On Tide Aliasing in GRACE Time-Variable Gravity Observations
Abstract
:1. Introduction
2. Materials
3. Results
3.1. Tide Aliasing in Low-Degree Stokes Coefficients
3.2. Global Amplitude of the Tide Aliasing Signal
3.3. Tide Aliasing over Antarctica
3.4. Tide Aliasing over Greenland
3.5. Comparison with Actual Seasonal Oscillation
4. Discussion
5. Conclusions
- (i)
- Tide aliasing is still a major error of current GRACE RL06 observations, particularly for high latitudes where tide observation is lacking.
- (ii)
- S2 aliasing is more pronounced over West Antarctica, while the P1 aliasing shows the strongest amplitude over South Greenland. Moreover, S2 aliasing over Antarctica is clearly an eastward circumpolar wave that completes a full clockwise circuit around Antarctica in about two years.
- (iii)
- Mascon data shows an incredibly large tide-aliasing error in comparison to SH data. The mascon solutions might have unintentionally “amplified” the tidal aliasing error on land due to the regularization (or constraint) applied for reducing land and ocean leakage.
- (iv)
- S2 and P1 aliasing can cause a potential obstacle on glacier’s semi-annual signal estimation in parts of the polar regions, due to the fact that they share similar periodicity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.M.; Reigber, C. The gravity recovery and climate experiment; mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef] [Green Version]
- Han, S.C.; Jekeli, C.; Shum, C.K. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. Geophys. Res. 2004, 109, B04403. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Velicogna, I.; Wahr, J.; Dool, H.V.D. Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? J. Geophys. Res. 2001, 106, 16415–16434. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. AIEE 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Liu, W.; Sneeuw, N. Aliasing of ocean tides in satellite gravimetry: A two-step mechanism. J. Geod. 2021, 95, 134. [Google Scholar] [CrossRef]
- Dobslaw, H.; Wolf, I.B.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Esselbom, S.; Konig, R.; Flechtner, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, P. Ocean tides in GRACE monthly averaged gravity fields. Space Sci. Rev. 2003, 108, 261–270. [Google Scholar] [CrossRef]
- Ray, R.D.; Rowlands, D.D.; Egbert, G.D. Tidal models in a new era of satellite gravimetry. Space Sci. Rev. 2003, 108, 271–282. [Google Scholar] [CrossRef]
- Ray, R.D.; Luthcke, S.B. Tide model errors and GRACE gravimetry: Towards a more realistic assessment. Geophys. J. Int. 2006, 167, 1055–1059. [Google Scholar] [CrossRef]
- Knudsen, P.; Andersen, O.; Khan, S.A.; Høyer, J.L. Ocean tide effects on GRACE gravimetry. Int. Assoc. Geod. Symp. 2001, 123, 159–164. [Google Scholar] [CrossRef]
- Han, S.C.; Shum, C.K.; Matsumoto, K. GRACE observations of M2 and S2 ocean tides underneath the Filchner-Ronne and Larsen ice shelves, Antarctica. Geophys. Res. Lett. 2005, 32, L20311. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Seo, K.W. S2 tide aliasing in GRACE time-variable gravity solutions. J. Geod. 2009, 83, 679–687. [Google Scholar] [CrossRef]
- Seo, K.W.; Wilson, C.R.; Han, S.C.; Waliser, D.E. Gravity recovery and climate experiment (GRACE) alias error from ocean tides. J. Geophys. Res. 2008, 113, B03405. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, D.E.; Tayler, R.J. New computations of the tide-generating potential, Geophys. J. Roy. Astron. Soc. 1971, 33, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Moore, P.; King, M. Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects. J. Geophys. Res. 2008, 113, F02005. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 2008, 113, B08410. [Google Scholar] [CrossRef] [Green Version]
