Improved Lithological Map of Large Complex Semi-Arid Regions Using Spectral and Textural Datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers
Abstract
:1. Introduction
- Evaluating the potential of the GEE platform and spatio-spectral bands of Sentinel-2 data to classify the lithological units exposed in a large complex semi-arid region within the GEE code editor environment;
- Evaluating and assessing the performance of different MLAs (RF, SVM, CART, MD and NB) in terms of classification accuracy of each class;
- Optimizing and enhancing lithological mapping accuracy for all the classes using the DST fusion approach.
2. Study Area and Materials
2.1. Study Area
2.2. Data Sources and Preprocessing
3. Methodology
3.1. Data Enhancement and Processing
3.1.1. Spectral Enhancement Techniques
- Principal Component Analysis (PCA)
- 2.
- Minimum Noise Fraction Analysis (MNFA)
3.1.2. Textural Feature Processing
3.2. Machine Learning-Based Techniques
3.2.1. Random Forest (RF)
3.2.2. Support Vector Machine (SVM)
3.2.3. Classification and Regression Tree (CART)
3.2.4. Minimum Distance (MD)
3.2.5. Naïve Bayes (NB)
3.3. Lithological Mapping Based on Dempster–Shafer Fusion
4. Results
4.1. Selection of Training and Validation Samples
4.2. Classification Schemes
4.3. Accuracy Assessments of Classified Maps
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, B.; Tian, S.; Ge, J.; Sun, Y. Assessment of WorldView-3 data for lithological mapping. Remote Sens. 2017, 9, 1132. [Google Scholar] [CrossRef]
- El Fels, A.E.A.; El Ghorfi, M. Using remote sensing data for geological mapping in semi-arid environment: A machine learning approach. Earth Sci. Inform. 2022, 15, 485–496. [Google Scholar] [CrossRef]
- Ge, W.; Cheng, Q.; Tang, Y.; Jing, L.; Gao, C. Lithological classification using Sentinel-2A data in the Shibanjing ophiolite complex in Inner Mongolia, China. Remote Sens. 2018, 10, 638. [Google Scholar] [CrossRef] [Green Version]
- Serbouti, I.; Raji, M.; Hakdaoui, M.; Pradhan, B.; Lee, C.W.; Alamri, A.M. Pixel and Object-Based Machine Learning Classification Schemes for Lithological Mapping Enhancement of Semi-Arid Regions Using Sentinel-2A Imagery: A Case Study of the Southern Moroccan Meseta. IEEE Access 2021, 9, 119262–119278. [Google Scholar] [CrossRef]
- Imane, S.; Mohamed, R.; Mustapha, H. A comparison of GEOBIA Vs PBIA machine learning methods for lithological mapping using Sentinel 2 imagery: Case study of Skhour Rehamna Morocco. IEEE Int. Conf. Moroc. Geomat. 2020, 2020, 2–7. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Müller, R.D.; Chandra, R. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens. Environ. 2022, 268, 112750. [Google Scholar] [CrossRef]
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. J. Appl. Remote Sens. 2021, 15, 1–25. [Google Scholar] [CrossRef]
- Bentahar, I.; Raji, M.; Si Mhamdi, H. Fracture network mapping using Landsat-8 OLI, Sentinel-2A, ASTER, and ASTER-GDEM data, in the Rich area (Central High Atlas, Morocco). Arab. J. Geosci. 2020, 13, 16. [Google Scholar] [CrossRef]
- Mwaniki, M.W.; Matthias, M.S.; Schellmann, G. Application of Remote Sensing Technologies to Map the Structural Geology of Central Region of Kenya. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1855–1867. [Google Scholar] [CrossRef]
