Rapid Glacier Shrinkage in the Gongga Mountains in the Last 27 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remotely Sensed Data
2.2.2. ASTER GDEM Data
2.2.3. Meteorology Data
2.2.4. RGI Data
2.3. Methods
2.3.1. Glacier Boundary Extraction
2.3.2. Uncertainty of Glacier Boundary Extraction
2.3.3. Terrain Information Extraction and Trend Analysis
3. Results and Discussion
3.1. Overall Evaluation of Glacier Change
3.2. Glacier Shrinkage under Different Terrain Conditions
3.2.1. Glacier Shrinkage at Different Altitudes
3.2.2. Glacier Shrinkage at Different Slopes
3.2.3. Glacier Shrinkage in Different Slope Aspects
3.3. Climate Change Impacts on Glacier Shrinkage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fanyu, Z.; Di, L.; Xingdong, L.; Qi, H.; Pengfei, H. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 2022, 270, 112853. [Google Scholar]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Kulp, S.A.; Strauss, B.H. Author Correction: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 5752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Paris, France, 2019. [Google Scholar]
- Kaushik, S.; Joshi, P.K.; Singh, T. Development of glacier mapping in Indian Himalaya: A review of approaches. Int. J. Remote Sens. 2019, 40, 6607–6634. [Google Scholar] [CrossRef]
- Burns, P.; Nolin, A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ. 2014, 140, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Pope, A.; Rees, W.G. Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sens. Environ. 2014, 141, 1–13. [Google Scholar] [CrossRef]
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Alifu, H.; Vuillaume, J.-F.; Johnson, B.A.; Hirabayashi, Y. Machine-learning classification of debris-covered glaciers using a combination of Sentinel-1/-2 (SAR/optical), Landsat 8 (thermal) and digital elevation data. Geomorphology 2020, 369, 107365. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Rastner, P.; Bolch, T.; Molg, N.; Machguth, H.; Le Bris, R.; Paul, F. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 2012, 6, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Hagg, W.; Mayer, C.; Lambrecht, A.; Kriegel, D.; Azizov, E. Glacier changes in the Big Naryn basin, Central Tian Shan. Glob. Planet. Chang. 2013, 110, 40–50. [Google Scholar] [CrossRef]
- Quincey, D.J.; Richardson, S.D.; Luckman, A.; Lucas, R.M.; Reynolds, J.M.; Hambrey, M.J.; Glasser, N.F. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Glob. Planet. Chang. 2007, 56, 137–152. [Google Scholar] [CrossRef]
- Shukla, A.; Arora, M.K.; Gupta, R.P. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ. 2010, 114, 1378–1387. [Google Scholar] [CrossRef]
- Wan, W.; Li, H.; Xie, H.J.; Hong, Y.; Long, D.; Zhao, L.M.; Han, Z.Y.; Cui, Y.K.; Liu, B.J.; Wang, C.G.; et al. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015. Sci. Data 2017, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.L.; Liu, G.X.; Wang, X.W.; Liu, Q.; Zhang, R.; Jia, H.G. Assessing the Glacier Boundaries in the Qinghai-Tibetan Plateau of China by Multi-Temporal Coherence Estimation with Sentinel-1A InSAR. Remote Sens. 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Li, Z.Q.; Wang, Z.M.; Wang, F.T.; Xu, C.H.; Ai, S.T. Ice thickness distribution and volume estimation of Burqin Glacier No. 18 in the Chinese Altay Mountains. J. Arid Land 2020, 12, 905–916. [Google Scholar] [CrossRef]
