Impact of Multi-Thresholds and Vector Correction for Tracking Precipitating Systems over the Amazon Basin
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. The Algorithm
2.2.1. Identification Scope
2.2.2. Tracking
- New Rain Cell (NEW): While comparing two successive times, there is no overlap of areas between cell geometries at times and t. In this situation, it is considered that there was a spontaneous generation of a new system and a new life cycle is started from a cell at time t;
- Continuous (CON): While comparing two successive times and t, there is a unique overlap between geometries of the two cells;
- Split (SPL): This situation occurs when two or more cells at time t overlap with the geometry of a cell at time . In this case, a cell with the largest area at time t is classified as SPL, and a displacement vector starting from the centroid of cell is added to the track. The cell with the smallest area at time has its life cycle terminated or proceeds as a new system at the next time;
- Merge (MRG): The opposite situation to splitting (SPL), where two cells at time overlap into just a single cell at time t. In this case, the rain cell at time t receives the same relational entities as the cell with a larger area at time , while the other cell ends its life cycle.
2.2.3. Correction Scope
Correction for Rain Cell Split
Correction for Rain Cell Merge
Temporal Average Correction Based on the Life Cycle of Precipitating Systems
Correction by Rain Cell Inner Cores
Combination
2.3. Validation by Persistence
- Hit: When the rain pixel was predicted and observed.
- Miss: Rain pixel not predicted but observed.
- False Alarm: Predicted rain pixel that did not occur.
- Correct Negative: Rain pixels were not forecasted and also did not occur.
3. Results
3.1. The Minimum Size of Rain Cells
3.2. Evaluation of Vector Correction Methods
3.3. Features That Most Impact Tracking Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marengo, J.A.; Nobre, C.A. General characteristics and variability of climate. In The Amazon Basin and Its Links to the Global Climate System the Biogeochemistry of the Amazon Basin; Oxford University Press: New York, NY, USA, 2001; ISBN 978-01-9511-431-7. [Google Scholar]
- Fisch, G.; Marengo, J.A.; Nobre, C.A. On the hydrological cycle of the Amazon Basin: A historical review and current state-of-the-art. SciELO Bras. Acta Amaz. 1998, 28, 101. [Google Scholar] [CrossRef]
- Garstang, M.; Ulanski, S.; Greco, S.; Scala, J.; Swap, R.; Fitzjarrald, D.; Martin, D.; Browell, E.; Shipman, M.; Connors, V.; et al. The Amazon boundary-layer experiment (ABLE 2B): A meteorological perspective. Bull. Am. Meteorol. Soc. 1990, 71, 19–32. [Google Scholar] [CrossRef]
- Laurent, H.; Machado, L.A.; Morales, C.A.; Durieux, L. Characteristics of the Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment. J. Geophys. Res. Atmos. 2002, 107, LBA-21. [Google Scholar] [CrossRef]
- Cohen, J.C.P.; Silva, D.M.A.F.; Nobre, C.A. Aspectos climatológicos das linhas de instabilidade na Amazônia. Climanálise 1989, 4, 34–40. [Google Scholar]
- Chalon, J.P.; Jaubert, G.; Lafore, J.P.; Roux, F. The West African squall line observed on 23 June 1981 during COPT 81: Mesoscale structure and transports. Am. Meteorol. Soc. J. Atmos. Sci. 1988, 45, 2744–2763. [Google Scholar] [CrossRef]
- Houze, R.A. Structure and dynamics of a tropical squall–line system. Am. Meteorol. Soc. Mon. Weather Rev. 1977, 105, 1540–1567. [Google Scholar] [CrossRef]
- Machado, L.A.; Calheiros, A.J.; Biscaro, T.; Giangrande, S.; Silva Dias, M.A.; Cecchini, M.A.; Albrecht, R.; Andreae, M.O.; Araujo, W.F.; Artaxo, P.; et al. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Copernic. GmbH Atmos. Chem. Phys. 2018, 18, 6461–6482. [Google Scholar] [CrossRef] [Green Version]
- WMO (World Meteorological Organization). Guidelines for Nowcasting Techniques. Available online: https://library.wmo.int/doc_num.php?explnum_id=3795 (accessed on 12 September 2022).
