DAAC. Adv. Space Res. 2004, 34, 710–714. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar]
- English, N.B.; Weltzin, J.F.; Fravolini, A.; Thomas, L.; Williams, D.G. The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. J. Arid Environ. 2005, 63, 324–343. [Google Scholar] [CrossRef]
- Rodrigues, P.M.S.; Schaefer, C.E.G.R.; de Oliveira Silva, J.; Ferreira Júnior, W.G.; dos Santos, R.M.; Neri, A.V. The influence of soil on vegetation structure and plant diversity in different tropical savannic and forest habitats. J. Plant Ecol. 2018, 11, 226–236. [Google Scholar] [CrossRef]
- Hengl, T.; Nauman, T. Predicted USDA soil great groups at 250 m (probabilities). Zenodo 2018. Available online: https://zenodo.org/record/3528062#.Y2CfcHZByUk (accessed on 27 September 2022).
- Hengl, T. Soil bulk density (fine earth) 10 × kg/m-cubic at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Zenodo 2018. Available online: https://zenodo.org/record/1492157#.Y2CfzHZByUk (accessed on 27 September 2022).
- Hengl, T. Soil texture classes (USDA system) for 6 soil depths (0, 10, 30, 60, 100 and 200 cm) at 250 m. Zenodo 2018. Available online: https://zenodo.org/record/2525817#.Y2Cf9HZByUk (accessed on 27 September 2022).
- Ontel, I.; Ir Ontel, I.; Irimescu, A.; Boldeanu, G.; Mihailescu, D.; Angearu, C.V.; Nertan, A.; Craciunescu, V.; Negreanu, S. Assessment of Soil Moisture Anomaly Sensitivity to Detect Drought Spatio-Temporal Variability in Romania. Sensors 2021, 21, 8371. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fu, Y.; Bergeron, Y.; Valeria, O.; Chavardès, R.D.; Hu, J.; Wang, Y.; Duan, J.; Li, D.; Cheng, Y. Assessing forest fire properties in Northeastern Asia and Southern China with satellite microwave Emissivity Difference Vegetation Index (EDVI). ISPRS J. Photogramm. Remote Sens. 2022, 183, 54–65. [Google Scholar] [CrossRef]
- Rafaqat, W.; Iqbal, M.; Kanwal, R.; Song, W. Study of Driving Factors Using Machine Learning to Determine the Effect of Topography, Climate, and Fuel on Wildfire in Pakistan. Remote Sens. 2022, 14, 1918. [Google Scholar] [CrossRef]
- Kattel, D.B.; Yao, T.; Ullah, K.; Rana, A.S. Seasonal near-surface air temperature dependence on elevation and geographical coordinates for Pakistan. Theor. Appl. Climatol. 2019, 138, 1591–1613. [Google Scholar] [CrossRef]
- Begum, B.A.; Biswas, S.K.; Pandit, G.G.; Saradhi, I.V.; Waheed, S.; Siddique, N.; Seneviratne, M.S.; Cohen, D.D.; Markwitz, A.; Hopke, P.K. Long–range transport of soil dust and smoke pollution in the South Asian region. Atmos. Pollut. Res. 2011, 2, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.L.; Pereira, J.M.; Carreiras, J.M. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildland Fire 2011, 21, 48–60. [Google Scholar] [CrossRef]
- FerreirA-leiTe, F.; Lourenço, L.; Bento-Gonçalves, A. Large forest fires in mainland Portugal, brief characterization. Méditerranée. Rev. Géographique Des Pays Méditerranéens/J. Mediterr. Geogr. 2013, 121, 53–65. [Google Scholar]
- Smith, G.D. Experimental Studies on the Development of Heavy Claypans in Soils; University of Missouri, College of Agriculture, Agricultural Experiment Station: Columbia, MO, USA, 1934. [Google Scholar]