- Xie, Z.Y.; Haritashya, U.K.; Asari, V.K.; Young, B.W.; Bishop, M.P.; Kargel, J.S. GlacierNet: A Deep-Learning Approach for Debris-Covered Glacier Mapping. IEEE Access 2020, 8, 83495–83510. [Google Scholar] [CrossRef]
- Brenning, A.; Long, S.L.; Fieguth, P. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sens. Environ. 2012, 125, 227–237. [Google Scholar] [CrossRef]
- Chen, L.; Letu, H.; Fan, M.; Shang, H.; Tao, J.; Wu, L.; Zhang, Y.; Yu, C.; Gu, J.; Zhang, N.; et al. An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites. J. Remote Sens. 2022, 2022, 9769536. [Google Scholar] [CrossRef]
- Zhaoguang, B. Technical features of the Gaofen-1 satellite. Aerosp. China 2013, 8, 5–9. [Google Scholar]
- Fan, X.; Yan, L.; Xu, J.; Hao, X.; Li, H.; Wang, J.; Liu, D. Analysis of glacier change in Manas River basin in the last 50 years based on multi-source data. J. Glaciol. Geocryol. 2015, 37, 1188–1198. [Google Scholar]
- Yang, B.; Zhang, L.; Gao, Y.; Xiang, Y.; Mou, N.; Suolang, D. An integrated method of glacier length extraction based on Gaofen satellite data. J. Glaciol. Geocryol. 2016, 38, 1615–1623. [Google Scholar]
- Yan, L.; Gao, J.; Wang, J.; Hao, X. Glacier mapping based on GF-1 satellite remote sensing. J. Glaciol. Geocryol. 2020, 42, 1400–1406. [Google Scholar]
- Liu, Q.; Zhang, Y. Studies on the Dynamics of Monsoonal Temperate Glaciers in Mt. Gongga: A Review. Mt. Res. 2017, 35, 717–726. [Google Scholar]
- Li, J.J. Hengduan Mountain Glacier; Science Press: Beijing, China, 1996. [Google Scholar]
- Cui, Z.J. A Preliminary Observation of the Modern Glaciers of Gongga Mountain—Commemorating the comrades who died heroically to conquer Gongga Mountain. Acta Geogr. Sin. 1958, 24, 318–342. [Google Scholar]
- Zhen, S.; Orlov, A.B. The Preliminary Report on the Sino-Ussr Joint Glaciological Expedition to Gongga Shan. J. Glaciol. Geocryol. 1991, 13, 181–184. [Google Scholar]
- Xie, Z.; Su, Z.; Shen, Y.; Feng, Q. Mass Balance and Water Exchange of Hailuoguo Glacier in Mount Gongga and Their Influence on Glacial Melt Runoff. J. Glaciol. Geocryol. 2001, 23, 7–15. [Google Scholar]
- Qiao, L.I.U.; Shiyin, L.I.U.; Yong, Z.; Yingsong, Z. Surface Ablation Features and Recent Variation of the Lower Ablation Area of the Hailuogou Glacier, Mt. Gongga. J. Glaciol. Geocryol. 2011, 33, 227–236. [Google Scholar]
- Pan, B.T.; Zhang, G.L.; Wang, J.; Cao, B.; Geng, H.P.; Wang, J.; Zhang, C.; Ji, Y.P. Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing. Cryosphere 2012, 6, 1087–1101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, S.Y.; Liu, Q. A dataset of glacier mass balance of Hailuogou catchment in Mount Gongga, southeastern Tibetan Plateau, during 1952–2009. China Sci. Data 2018, 3, 7–16. [Google Scholar]
- Cao, B.O.; Pan, B.; Guan, W.; Wen, Z.; Wang, J.I.E. Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on the analysis of multi-temporal DEMs from 1966 to 2015. J. Glaciol. 2019, 65, 366–375. [Google Scholar] [CrossRef]
- Xinru, H. Analysis of the Changes in the Surface Elevation and Mass Balance of the Gongga Mountain Glacier in the Past 50 Years Based on Multi-Temporal DEM. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2021. [Google Scholar]
- Shi, X.; Dai, K.; Deng, J.; Zhong, D.; Liu, G.; Pirasteh, S.; Zhang, B.; Ali, Y.P.; He, Y.; Liang, R. Extracting the spatio-temporal evolution and geographical features of shrinking Gongga Mountain glacier group during 1989–2017. Adv. Space Res. 2021, 68, 1706–1718. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Liu, Z.; Li, Z. Extraction and analysis of mountain glacier movement from GF-1 satellite data. J. Remote Sens. 2021, 25, 530–538. [Google Scholar]