- Serbouti, M.I.; Hakdaoui, M.R. Contribution of spatial multi-sensor imagery to the cartography of structural lineaments: Case study of the paleozoic massif of rehamna (Moroccan Meseta). Earth Obs. Adv. A Chang. World 2019, 1, 122–125. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sens. 2014, 6, 6867–6896. [Google Scholar] [CrossRef] [Green Version]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Bachri, I.; Hakdaoui, M.; Raji, M.; Teodoro, A.C.; Benbouziane, A. Machine learning algorithms for automatic lithological mapping using remote sensing data: A case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS Int. J. Geo-Inf. 2019, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Van der Meer, F.D.; Van der Werff, H.M.A.; Van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Grebby, S.; Field, E.; Tansey, K. Evaluating the use of an object-based approach to lithological mapping in vegetated terrain. Remote Sens. 2016, 8, 843. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liu, X.; Liu, J. Integrating textural and spectral features to classify silicate-bearing rocks using landsat 8 data. Appl. Sci. 2016, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, F.; Eslamkish, T.; Abkar, A.A.; Honarmand, M.; Harris, J.R. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. J. African Earth Sci. 2017, 129, 445–457. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Correction [to ‘Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site’ by John, B. Adams, Milton, O. Smith, and Paul, E. Johnson]. J. Geophys. Res. 1986, 91, 10513. [Google Scholar] [CrossRef] [Green Version]
- Drake, N.A. Reflectance spectra of evaporite minerals (400–2500 nm): Applications for remote sensing. Int. J. Remote Sens. 1995, 16, 2555–2571. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere 2011, 7, 276–289. [Google Scholar] [CrossRef]
- Shafiq, M.A.; Wang, Z.; Amin, A.; Hegazy, T.; Deriche, M.; AlRegib, G. Detection of salt-dome boundary surfaces in migrated seismic volumes using gradient of textures. SEG Tech. Progr. Expand. Abstr. 2015, 34, 1811–1815. [Google Scholar] [CrossRef] [Green Version]
- Ryherd, S.; Woodcock, C. Combining spectral and texture data in the segmentation of remotely sensed images. Photogramm. Eng. Remote Sens. 1996, 62, 181–194. [Google Scholar]
- Li, P.; Li, Z.; Moon, W.M. Lithological discrimination of Altun area in northwest China using Landsat TM data and geostatistical textural information. Geosci. J. 2001, 5, 293–300. [Google Scholar] [CrossRef]
- Li, N.; Zhao, H.J.; Huang, P.; Jia, G.R.; Bai, X. A novel logistic multi-class supervised classification model based on multi-fractal spectrum parameters for hyperspectral data. Int. J. Comput. Math. 2015, 92, 836–849. [Google Scholar] [CrossRef]
- Moosavi, V.; Niazi, Y. Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides 2016, 13, 97–114. [Google Scholar] [CrossRef]
- Farahbakhsh, E.; Chandra, R.; Olierook, H.K.; Scalzo, R.; Clark, C.; Reddy, S.M.; Müller, R.D. Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. Int. J. Remote Sens. 2020, 41, 760–1787. [Google Scholar] [CrossRef]
- Cross, G.R.; Jain, A.K. Markov Random Field Texture Models. IEEE Trans. Pattern Anal. Mach. Intell. 1983, 1, 25–39. [Google Scholar] [CrossRef]
- Li, N.; Frei, M.; Altermann, W. Textural and knowledge-based lithological classification of remote sensing data in Southwestern Prieska sub-basin, Transvaal Supergroup, South Africa. J. African Earth Sci. 2011, 60, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Padarian, J.; Iwanaga, T.; Vervoort, R.W. 3D lithological mapping of borehole descriptions using word embeddings. Comput. Geosci. 2020, 141, 104516. [Google Scholar] [CrossRef]
- Mering, C.; Chopin, F. Granulometric maps from high resolution satellite images. Image Anal. Stereol. 2002, 21, 19–24. [Google Scholar] [CrossRef]
- Chen, D.; Stow, D.A.; Gong, P. Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. Int. J. Remote Sens. 2004, 25, 2177–2192. [Google Scholar] [CrossRef]
- Lloyd, C.D.; Berberoglu, S.; Curran, P.J.; Atkinson, P.M. A comparison of texture measures for the per-field classification of Mediterranean land cover. Int. J. Remote Sens. 2004, 25, 3943–3965. [Google Scholar] [CrossRef]
- Tai-feng, D. Application of GLCM-Based Texture Features to Remote Sensing Image Classification. Geol. Explor. 2011, 47, 456–467. [Google Scholar]
