Quantifying the Importance of Ice-Rafted Debris to Salt Marsh Sedimentation Using High Resolution UAS Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Structure from Motion Photogrammetry
2.3. Pixel-Based Classification
2.4. Accuracy Assessment
2.5. Field Survey and Sediment Analysis
3. Results
3.1. Image Classification
3.2. Field Survey
3.3. Estimation of Sediment Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of Human-Driven Change in Salt Marsh Ecosystems. Annu. Rev. Mar. Sci. 2009, 1, 117–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkinson, C.S.; Giblin, A.E.; Tucker, J.; Garritt, R.H. Benthic Metabolism and Nutrient Cycling along an Estuarine Salinity Gradient. Estuaries 2006, 22, 863. [Google Scholar] [CrossRef]
- Sweet, W.V.; Hamlington, B.D.; Kopp, R.E.; Weaver, C.P.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines; NOAA Technical Report NOS 01; National Oceanic and Atmospheric Administration, National Ocean Service: Silver Spring, MD, USA, 2022; 111p.
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Change 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Sallenger, A.H.; Doran, K.S.; Howd, P.A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2012, 2, 884–888. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, C.S.; Morris, J.T.; Fagherazzi, S.; Wollheim, W.M.; Raymond, P.A. Lateral Marsh Edge Erosion as a Source of Sediments for Vertical Marsh Accretion. J. Geophys. Res. Biogeosci. 2018, 123, 2444–2465. [Google Scholar] [CrossRef]
- Talke, S.A.; Kemp, A.C.; Woodruff, J. Relative sea level, tides, and extreme water levels in Boston Harbor from 1825 to 2018. J. Geophys. Res. Oceans 2018, 123, 3895–3914. [Google Scholar] [CrossRef]
- Chmura, G.L. What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean Coast. Manag. 2013, 83, 25–31. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B. Responses of Coastal Wetlands to Rising Sea Level. Ecol. Soc. Am. 2009, 83, 2869–2877. [Google Scholar] [CrossRef]
- Ganju, N.K.; Kirwan, M.L.; Dickhudt, P.J.; Guntenspergen, G.R.; Cahoon, D.R.; Kroeger, K.D. Sediment transport-based metrics of wetland stability. Geophys. Res. Lett. 2015, 42, 7992–8000. [Google Scholar] [CrossRef] [Green Version]
- Redfield, A. Development of a New England Salt Marsh. Ecol. Monogr. 1972, 42, 201–237. [Google Scholar] [CrossRef]
- Tognin, D.; D’Alpaos, A.; Marani, M.; Carniello, L. Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice Lagoon. Nat. Geosci. 2021, 14, 906–911. [Google Scholar] [CrossRef]
- Zhu, Q.; Wiberg, P.L. The importance of storm surge for sediment delivery to microtidal marshes. J. Geophys. Res. Earth Surf. 2022, 127, e2022JF006612. [Google Scholar] [CrossRef]
- Tognin, D.; Finotello, A.; D’Alpaos, A.; Viero, D.P.; Pivato, M.; Mel, R.A.; Defina, A.; Bertuzzo, E.; Marani, M.; Carniello, L. Loss of geomorphic diversity in shallow tidal embayments promoted by storm-surge barriers. Sci. Adv. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Dionne, J.C. Schorre morphology on the south shore of the St. Lawrence Estuary. Am. J. Sci. 1968, 266, 380–388. [Google Scholar] [CrossRef]
- Mcowen, C.J.; Weatherdon, L.V.; Bochove, J.V.; Sullivan, E.; Blyth, S.; Zockler, C.; Stanwell-Smith, D.; Kingston, N.; Martin, C.S.; Spalding, M.; et al. A global map of saltmarshes. Biodivers Data J. 2017, 5, e11764. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.E.; Kelley, J.T.; Belknap, D.F. Patterns of Sediment Accumulation in the Tidal Marshes of Maine. Estuaries 2006, 12, 237. [Google Scholar] [CrossRef]
- Argow, B.A.; Hughes, Z.J.; FitzGerald, D.M. Ice raft formation, sediment load, and theoretical potential for ice-rafted sediment influx on northern coastal wetlands. Cont. Shelf Res. 2011, 31, 1294–1305. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Hughes, Z.J.; Georgiou, I.Y.; Black, S.; Novak, A. Enhanced, climate-driven sedimentation on salt marshes. Geophys. Res. Lett. 2020, 47, e2019GL086737. [Google Scholar] [CrossRef]
- Buchsbaum, R.; Purinton, T.; Magnuson, B. (Eds.) The Marine Resources of the Parker River-Plum Island Sound Estuary: An Update after 30 Years; Massachusetts Office of Coastal Zone Management: Boston, MA, USA, 1998.