- MODIS/Aqua+Terra Thermal Anomalies/Fire locations 1 km FIRMS V006 NRT (Vector Data). Available online: https://catalog.data.gov/dataset/modis-aqua-terra-thermal-anomalies-fire-locations-1km-firms-v006-nrt-vector-data (accessed on 27 September 2022).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Maingi, J.K.; Henry, M.C. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int. J. Wildland Fire 2007, 16, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Dodson, E.K.; Root, H.T. Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA. For. Ecol. Manag. 2013, 302, 163–170. [Google Scholar] [CrossRef]
- Starbuck, C.A.; Considine, E.S.; Chambers, C.L. Water and elevation are more important than burn severity in predicting bat activity at multiple scales in a post-wildfire landscape. PLoS ONE 2020, 15, e0231170. [Google Scholar] [CrossRef] [Green Version]
- Verde, J.; Zêzere, J. Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat. Hazards Earth Syst. Sci. 2010, 10, 485–497. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Abatzoglou, J.T.; Luce, C.H.; Adamowski, J.F.; Farid, A.; Sadegh, M. Warming enabled upslope advance in western US forest fires. Proc. Natl. Acad. Sci. USA 2021, 118, e2009717118. [Google Scholar] [CrossRef] [PubMed]
- Carmo, M.; Moreira, F.; Casimiro, P.; Vaz, P. Land use and topography influences on wildfire occurrence in northern Portugal. Landsc. Urban Plan. 2011, 100, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Bassett, M.; Leonard, S.W.; Chia, E.K.; Clarke, M.F.; Bennett, A.F. Interacting effects of fire severity, time since fire and topography on vegetation structure after wildfire. For. Ecol. Manag. 2017, 396, 26–34. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Interacting effects of topography, vegetation, human activities and wildland-urban interfaces on wildfire ignition risk. For. Ecol. Manag. 2017, 397, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, P.M.; Stewart, S.I.; Mockrin, M.H.; Keuler, N.S.; Syphard, A.D.; Bar-Massada, A.; Clayton, M.K.; Radeloff, V.C. The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landsc. Ecol. 2016, 31, 415–430. [Google Scholar] [CrossRef]
- Louis Giglio, C.J. MODIS/Aqua Thermal Anomalies/Fire 5-Min L2 Swath 1 km V006. NASA EOSDIS Land Processes DAAC, 2015-08-26T00:00:00.000Z. 006. Available online: https://data.amerigeoss.org/es/dataset/modis-aqua-thermal-anomalies-fire-5-min-l2-swath-1km-v006 (accessed on 27 September 2022).
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Syed, A.; Sarwar, G.; Shah, S.H.; Muhammad, S. Soil salinity research in 21st century in Pakistan: Its impact on availability of plant nutrients, growth and yield of crops. Commun. Soil Sci. Plant Anal. 2021, 52, 183–200. [Google Scholar] [CrossRef]
- Schoenberg, F.P.; Peng, R.; Huang, Z.; Rundel, P. Detection of non-linearities in the dependence of burn area on fuel age and climatic variables. Int. J. Wildland Fire 2003, 12, 1–6. [Google Scholar] [CrossRef]
- Jurdao, S.; Chuvieco, E.; Arevalillo, J.M. Modelling fire ignition probability from satellite estimates of live fuel moisture content. Fire Ecol. 2012, 8, 77–97. [Google Scholar] [CrossRef]
- Schimel, J.; Chadwick, O. What’s in a name? The importance of soil taxonomy for ecology and biogeochemistry. Front. Ecol. Environ. 2013, 11, 405–407. [Google Scholar] [CrossRef]
- Benetková, P.; Tichý, L.; Háněl, L.; Kukla, J.; Vicentini, F.; Frouz, J. The effect of soil and plant material transplants on vegetation and soil biota during forest restoration in a limestone quarry: A case study. Ecol. Eng. 2020, 158, 106039. [Google Scholar] [CrossRef]