- Emran, A.; Hakdaoui, M.; Chorowicz, J. Anomalies on geologic maps from multispectral and textural classification: The Bleida Mining District (Morocco). Remote Sens. Environ. 1996, 57, 13–21. [Google Scholar] [CrossRef]
- Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 73–745. [Google Scholar] [CrossRef]
- Berberoglu, S.; Lloyd, C.D.; Atkinson, P.M.; Curran, P.J. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput. Geosci. 2000, 26, 385–396. [Google Scholar] [CrossRef]
- Merembayev, T.; Kurmangaliyev, D.; Bekbauov, B.; Amanbek, Y. A Comparison of Machine Learning Algorithms in Predicting Lithofacies: Case Studies from Norway and Kazakhstan. Energies 2021, 14, 1896. [Google Scholar] [CrossRef]
- Alajlan, N.; Bazi, Y.; Melgani, F.; Yager, R.R. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images. Inf. Sci. 2012, 217, 39–55. [Google Scholar] [CrossRef]
- Dibs, H.; Hasab, H.A.; Al-Rifaie, J.K.; Al-Ansari, N. An Optimal Approach for Land-Use / Land-Cover Mapping by Integration and Fusion of Multispectral Landsat OLI Images: Case Study in Baghdad, Iraq. Water. Air. Soil Pollut. 2020, 231, 9. [Google Scholar] [CrossRef]
- Dibs, H.; Hasab, H.A.; Mahmoud, A.S.; Al-Ansari, N. Fusion Methods and Multi-classifiers to Improve Land Cover Estimation Using Remote Sensing Analysis. Geotech. Geol. Eng. 2021, 39, 5825–5842. [Google Scholar] [CrossRef]
- Shmuel, A.; Heifetz, E. Global Wildfire Susceptibility Mapping Based on Machine Learning Models. Forests 2022, 13, 1050. [Google Scholar] [CrossRef]
- Alonso-Betanzos, A.; Fontenla-Romero, O.; Guijarro-Berdiñas, B.; Hernández-Pereira, E.; Andrade, M.I.P.; Jiménez, E. An intelligent system for forest fire risk prediction and fire fighting management in Galicia. Expert Syst. Appl. 2003, 25, 545–554. [Google Scholar] [CrossRef]
- López-caloca, A.A. Data Fusion Approach for Employing Multiple Classifiers to Improve Lake Shoreline Analysis. Iberoam. Congr. Pattern Recognit. 2014, 2014, 1022–1029. [Google Scholar]
- Du, P.; Liu, S.; Xia, J.; Zhao, Y. Information fusion techniques for change detection from multi-temporal remote sensing images. Inf. Fusion 2013, 14, 19–27. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, J.; Van Genderen, J.L. Comparison and Analysis of Remote Sensing Data Fusion Techniques. Comm. Remote Sens. Pixels Process. 2006, 36, 5. [Google Scholar]
- Jiang, D.; Zhuang, D.; Huang, Y.; Fu, J. Survey of Multispectral Image Fusion Techniques in Remote Sensing Applications. Image Fusion Its Appl. 2011, 1, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Rottensteiner, F.; Trinder, J.; Clode, S.; Kubik, K. Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection. Inf. Fusion 2005, 6, 283–300. [Google Scholar] [CrossRef]
- Denœux, T. A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory. IEEE Trans. Syst. Man. Cybern. 1995, 25, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Fontani, M.; Bianchi, T.; De Rosa, A.; Piva, A.; Barni, M. A Dempster-Shafer framework for decision fusion in image forensics. In 2011 IEEE International Workshop on Information Forensics and Security; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Singh, R.; Vatsa, M.; Noore, A.; Singh, S.K. Dempster-Shafer Theory Based Classifier Fusion for Improved Fingerprint Verification Performance. In Computer Vision, Graphics and Image Processing; Springer: Berlin, Germany, 2006; pp. 941–949. [Google Scholar] [CrossRef]
- Malpica, J.A.; Alonso, M.C.; Sanz, M.A. Dempster-Shafer Theory in geographic information systems: A survey. Expert Syst. Appl. 2007, 32, 47–55. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Lippitt, Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Mondal, P.; Liu, X.; Fatoyinbo, T.E.; Lagomasino, D. Evaluating combinations of sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef] [Green Version]