- Pu, J.C. China Glacier Catalog—Yangtze River System; Gansu Culture Press: Lanzhou, China, 1994. [Google Scholar]
- Su, Z.; Liang, D.L.; Hong, M. Developing Conditions, Amounts and Distributions of Glaciers in Gongga Mountains. J. Glaciol. Geocryol. 1993, 15, 551–558. [Google Scholar]
- Yavaşlı, D.D.; Tucker, C.J.; Melocik, K.A. Change in the glacier extent in Turkey during the Landsat Era. Remote Sens. Environ. 2015, 163, 32–41. [Google Scholar] [CrossRef]
- Ke, L.; Ding, X.; Zhang, L.E.I.; Hu, J.U.N.; Shum, C.K.; Lu, Z. Compiling a new glacier inventory for southeastern Qinghai–Tibet Plateau from Landsat and PALSAR data. J. Glaciol. 2016, 62, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Sahu, R.; Gupta, R.D. Spatiotemporal variation in surface velocity in Chandra basin glacier between 1999 and 2017 using Landsat-7 and Landsat-8 imagery. Geocarto Int. 2019, 36, 1591–1611. [Google Scholar] [CrossRef]
- An, G.Y.; Han, L.; Huang, S.C.; Gu, Y.Q.; Zhi, R.R.; Guo, Z.C.; Tong, L.Q. Remote Sensing Survey of Glaciers Based on GF-1 Spectral Data in the Qinghai-Tibet Region. Geoscience 2018, 32, 584–594. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, L.; Menenti, M.; Hu, G. Glacier Facies Mapping Using a Machine-Learning Algorithm: The Parlung Zangbo Basin Case Study. Remote Sens. 2019, 11, 452. [Google Scholar] [CrossRef] [Green Version]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 480–490. [Google Scholar] [CrossRef]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Loibl, D.; Lehmkuhl, F.; Grießinger, J. Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology 2014, 214, 22–39. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Arnaud, Y.; Williams, M.W.; Manley, W.F. Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya. Cryosphere 2015, 9, 505–523. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Xiong, A.Y. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2016, 36, 252–265. [Google Scholar] [CrossRef]
- Sun, Z.L.; Long, D.; Hong, Z.K.; Hamouda, M.A.; Mohamed, M.M.; Wang, J.H. How China's Fengyun Satellite Precipitation Product Compares with Other Mainstream Satellite Precipitation Products. J. Hydrometeorol. 2022, 23, 785–806. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R.; Zhang, Z.Z.; Walling, D.; Bhanja, S.N.; Mukherjee, A.; Zhong, Z. Combining Physically Based Modeling and Deep Learning for Fusing GRACE Satellite Data: Can We Learn From Mismatch? Water Resour. Res. 2019, 55, 1179–1195. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.Y. Analysis of the Distribution of Lakes in the Tibetan Plateau Based on Multiple Data Sources. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2020. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; et al. Status of Atmospheric Correction Using a MODTRAN4-Based Algorithm; Shen, S.S., Descour, M.R., Eds.; Society of Photo-OpticalInstrumentation Engineers (SPIE): Bellingham, WA, USA, 2000; pp. 199–207. [Google Scholar]
- Li, C.; Jing, Z.; He, X. Remote sensing monitoring of glacier variation in Geladandong, source regions of the Yangtze River from 1986 to 2015. J. Glaciol. Geocryol. 2021, 43, 405–416. [Google Scholar]
- Liu, K.; Wang, N.; Bai, X. Variation of glaciers in the Nubra basin, Karakoram Mountains, revealed by remote sensing images during 1993–2015. J. Glaciol. Geocryol. 2017, 39, 710–719. [Google Scholar]