- Sullivan, J.C.; Torres, R.; Garrett, A.; Blanton, J.; Alexander, C.; Robinson, M.; Moore, T.; Amft, J.; Hayes, D. Complexity in salt marsh circulation for a semienclosed basin. J. Geophys. Res. F Earth Surf. 2015, 120, 1973–1989. [Google Scholar] [CrossRef]
- Geyer, W.R.; Signell, R.P. A Reassessment of the Role of Tidal Dispersion in Estuaries and Bays. Estuaries 2006, 15, 97. [Google Scholar] [CrossRef]
- Squiers, E.R.; Good, R.E. Seasonal Changes in the Productivity, Caloric Content, and Chemical Composition of a Population of Salt-Marsh Cord-Grass (Spartina alterniflora). Chesap. Sci. 2006, 15, 63. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R.; D’Alpaos, A.; Morris, J.T.; Mudd, S.M. and Temmerman, S. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 2010, 37, L23401. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, M.L.; Guntenspergen, G.R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. Earth Surf. 2010, 115, F02009. [Google Scholar] [CrossRef]
- Ewanchuk, P.J.; Bertness, M.D. Recovery of a northern New England salt marsh plant community from winter icing. Oecologia 2003, 136, 616–626. [Google Scholar] [CrossRef]
- Ganju, N.K.; Brosnahan, S.M.; Sturdivant, E.J.; Pendleton, E.A.; Ackerman, S.D. Aerial Imagery from Unmanned Aerial Systems (UAS) Flights–Plum Island Estuary and Parker River NWR (PIEPR), February 27th, 2018; U.S. Geological Survey Data Release: Reston, VA, USA, 2019. [CrossRef]
- Cramer, J.C.; Brosnahan, S.M.; Ackerman, S.D.; Pendleton, E.A.; Sturdivant, E.J.; Borden, J. Aerial Imagery Collected during Unoccupied Aircraft Systems (UAS) Operations in Massachusetts and Maine between March 2018—September 2018; U.S. Geological Survey Data Release: Reston, VA, USA, 2021. [CrossRef]
- Farris, A.S.; Defne, Z.; Ganju, N.K. Identifying Salt Marsh Shorelines from Remotely Sensed Elevation Data and Imagery. Remote Sens. 2019, 11, 1795. [Google Scholar] [CrossRef] [Green Version]
- Defne, Z.; Ganju, N.K. Conceptual Marsh Units for Plum Island Estuary and Parker River Salt Marsh Complex, Massachusetts; U.S. Geological Survey Data Release: Reston, VA, USA, 2018. [CrossRef]
- Deliry, S.I.; Avdan, U. Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review. J. Indian Soc. Remote Sens. 2021, 49, 1997–2017. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Fantuzzi, L. A UAV-based dye-tracking technique to measure surface velocities over tidal channels and salt marshes. J. Mar. Sci. Eng. 2020, 8, 364. [Google Scholar] [CrossRef]
- Taddia, Y.; Pellegrinelli, A.; Corbau, C.; Franchi, G.; Staver, L.W.; Stevenson, J.C.; Nardin, W. High-resolution monitoring of tidal systems using UAV: A case study on Poplar Island, MD (USA). Remote Sens. 2021, 13, 1364. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Rosso, P.H.; Ustin, S.L.; Hastings, A. Use of lidar to study changes associated with Spartina invasion in San Francisco Bay marshes. Remote Sens. Environ. 2006, 100, 295–306. [Google Scholar] [CrossRef]
- Kalacska, M.; Chmura, G.L.; Lucanus, O.; Bérubé, D.; Arroyo-Mora, J.P. Structure from motion will revolutionize analyses of tidal wetland landscapes. Remote Sens. Environ. 2017, 199, 14–24. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.; Schwarz, C.; Tian, B.; Jiang, W.; Wu, W.; Garg, R.; Garg, P.; Aleksandr, C.; Mikhail, S.; et al. Mapping three-dimensional morphological characteristics of tidal salt-marsh channels using UAV structure-from-motion photogrammetry. Geomorphology 2022, 407, 108235. [Google Scholar] [CrossRef]
- Brunier, G.; Michaud, E.; Fleury, J.; Anthony, E.J.; Morvan, S.; Gardel, A. Assessing the relationship between macro-faunal burrowing activity and mudflat geomorphology from UAV-based Structure-from-Motion photogrammetry. Remote Sens. Environ. 2020, 241, 111717. [Google Scholar] [CrossRef]