- Shafizadeh-Moghadam, H.; Khazaei, M.; Alavipanah, S.K.; Weng, Q. Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural and topographical factors. GIScience Remote Sens. 2021, 58, 914–928. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Yancho, J.M.M.; Jones, T.G.; Gandhi, S.R.; Ferster, C.; Lin, A.; Glass, L. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sens. 2020, 12, 3758. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-term surface water dynamics analysis based on landsat imagery and the Google Earth Engine Platform: A case study in the middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Li, X.; Wei, X.; Liu, W.; Zhang, L.; Wang, L. Mapping 10-m resolution rural settlements using multi-source remote sensing datasets with the google earth engine platform. Remote Sens. 2020, 12, 2832. [Google Scholar] [CrossRef]
- Pericak, A.A.; Thomas, C.J.; Kroodsma, D.A.; Wasson, M.F.; Ross, M.R.; Clinton, N.E. Mapping the yearly extent of surface coal mining in central appalachia using landsat and google earth engine. PLoS ONE 2018, 13, 0197758. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yang, X.; Jin, H.; Wang, Z.; Liu, Y.; Liu, B. Monitoring coastline changes of the malay islands based on google earth engine and dense time-series remote sensing images. Remote Sens. 2021, 13, 3842. [Google Scholar] [CrossRef]
- Kumar, H.; Karwariya, S.K.; Kumar, R. Google Earth Engine-Based Identification of Flood Extent and Flood-Affected Paddy Rice Fields Using Sentinel-2 MSI and Sentinel-1 SAR Data in Bihar State, India. J. Indian Soc. Remote Sens. 2022, 50, 791–803. [Google Scholar] [CrossRef]
- Kamel, E.l. Géologie du Paléozoïque des Rehamna Nord-Orientaux, Maroc. Evolution Sédimentaire et Structuration Hercynienne d’un Bassin Dévono-Carbonifère Sédimentation et Déformation des Molasses Post-Orogénique; Université Paul Cézanne-Aix-Marseille III: Aix-en-Provence, France, 1987. [Google Scholar]
- Gigout, M. Etudes géologiques sur la Meseta marocaine occidentale. Notes Mém. Serv. Géol. Maroc 1951, 86, 1. [Google Scholar]
- Michard, A.; Hoepffner, C.; Jenny, P. Le couloir de cisaillement caledono-hercynien de la Meseta occidentale sur la transversale de Mechra-Ben-Abbou (Rehamna, Maroc). Bull. Société Géologique Fr. 1978, 7, 889–894. [Google Scholar] [CrossRef]
- Kamel, F.E.L.; Hassani, A.E.L. Étapes de la structuration et de la sédimentation du bassin viséen de Mechra ben Abbou (Meseta occidentale marocaine). Geodiversitas 2006, 28, 14. [Google Scholar]
- El Hassani, A.; El Kamel, F. Tectonic control of Devonian reef building in Mechra ben Abou area (northen Rehamna, Morocco). In Proceedings of the Subcommission on Devonian Stratigraphy (SDS)—IGCP 421 Morocco Meeting; Tahiri, A., El Hassani, A., Eds.; Travaux de l’Institut Scientifique: Rabat, Morocco, 2000; Volume 20, pp. 25–30. [Google Scholar]
- ASSA, R.R. Etude Géologique de la Partie Occidentale du Massif hercynien des Rehamna Septentrionales (Meseta Marocaine). In Lithostratigraphie, Plissements et Métamorphisme, Chevauchements et Nappes; Université de Droit, D’économie et des Sciences D’aix-Marseille: Aix en Provence, France, 1984. [Google Scholar]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Baetens, L.; Desjardins, C.; Hagolle, O. Validation of copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sens. 2019, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a complex of statistical variables into Principal Components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Zhang, X.; Pazner, M.; Duke, N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). J. Photogramm. Remote Sens. 2007, 62, 271–282. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Çakir, Z.; Kaya, Ş.; Alsalman, A.; Henaish, A. Paradigm of geological mapping of the adıyaman fault zone of eastern turkey using landsat 8 remotely sensed data coupled with pca, ica, and mnfa techniques. Int. J. Geo-Inf. 2021, 10, 368. [Google Scholar] [CrossRef]