- Ou, J.; Xu, L.; Pu, T. Glacier change and its response to climate change in the Que'er Mountains,1987–2016. J. Glaciol. Geocryol. 2021, 43, 36–48. [Google Scholar]
- Zhang, W. Research on Glacier Extraction Methods Based on Multi-Source Remote Sensing Data. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2016. [Google Scholar]
- Xiao, P.; Feng, X.; Xie, S.; Du, J. Research progresses of high-resolution remote sensing of snow in Manasi River Basin in Tianshan Mountains, Xinjiang Province. J. Nanjing University. Nat. Sci. 2015, 51, 909–920. [Google Scholar]
- Xi, Z.C. Comparative Study on the Extraction Algorithms of Glacier and Lake from the Tibetan Plateau Based on the GF-1 Satellite—A Case Study of the Zangser Kangri. Master’s Thesis, Shandong University of Science and Technology, Qingdao, China, 2018. [Google Scholar]
- Guo, W.; Liu, S.; Xu, J.; Wei, J.; Ding, L. Monitoring Recent Surging of the Yulinchuan Glacier on North Slopes of Muztag Range by Remote Sensing. J. Glaciol. Geocryol. 2012, 34, 765–774. [Google Scholar]
- Bolch, T.; Buchroithner, M.; Pieczonka, T.; Kunert, A. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol. 2008, 54, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. [Google Scholar]
- Zhang, Z.; Liu, S.; Zhang, Y.; Wei, J.; Jiang, Z.; Wu, K. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data. J. Glaciol. 2018, 64, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Beedle, M.J.; Menounos, B.; Wheate, R. Glacier change in the Cariboo Mountains, British Columbia, Canada (1952–2005). Cryosphere 2015, 9, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Chand, P.; Sharma, M.C. Glacier changes in the Ravi basin, North-Western Himalaya (India) during the last four decades (1971–2010/13). Glob. Planet. Chang. 2015, 135, 133–147. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between similar to 1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Ye, Q.H.; Zong, J.B.A.; Tian, L.D.; Cogley, J.G.; Song, C.Q.; Guo, W.Q. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s-2000-13. J. Glaciol. 2017, 63, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.T.; Hou, S.G.; Huai, B.J.; An, W.L.; Pang, H.X.; Liu, Y.P. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Li, Z.; Zhou, J.M.; Zhang, P. An automatic method for clean glacier and nonseasonal snow area change estimation in High Mountain Asia from 1990 to 2018. Remote Sens. Environ. 2021, 258, 13. [Google Scholar] [CrossRef]
- Cai, X.R.; Li, Z.Q.; Xu, C.H. Glacier wastage and its vulnerability in the Qilian Mountains. J. Geogr. Sci. 2022, 32, 117–140. [Google Scholar] [CrossRef]
- Liao, H.; Liu, Q.; Zhong, Y.; Lu, X. Supraglacial debris-cover change and its spatial heterogeneity in the Mount Gongga, 1990–2019. Acta Geogr. Sin. 2021, 76, 2647–2659. [Google Scholar]
- Pętlicki, M.; Sziło, J.; MacDonell, S.; Vivero, S.; Bialik, R. Recent Deceleration of the Ice Elevation Change of Ecology Glacier (King George Island, Antarctica). Remote Sens. 2017, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.F. Concise Chinese Glacier Catalogue; Shanghai Science Popularization Press: Shanghai, China, 2005. [Google Scholar]
- Ren, J.W.; Qin, D.H.; Kang, S.C.; Hou, S.G.; Pu, J.C.; Jin, Z.F. Glacier changes and climate warming and drying characteristics in the middle Himalayas. Chin. Sci. Bull. 2003, 23, 2478–2482. [Google Scholar]
- Qin, D.H. Introduction to Climate Change Science; Science Press: Beijing, China, 2018. [Google Scholar]