- Crane, R.K. Automatic cell detection and tracking. IEEE Trans. Geosci. Electron. 1979, 17, 250–262. [Google Scholar] [CrossRef]
- Vila, D.A.; Machado, L.A.; Laurent, H.; Velasco, I. Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Weather Forecast. 2008, 23, 233–245. [Google Scholar] [CrossRef]
- Dixon, M.; Wiener, G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. Weather Forecast. 1993, 10, 785–797. [Google Scholar] [CrossRef]
- Sawant, M.; Shende, M.K.; Feijóo-Lorenzo, A.E.; Bokde, N.D. The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review. Energies 2021, 14, 8119. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Cai, Q.; Liao, W.; Sabata, B. Articulated and elastic non-rigid motion: A review. In Proceedings of the 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects, Austin, TX, USA, 11–12 November 1994; pp. 2–14. [Google Scholar]
- Storlie, C.B.; Lee, T.C.M.; Hannig, J.; Nychka, D. Tracking of multiple merging and splitting targets: A statistical perspective. Stat. Sin. 2009, 19, 1–31. [Google Scholar]
- Zan, B.; Yu, Y.; Li, J.; Zhao, G.; Zhang, T.; Ge, J. Solving the storm split-merge problem—A combined storm identification, tracking algorithm. Atmos. Res. 2019, 218, 335–346. [Google Scholar] [CrossRef]
- Muñoz, C.; Wang, L.; Willems, P. Enhanced object-based tracking algorithm for convective rain storms and cells. Atmos. Res. 2021, 201, 144–158. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Smith, T. An objective method of evaluating and devising storm-tracking algorithms. Am. Meteorol. Soc. Weather Forecast. 2010, 25, 701–709. [Google Scholar] [CrossRef]
- Han, L.; Fu, S.; Zhao, L.; Zheng, Y.; Wang, H.; Lin, Y. 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Ocean. Technol. 2009, 26, 719–732. [Google Scholar] [CrossRef]
- Sieglaff, J.; Hartung, D.; Feltz, W.; Cronce, L.; Lakshmanan, V. A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection. Am. Meteorol. Soc. J. Atmos. Ocean. Technol. 2013, 30, 510–525. [Google Scholar] [CrossRef]
- Leal Neto, H.B.; Almeida, A.P.; Calheiros, A.J.P. As dificuldades no rastreio de tempestades com uso de refletividade radar a partir de técnicas de geoprocessamento: Um estudo de caso sobre a região Amazônica. In Proceedings of the XXI GeoInfo, Sao Jose dos Campos, Brazil, 30 November–3 December 2020; pp. 240–245. [Google Scholar]
- Anselmo, E.M.; Machado, L.A.T.; Schumacher, C.; Kiladis, G.N. Amazonian mesoscale convective systems: Life cycle and propagation characteristics. Int. J. Climatol. 2021, 41, 3968–3981. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Rossow, W.B.; Guedes, R.L.; Walker, A.W. Life cycle variations of mesoscale convective systems over the Americas. Mon. Weather Rev. 1998, 126, 1630–1654. [Google Scholar] [CrossRef]
- Schumacher, C.; Funk, A. GoAmazon2014/5 Rain Rates from the SIPAM Manaus S-band Radar. 2018. Available online: https://www.osti.gov/dataexplorer/biblio/dataset/1459578 (accessed on 14 July 2022).
- Martin, S.; Artaxo, P.; Machado, L.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Biscaro, T.; Brito, J.; Calheiros, A.; et al. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bull. Amer. Meteor. Soc. 2017, 98, 981–997. Available online: http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-15-00221.1 (accessed on 25 October 2022). [CrossRef] [Green Version]
- Rinehart, R.E.; Garvey, E.T. Three-dimensional storm motion detection by conventional weather radar. Nature 1978, 273, 287–289. [Google Scholar] [CrossRef]
- Fiolleau, T.; Roca, R. An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4302–4315. [Google Scholar] [CrossRef]
- Shehu, B.; Haberlandt, U. Improving radar-based rainfall nowcasting by a nearest-neighbour approach–Part 1: Storm characteristics. Copernic. GmbH Hydrol. Earth Syst. Sci. 2022, 26, 1631–1658. [Google Scholar] [CrossRef]
- Foresti, L.; Sideris, I.V.; Nerini, D.; Beusch, L.; Germann, U. Using a 10-year radar archive for nowcasting precipitation growth and decay: A probabilistic machine learning approach. AMS Weather Forecast. 2019, 34, 1547–1569. [Google Scholar] [CrossRef]
- Doyle, W. Operations useful for similarity-invariant pattern recognition. J. ACM (JACM) 1962, 9, 259–267. [Google Scholar] [CrossRef]
- Nunes, A.M.P.; Silva Dias, M.A.F.; Anselmo, E.M.; Morales, C.A. Severe convection features in the Amazon Basin: A TRMM-based 15-year evaluation. Front. Earth Sci. 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Eichholz, C.W. Kinematic and Dynamic Analysis of Rain and Cloud Cells Propagation. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil, May 2017. Available online: http://urlib.net/rep/8JMKD3MGP3W34P/3NQ5D2P (accessed on 10 August 2022).
- Ester, M.; Kriegel, H.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Matthews, J.; Trostel, J. An Improved Storm Cell Identification and Tracking (SCIT) Algorithm based on DBSCAN Clustering and JPDA Tracking Methods. American Meteorological Society. 2010. Available online: https://ams.confex.com/ams/pdfpapers/164442.pdf (accessed on 10 August 2022).