- Nyamekye, C.; Schönbrodt-Stitt, S.; Amekudzi, L.K.; Zoungrana, B.J.B.; Thiel, M. Usage of MODIS NDVI to evaluate the effect of soil and water conservation measures on vegetation in Burkina Faso. Land Degrad. Dev. 2021, 32, 7–19. [Google Scholar] [CrossRef]
- Wu, G.L.; Liu, Y.F.; Cui, Z.; Liu, Y.; Shi, Z.H.; Yin, R.; Kardol, P. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. J. Appl. Ecol. 2020, 57, 875–885. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Resco de Dios, V.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.; Csiszar, I.; Morisette, J. Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens. Environ. 2008, 112, 456–470. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Hudak, A.T.; Zajkowski, T.; Loudermilk, E.L.; Schroeder, W.; Ellison, L.; Kremens, R.L.; Holley, W.; Martinez, O.; Paxton, A.; et al. Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors–RxCADRE 2012. Int. J. Wildland Fire 2015, 25, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Li, R.; Wang, X.; Bergeron, Y.; Valeria, O.; Chavardès, R.D.; Wang, Y.; Hu, J. Fire detection and fire radiative power in forests and low-biomass lands in Northeast Asia: MODIS versus VIIRS Fire Products. Remote Sens. 2020, 12, 2870. [Google Scholar] [CrossRef]
Regions | Combinations | Regression | R |
---|---|---|---|
Northern | FC-elevation | FC = 0.22 × E + 4.91 | 0.19 |
Southern | FC = −0.27 × E + 4.75 | 0.30 | |
Northern | FC-elevation-soil bulk density | FC = −0.0010 × E − 0.09 × SBD + 18.65 | 0.40 |
Southern | FC = −0.0113 × E − 0.04 × SBD + 11.94 | 0.37 | |
Northern | FC-elevation-soil taxonomy | FC = 7.586 × 10−5 × E − 0.001 × STax + 5.91 | 0.32 |
Southern | FC = −0.019 × E + 0.004 × STax + 5.89 | 0.50 | |
Northern | FC-elevation-soil texture | FC = 0.0003 × E − 0.29 × SText + 0.74 | 0.16 |
Southern | FC = −0.0136 × E + 0.04 × SText + 6.11 | 0.13 | |
Northern | FC-soil bulk density- soil taxonomy-soil texture | FC = −0.0405 × SBD − 0.0007 × STax − 0.34 × SText + 13.60 | 0.52 |
Southern | FC = −0.2420 × SBD + 0.0073 × STax − 0.23 × SText + 41.31 | 0.53 | |
Northern | FC-elevation-soil bulk density-soil taxonomy-soil texture | FC = −0.0008 × E − 0.096 × SBD + 0.0002 × STax − 0.32 × SText + 21.77 | 0.59 |
Southern | FC = −0.0127 × E − 0.17 × BD + 0.0076 × STax − 0.22 × SText + 31.32 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafaqat, W.; Iqbal, M.; Kanwal, R.; Weiguo, S. Evaluation of Wildfire Occurrences in Pakistan with Global Gridded Soil Properties Derived from Remotely Sensed Data. Remote Sens. 2022, 14, 5503. https://doi.org/10.3390/rs14215503
Rafaqat W, Iqbal M, Kanwal R, Weiguo S. Evaluation of Wildfire Occurrences in Pakistan with Global Gridded Soil Properties Derived from Remotely Sensed Data. Remote Sensing. 2022; 14(21):5503. https://doi.org/10.3390/rs14215503
Chicago/Turabian StyleRafaqat, Warda, Mansoor Iqbal, Rida Kanwal, and Song Weiguo. 2022. "Evaluation of Wildfire Occurrences in Pakistan with Global Gridded Soil Properties Derived from Remotely Sensed Data" Remote Sensing 14, no. 21: 5503. https://doi.org/10.3390/rs14215503
APA StyleRafaqat, W., Iqbal, M., Kanwal, R., & Weiguo, S. (2022). Evaluation of Wildfire Occurrences in Pakistan with Global Gridded Soil Properties Derived from Remotely Sensed Data. Remote Sensing, 14(21), 5503. https://doi.org/10.3390/rs14215503