- Jansson, N.F.; Allen, R.L.; Skogsmo, G.; Tavakoli, S. Principal component analysis and K-means clustering as tools during exploration for Zn skarn deposits and industrial carbonates, Sala area, Sweden. J. Geochemical Explor. 2022, 233, 106909. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 2002, 30, 487. [Google Scholar] [CrossRef]
- RAmer, R.; Kusky, T.; Ghulam, A. Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J. Afr. Earth Sci. 2010, 56, 75–82. [Google Scholar] [CrossRef]
- Priyadarshini, K.N.; Sivashankari, V.; Shekhar, S.; Balasubramani, K. Comparison and Evaluation of Dimensionality Reduction Techniques for Hyperspectral Data Analysis. Multidiscip. Digit. Publ. Inst. Proc. 2019, 24, 6. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.A. Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Trans. Image Process. 2011, 20, 612–624. [Google Scholar] [CrossRef] [Green Version]
- Bjorgan, A.; Randeberg, L.L. Real-time noise removal for line-scanning hyperspectral devices using a minimum noise fraction-based approach. Sensors 2015, 15, 3362–3378. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.B.; Woodyatt, A.S.; Berman, M. Enhancement of High Spectral Resolution Remote-Sensing Data by a Noise-Adjusted Principal Components Transform. IEEE Trans. Geosci. Remote Sens. 1990, 28, 295–304. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Gurugnanam, B.; Arulbalaji, P.; Midhuna, V.; Kumaravel, S. Lithological Discrimination of Anorthosite using ASTER data in Oddanchatram Area, Dindigul district, Tamil Nadu, India. Int. J. Adv. Eng. Manag. Sci. 2017, 3, 316–324. [Google Scholar] [CrossRef]
- Kumar, C.; Shetty, A.; Raval, S.; Sharma, R.; Ray, P.C. Lithological Discrimination and Mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth Planet. Sci. 2015, 11, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Chen, G.; Tian, L.; Qin, K.; Qian, S.E. Minimum Noise Fraction versus Principal Component Analysis as a Preprocessing Step for Hyperspectral Imagery Denoising. Can. J. Remote Sens. 2016, 42, 106–116. [Google Scholar] [CrossRef]
- Kupidura, P. The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.; Boots, B. Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic. Int. J. Remote Sens. 1998, 19, 2223–2231. [Google Scholar] [CrossRef]
- Dekker, R.J. Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1950–1958. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Pelz, J.B. Morphological image segmentation by local granulometric size distributions. J. Electron. Imaging 1992, 1, 46. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Breiman, C.J.; Friedman, L.; Olshen, J.H.; Stone, R.A. Classification and Regression Trees, 1st ed.; Chapman ve Hall: Pacific Grove, CA, USA, 1984. [Google Scholar] [CrossRef]
- Kuhn, S.; Cracknell, M.J.; Reading, A.M. Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: A demonstration study from the Eastern Goldfields of Australia. Geophysics 2018, 83, B183–B193. [Google Scholar] [CrossRef]
- Albert, G.; Ammar, S. Application of random forest classification and remotely sensed data in geological mapping on the Jebel Meloussi area (Tunisia). Arab. J. Geosci. 2021, 14, 2240. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning; Springer Science & Business Media: New York, NY, USA, 1995. [Google Scholar]
- Petropoulos, G.P.; Kalaitzidis, C.; Vadrevu, K.P. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012, 41, 99–107. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. International Journal of Remote Sensing An assessment of support vector machines for land cover classification An assessment of support vector machines for land cover classi cation. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Bray, M.; Islam, T. Selection of classification techniques for land use/land cover change investigation. Adv. Sp. Res. 2012, 50, 1250–1265. [Google Scholar] [CrossRef]