- Loomis, B.D.; Rachlin, K.E.; Luthcke, S.B. Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys. Res. Lett. 2019, 46, 6910–6917. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Comment on “An assessment of ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. 2018, 123, 2019–2028. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.Z.; Scanlon, B.R.; Sun, A.Y.; Pan, Y.; Qiao, S.Q.; Wang, H.S.; Jia, Q.Y. Combining GRACE and satellite altimetry data to detect change in sediment load to the Bohai Sea. Sci. Total Environ. 2022, 818, 151677. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Blankship, D.; Tapley, B.D. Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci. 2009, 2, 859–862. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. 2016, 120, 2648–2671. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.M.; Yuan, D.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Chao, B.F. Caveats on the equivalent-water-thickness and surface mascon solutions derived from the GRACE satellite-observed time-variable gravity. J. Geod. 2016, 90, 807–813. [Google Scholar] [CrossRef]
- Cheng, M.K.; Ries, J. The unexpected signal in GRACE estimates of C20. J. Geod. 2017, 91, 897–914. [Google Scholar] [CrossRef]
- Kaula, W. Theory of Satellite Geodesy; Blaisdell: Waltham, MA, USA, 1996. [Google Scholar]
- Deng, X.; Featherstone, W.E. A coastal retracking system for satellite radar altimeter waveforms: Application to ERS-2 around Australia. J. Geophys. Res. 2006, 111, C06012. [Google Scholar] [CrossRef] [Green Version]
- Bettadpur, S. CSR Level-2 Processing Standards Document for Product Release 04, GRACE 327-742, The GRACE Project, Center for Space Research, University of Texas at Austin. 2007. Available online: ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/Level-2/ (accessed on 25 October 2022).
- Kvas, A.; Behzadpour, S.; Ellmer, M.; Klinger, B.; Strasser, S.; Zehentner, N.; Mayer-Gürr, T. ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series. J. Geophys. Res 2019, 124, 9332–9344. [Google Scholar] [CrossRef] [Green Version]
- Preisendorfer, R.W. Principal Component Analysis in Meteorology and Oceanography; Elsevier: New York, NY, USA, 1988. [Google Scholar]
- Li, Z.; Chao, B.F.; Zhang, Z.Z.; Jiang, L.M.; Wang, H.S. Greenland interannual ice mass variations detected by GRACE time-variable gravity. Geophys. Res. Lett. 2022, 49, e2022GL100551. [Google Scholar] [CrossRef]
- Li, Z.; Chao, B.F.; Wang, H.S.; Zhang, Z.Z. Antarctica ice-mass variations on interannual timescale: Coastal Dipole and propagating transports. Earth Planet. Sci. Lett. 2022, 595, 117789. [Google Scholar] [CrossRef]
Tide Constituents | Cause | Alias Period (Days) |
---|---|---|
Q1 | Moon | 9.1 |
M2 | Moon | 13.6 |
N2 | Moon | 9.1 |
J1 | Moon | 27.8 |
S2 | Sun | 161.0 |
P1 | Sun | 171.2 |
S1 | Sun | 322.1 |
K2 | Moon + Sun | 1362.7 |
K1 | Moon + Sun | 2725.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, Z.; Wang, H. On Tide Aliasing in GRACE Time-Variable Gravity Observations. Remote Sens. 2022, 14, 5403. https://doi.org/10.3390/rs14215403
Li Z, Zhang Z, Wang H. On Tide Aliasing in GRACE Time-Variable Gravity Observations. Remote Sensing. 2022; 14(21):5403. https://doi.org/10.3390/rs14215403
Chicago/Turabian StyleLi, Zhen, Zizhan Zhang, and Hansheng Wang. 2022. "On Tide Aliasing in GRACE Time-Variable Gravity Observations" Remote Sensing 14, no. 21: 5403. https://doi.org/10.3390/rs14215403
APA StyleLi, Z., Zhang, Z., & Wang, H. (2022). On Tide Aliasing in GRACE Time-Variable Gravity Observations. Remote Sensing, 14(21), 5403. https://doi.org/10.3390/rs14215403