- Wilson, C.A.; Hughes, Z.J.; FitzGerald, D.M.; Hopkinson, C.S.; Valentine, V.; Kolker, A.S. Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes? Geomorphology 2014, 213, 99–115. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Ranwell, D.S. Spartina Salt Marshes in Southern England: II. Rate and Seasonal Pattern of Sediment Accretion. J. Ecol. 2006, 52, 79. [Google Scholar] [CrossRef]
- Schmitt, C.; Wetson, N.; Hopkinson, C. Preliminary Evaluation of Sedimentation Rates and Species Distribution in Plum Island Estuary, Massachusetts. Biol. Bull. 1998, 195, 232–233. [Google Scholar] [CrossRef]
- Moore, G.E.; Burdick, D.M.; Routhier, M.R.; Novak, A.B.; Payne, A.R. Effects of a large-scale, natural sediment deposition event on plant cover in a Massachusetts salt marsh. PLoS ONE 2021, 16, e0245564. [Google Scholar] [CrossRef]
- Black, K.S.; Tolhurst, T.J.; Paterson, D.M.; Hagerthey, S.E. Working with natural cohesive sediments. J. Hydraul. Eng. 2002, 128, 2. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Viggato, T.; Vieillard, A.M.; Mariotti, G.; Fulweiler, R.W. The effect of evaporation on the erodibility of mudflats in a mesotidal estuary. Estuar. Coast. Shelf Sci. 2017, 194, 118–127. [Google Scholar] [CrossRef]
- van de Plassche, O.; Erkens, G.; van Vliet, F.; Brandsma, J.; van der Borg, K.; de Jong, A.F. Salt-marsh erosion associated with hurricane landfall in southern New England in the fifteenth and seventeenth centuries. Geology 2006, 34, 829–832. [Google Scholar] [CrossRef]
- Lin, N.; Marsooli, R.; Colle, B.A. Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States. Clim. Change 2019, 154, 143–158. [Google Scholar] [CrossRef]
Latitude, Longitude (°) | Thickness (cm) | IRD Patch Area (m2) | Density (g/cc) | % Sand | % Mineral Sediment |
---|---|---|---|---|---|
42.7732098, −70.8116516 | 2.8 ± 0.68 | 12.82 | 0.87 ± 0.19 | 14.29 ± 2.84 | 90.27 ± 2.28 |
42.7723858, −70.8132415 | 2.3 ± 0.78 | 116.10 | 0.84 ± 0.04 | 14.47 ± 2.38 | 91.79 ± 2.03 |
42.7719599, −70.813078 | 3.0 ± 0.61 | 321.74 | 0.54 ± 0.13 | 7.77 ± 2.07 | 85.95 ± 4.31 |
42.7727812, −70.8127717 | 3.2 ± 1.70 | 6.74 | 0.81 ± 0.19 | 21.60 ± 1.05 | 88.84 ± 1.93 |
42.7722308, −70.8131951 | 2.7 | 20.10 | 0.82 | 8.77 | 81.39 |
42.7721826, −70.8131122 | 4.1 ± 0.60 | 501.61 | 0.69 ± 0.24 | 10.43 ± 1.67 | 89.74 ± 3.02 |
42.7716978, −70.8133417 | 3.6 | 89.30 | 0.97 | 23.54 | 92.99 |
42.7721314, −70.8130836 | 3.9 ± 2.23 | 82.38 | 0.53 | 4.65 | 83.05 |
42.7721067, −70.8125565 | 3.0 | 15.86 | 0.87 | 41.62 | 92.11 |
42.7722182, −70.8125085 | 3.1 ± 0.57 | 62.28 | 0.89 | 11.43 | 90.91 |
42.7725462, −70.8127865 | 2.7 | 5.23 | - | - | - |
42.7727349, −70.8127529 | 2.8 | 12.99 | 0.84 | 17.29 | 90.71 |
42.7725084, −70.8122061 | 1.8 | 5.44 | 0.76 | 22.48 | 89.86 |
42.7725761, −70.811969 | 2.0 | 8.22 | 0.83 | 21.61 | 89.07 |
42.7740023, −70.8117352 | 1.9 | 4.92 | 0.99 | 19.04 | 89.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stopak, S.; Nordio, G.; Fagherazzi, S. Quantifying the Importance of Ice-Rafted Debris to Salt Marsh Sedimentation Using High Resolution UAS Imagery. Remote Sens. 2022, 14, 5499. https://doi.org/10.3390/rs14215499
Stopak S, Nordio G, Fagherazzi S. Quantifying the Importance of Ice-Rafted Debris to Salt Marsh Sedimentation Using High Resolution UAS Imagery. Remote Sensing. 2022; 14(21):5499. https://doi.org/10.3390/rs14215499
Chicago/Turabian StyleStopak, Sarah, Giovanna Nordio, and Sergio Fagherazzi. 2022. "Quantifying the Importance of Ice-Rafted Debris to Salt Marsh Sedimentation Using High Resolution UAS Imagery" Remote Sensing 14, no. 21: 5499. https://doi.org/10.3390/rs14215499
APA StyleStopak, S., Nordio, G., & Fagherazzi, S. (2022). Quantifying the Importance of Ice-Rafted Debris to Salt Marsh Sedimentation Using High Resolution UAS Imagery. Remote Sensing, 14(21), 5499. https://doi.org/10.3390/rs14215499