- Shebl, A.; Abdellatif, M.; Hissen, M.; Abdelaziz, M.I.; Csámer, Á. Lithological mapping enhancement by integrating Sentinel 2 and gamma-ray data utilizing support vector machine: A case study from Egypt. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102619. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Chapman & Hall: London, UK; New York, NY, USA; Washington, DC, USA, 1984. [Google Scholar]
- Farris, F.A. The gini index and measures of inequality. Am. Math. Mon. 2010, 117, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Cracknell, M.J. Machine Learning for Geological Mapping: Algorithms and Applications; University of Tasmania: Hobart, Australia, 2014. [Google Scholar]
- Pal, M.; Rasmussen, T.; Porwal, A. Optimized Lithological Mapping from Multispectral and Hyperspectral Remote Sensing Images Using Fused Multi-Classifiers. Remote Sens. 2020, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Gemusse, U.; Lima, A.; Teodoro, A. Comparing different techniques of satellite imagery classification to mineral mapping pegmatite of Muiane and Naipa: Mozambique). In Earth Resources and Environmental Remote Sensing/GIS Applications X; SPIE: Bellingham, DC, USA, 2019; pp. 270–279. [Google Scholar] [CrossRef]
- Kruse, F.A.; Perry, S.L. Mineral mapping using simulated worldview-3 short-wave-infrared imagery. Remote Sens. 2013, 5, 2688–2703. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.A. Classification and Regression Trees, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Minskyt, M. Steps toward artificial intelligence. Proc. IRE 1961, 49, 8–30. [Google Scholar] [CrossRef]
- Maron, M.E. Automatic indexing: An experimental inquiry. J. Assoc. Comput. Mach. 1961, 8, 404–417. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Domingos, M.; Pazzani, P. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Mach. Learn. 1997, 29, 103–130. [Google Scholar] [CrossRef]
- Dumais, S.; Platt, J.; Heckerman, D.; Sahami, M. Inductive learning algorithms and representations for text categorization. In Proceedings of the 3rd International Conference on Information and Knowledge Management, Bethesda, MD, USA, 1 November 1998; pp. 148–155. [Google Scholar]
- Molina, R.; De la Blanca, N.P.; Taylor, C.C. Modern statistical techniques. In Machine Learning, Neural and Statistical Classification; Chichester, E.H., Michie, D., Spiegelhalter, D., Taylor, C.C., Eds.; Ellis Horwood: Chichester, UK, 1994; pp. 29–49. [Google Scholar] [CrossRef]
- Bloch, I.; Maitre, H. Fusion de données en traitement d’images: Modèles d’information et de décision. Trait. Du Signal 1994, 11, 435–446. [Google Scholar]
- Taleb-Ahmed, A.; Gautier, L.; Rombaut, M. Architecture de fusion de données basée sur la théorie de l’évidence pour la reconstruction d’ une vertèbre Structure of data fusion based on the theory of evidence for the reconstruction of vertebra. Trait. Signal 2002, 19, 267–283. [Google Scholar]
- Feizizadeh, B. A Novel Approach of Fuzzy Dempster-Shafer Theory for Spatial Uncertainty Analysis and Accuracy Assessment of Object-Based Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 18–22. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, Y. Combining conflicting evidence using the DEMATEL method. Soft Comput. 2019, 23, 8207–8216. [Google Scholar] [CrossRef]
- Yuan, K.; Deng, Y. Conflict evidence management in fault diagnosis. Int. J. Mach. Learn. Cybern. 2017, 10, 121–130. [Google Scholar] [CrossRef]
- Klir, M.W.G. Uncertainty-Based Information: Elements of Generalized Information Theory; Springer Science & Business Media: Berlin, Germany, 2003; Volume 184, Available online: http://link.springer.com/10.1007/978-3-7908-1869-7 (accessed on 19 September 2022).