- Garstang, M.; Massie, H.L.; Halverson, J.; Greco, S.; Scala, J. Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Weather Rev. 1994, 122, 608–622. [Google Scholar] [CrossRef]
- Cotton, W.R.; Anthes, R.A. Storm and Cloud Dynamics; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Wilks, D.S. Forecast Skill. In Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100, pp. 259–269. [Google Scholar]
- Machado, L.A.T.; Laurent, H. The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence. Mon. Weather. Rev. 2004, 132, 714–725. [Google Scholar] [CrossRef]
- Austin, P.M. Relation between measured radar reflectivity and surface rainfall. Am. Meteorol. Soc. Mon. Weather. Rev. 1987, 115, 1053–1070. [Google Scholar] [CrossRef]
IOP1 | ||||||
---|---|---|---|---|---|---|
Better 20 dBZ | Worst 20 dBZ | Better 30 dBZ | Worst 30 dBZ | Better 35 dBZ | Worst 35 dBZ | |
ICor | 9 | 1 | 9 | 1 | 9 | 1 |
TCor | 7 | 1 | 8 | 0 | 7 | 1 |
MCor | 5 | 3 | 7 | 1 | 5 | 3 |
None | 5 | 4 | 6 | 3 | 5 | 4 |
SCor | 2 | 2 | 2 | 2 | 1 | 3 |
Total Best Worst | 13 | 5 | 15 | 3 | 12 | 6 |
IOP2 | ||||||
Better 20 dBZ | Worst 20 dBZ | Better 30 dBZ | Worst 30 dBZ | Better 35 dBZ | Worst 35 dBZ | |
ICor | 9 | 1 | 9 | 1 | 7 | 3 |
TCor | 8 | 0 | 8 | 0 | 8 | 0 |
MCor | 6 | 2 | 7 | 1 | 6 | 2 |
None | 6 | 3 | 6 | 3 | 5 | 4 |
SCor | 1 | 3 | 1 | 3 | 0 | 4 |
Total Best Worst | 13 | 5 | 14 | 4 | 12 | 6 |
IOP1 | IOP2 | |||||
---|---|---|---|---|---|---|
20 dBZ | 30 dBZ | 35 dBZ | 20 dBZ | 30 dBZ | 35 dBZ | |
POD | 78.74% | 67.96% | 60.83% | 68.60% | 64.53% | 61.11% |
FAR | 21.52% | 32.53% | 40.13% | 32.30% | 36.29% | 39.98% |
BIAS | 1.0032 | 1.0073 | 1.0160 | 1.0132 | 1.0129 | 1.0182 |
IOP1 | IOP2 | |||||
---|---|---|---|---|---|---|
Precipitating System | 20 dBZ | 30 dBZ | 35 dBZ | 20 dBZ | 30 dBZ | 35 dBZ |
Continuous | 78.85% | 81.07% | 77.65% | 75.60% | 79.12% | 78.28% |
Merges | 12.80% | 10.51% | 12.20% | 13.64% | 12.69% | 12.97% |
Splits | 8.34% | 8.41% | 10.14% | 10.76% | 8.25% | 8.74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, H.B.; Calheiros, A.J.P.; Barbosa, H.M.J.; Almeida, A.P.; Sanchez, A.; Vila, D.A.; Garcia, S.R.; Macau, E.E.N. Impact of Multi-Thresholds and Vector Correction for Tracking Precipitating Systems over the Amazon Basin. Remote Sens. 2022, 14, 5408. https://doi.org/10.3390/rs14215408
Leal HB, Calheiros AJP, Barbosa HMJ, Almeida AP, Sanchez A, Vila DA, Garcia SR, Macau EEN. Impact of Multi-Thresholds and Vector Correction for Tracking Precipitating Systems over the Amazon Basin. Remote Sensing. 2022; 14(21):5408. https://doi.org/10.3390/rs14215408
Chicago/Turabian StyleLeal, Helvecio B., Alan J. P. Calheiros, Henrique M. J. Barbosa, Adriano P. Almeida, Arturo Sanchez, Daniel A. Vila, Sâmia R. Garcia, and Elbert E. N. Macau. 2022. "Impact of Multi-Thresholds and Vector Correction for Tracking Precipitating Systems over the Amazon Basin" Remote Sensing 14, no. 21: 5408. https://doi.org/10.3390/rs14215408
APA StyleLeal, H. B., Calheiros, A. J. P., Barbosa, H. M. J., Almeida, A. P., Sanchez, A., Vila, D. A., Garcia, S. R., & Macau, E. E. N. (2022). Impact of Multi-Thresholds and Vector Correction for Tracking Precipitating Systems over the Amazon Basin. Remote Sensing, 14(21), 5408. https://doi.org/10.3390/rs14215408