- Ma, L.; Cheng, L.; Li, M.; Liu, Y.; Ma, X. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. J. Photogramm. Remote Sens. 2015, 102, 14–27. [Google Scholar] [CrossRef]
- Serbouti, I.; Raji, M.; Hakdaoui, M. Lithological Mapping for a Semi-arid Area Using GEOBIA and PBIA Machine Learning Approaches with Sentinel-2 Imagery: Case Study of Skhour Rehamna, Morocco. In Geospatial Intelligence; Barramou, F., El Brirchi, E.H., Mansouri, K., Dehbi, Y., Eds.; Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Adiri, Z.; El Harti, A.; Jellouli, A.; Maacha, L.; Bachaoui, E.M. Lithological mapping using Landsat 8 OLI and Terra2016.pdf. J. Appl. Remote Sens. 2016, 10, 016005. [Google Scholar] [CrossRef]
- Grebby, S.; Naden, J.; Cunningham, D.; Tansey, K. Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens. Environ. 2011, 115, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Bentahar, I.; Raji, M. Comparison of Landsat OLI, ASTER, and Sentinel 2A data in lithological mapping: A Case study of Rich area (Central High Atlas, Morocco). Adv. Sp. Res. 2021, 67, 945–963. [Google Scholar] [CrossRef]
- Wieland, M.; Pittore, M. Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images. Remote Sens. 2014, 6, 2912–2939. [Google Scholar] [CrossRef]
- Abedi, R. Comparison of Parametric and Non-Parametric Techniques to Accurate Classification of Forest Attributes on Satellite Image Data. J. Environ. Sci. Stud. 2021, 5, 3229–3235. [Google Scholar]
Band Number | Spectral Characteristic | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|---|
B1 | Coastal aerosol | 443 | 60 |
B2 | Blue (B) | 490 | 10 |
B3 | Green (G) | 560 | 10 |
B4 | Red (R) | 665 | 10 |
B5 | Vegetation red edge 1 (Re1) | 705 | 20 |
B6 | Vegetation red edge 2 (Re2) | 740 | 20 |
B7 | Vegetation red edge 3 (Re3) | 783 | 20 |
B8 | Near infrared (NIR) | 842 | 10 |
B8a | Near infrared narrow (NIRn) | 865 | 20 |
B9 | Water vapor | 945 | 60 |
B10 | Shortwave infrared Cirrus | 1380 | 60 |
B11 | Shortwave infrared 1 (SWIR1) | 1910 | 20 |
B12 | Shortwave infrared 2 (SWIR2) | 2190 | 20 |
Era | Lithological Units | Mineral Characteristics |
---|---|---|
Quaternary | Alluvium and terraces | Clay, silt, sand, gravel or similar unconsolidated detrital materials |
Meso-Cenozoic | Conglomerate | Silica, calcite or iron oxide |
Sandstone | Quartz sand, feldspar and sometimes silt and clay | |
Pelite | Clay minerals (silica, kaolinite, alumina), quartz, feldspar and micas | |
Limestone | Calcite and dolomite | |
Marl | Calcium carbonate, clay and silt | |
Paleozoic | Magmatic rocks | Silicates (quartz, feldspars, feldspathoids, colored minerals containing iron and magnesium) |
Carbonate rocks (limestone) | Calcite, dolomite | |
Pelite and quartzite | Quartz, feldspar and micas | |
Clay and pelitic rocks | Clay minerals (silica, kaolinite, alumina), quartz, feldspar and micas | |
Siliclastic and pyroclastic rocks (psammite, sandstone, siltstone) | Quartz and feldspar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serbouti, I.; Raji, M.; Hakdaoui, M.; El Kamel, F.; Pradhan, B.; Gite, S.; Alamri, A.; Maulud, K.N.A.; Dikshit, A. Improved Lithological Map of Large Complex Semi-Arid Regions Using Spectral and Textural Datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers. Remote Sens. 2022, 14, 5498. https://doi.org/10.3390/rs14215498
Serbouti I, Raji M, Hakdaoui M, El Kamel F, Pradhan B, Gite S, Alamri A, Maulud KNA, Dikshit A. Improved Lithological Map of Large Complex Semi-Arid Regions Using Spectral and Textural Datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers. Remote Sensing. 2022; 14(21):5498. https://doi.org/10.3390/rs14215498
Chicago/Turabian StyleSerbouti, Imane, Mohammed Raji, Mustapha Hakdaoui, Fouad El Kamel, Biswajeet Pradhan, Shilpa Gite, Abdullah Alamri, Khairul Nizam Abdul Maulud, and Abhirup Dikshit. 2022. "Improved Lithological Map of Large Complex Semi-Arid Regions Using Spectral and Textural Datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers" Remote Sensing 14, no. 21: 5498. https://doi.org/10.3390/rs14215498
APA StyleSerbouti, I., Raji, M., Hakdaoui, M., El Kamel, F., Pradhan, B., Gite, S., Alamri, A., Maulud, K. N. A., & Dikshit, A. (2022). Improved Lithological Map of Large Complex Semi-Arid Regions Using Spectral and Textural Datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers. Remote Sensing, 14(21), 5498. https://doi.org/10.3390/rs14215498