- Li, J.J.; Su, Z. Glacier in Hengduan Mountains; Science Press: Beijing, China, 1996. [Google Scholar]
- Braithwaite, R.J.; Zhang, Y. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J. Glaciol. 2000, 46, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Porter, S.C. Pattern and Forcing of Northern Hemisphere Glacier Variations During the Last Millennium. Quat. Res. 1986, 26, 27–48. [Google Scholar] [CrossRef]
Data Type | Data | Period | Spatial Resolution | Data Sources |
---|---|---|---|---|
Remotely sensed data | Landsat 5/7/8 | 1994–2021 | 30 × 30 m | https://www.gscloud.cn/home#page1/1 (accessed on 6 July 2022) |
GF-1 | 2013–2021 | 16 × 16 m | http://www.cresda.com/CN/ (accessed on 5 July 2022) | |
DEM | ASTER GDEM V3 | 2013 | 30 × 30 m | https://search.earthdata.nasa.gov/search (accessed on 6 July 2022) |
Meteorological data | Temperature (gauge data) | 1988–2017 | / | http://data.cma.cn/ (accessed on 6 July 2022) |
Precipitation (gauge data) | 1988–2017 | / | http://data.cma.cn/ (accessed on 6 July 2022) | |
Monthly mean temperature | 1979–2020 | 0.01° × 0.01° | https://data.tpdc.ac.cn/en/data (accessed on 2 October 2022) | |
China Gauge-based Daily Precipitation Analysis (CGDPA) | 1978–2019 | 0.25° × 0.25° | https://data.cma.cn/ (accessed on 3 October 2022) | |
RGI | RGI 6.0 | 2017 | / | http://www.glims.org/RGI/ (accessed on 6 July 2022) |
Image Number | Acquisition Date | Row/Path | Cloud Cover (%) | Sensors |
---|---|---|---|---|
LT51310391994248BJC00 | 1994/09/05 | 39/131 | 5.74 | TM |
LE71310391999302SGS00 | 1999/10/29 | 39/131 | 15.18 | ETM+ |
LT51310392000265BJC00 | 2000/09/21 | 39/131 | 8.42 | TM |
LT51310392004260BJC00 | 2004/09/16 | 39/131 | 8.87 | TM |
LT51310392005262BJC00 | 2005/09/19 | 39/131 | 15.33 | TM |
LT51300402008280BKT00 | 2008/10/06 | 40/130 | 25.45 | TM |
LT51310392008287BKT00 | 2008/10/13 | 39/131 | 9.06 | TM |
LC81310392013284LGN00 | 2013/10/11 | 39/131 | 3.8 | OLI |
LC81310392014287LGN00 | 2014/10/14 | 39/131 | 16.41 | OLI |
LC81310392017279LGN00 | 2017/10/06 | 39/131 | 2.05 | OLI |
LC81310392017311LGN00 | 2017/11/07 | 39/131 | 3.12 | OLI |
LC81310392021274LGN00 | 2021/10/01 | 39/131 | 3.09 | OLI |
Image Number | Acquisition Date | Row/Path | Cloud Cover (%) | Sensors |
---|---|---|---|---|
161428 | 2013/11/17 | 21/217 | 3 | WFV3 |
4220193 | 2017/10/17 | 22/108 | 1 | WFV2 |
8089633 | 2018/11/14 | 21/108 | 24 | WFV2 |
9221911 | 2021/08/02 | 20/107 | 1 | WFV1 |
9533435 | 2021/11/05 | 20/105 | 18 | WFV3 |
Station | District Station Number | Longitude/° | Latitude/° | Elevation/m |
---|---|---|---|---|
Yajiang | 56267 | 101.02 | 30.03 | 2600.9 |
Luding | 56371 | 102.33 | 29.92 | 1321.2 |
Kangding | 56374 | 101.97 | 30.05 | 2615.7 |
Shimian | 56378 | 102.35 | 29.23 | 876.1 |
Jiulong | 56462 | 101.5 | 29 | 2987.3 |
Year | Period (Years) | Glacier Area (km2) | ASA (km2) | AASA (km2/a) |
---|---|---|---|---|
1994 | / | 240.01 ± 14.97 | / | / |
1999 | 5 | 237.24 ± 15.03 | −2.77 ± 21.21 | −0.55 ± 4.24 |
2004 | 5 | 233.72 ± 15.04 | −3.52 ± 21.26 | −0.70 ± 4.25 |
2008 | 4 | 228.13 ± 15.20 | −5.59 ± 21.38 | −1.40 ± 5.35 |
2013 | 5 | 224.99 ± 14.89 | −3.14 ± 21.28 | −0.63 ± 4.26 |
2017 | 4 | 218.73 ± 14.71 | −6.26 ± 20.93 | −1.57 ± 5.23 |
2021 | 4 | 211.90 ± 14.70 | −6.83 ± 20.80 | −1.71 ± 5.20 |
1994–2021 | 27 | / | −28.11 ± 20.98 | −1.04 ± 0.78 |
Year | Aspect | |||||||
---|---|---|---|---|---|---|---|---|
N | NE | E | SE | S | SW | W | NW | |
1994 | 31.21 | 34.79 | 37.36 | 35.94 | 32.53 | 25.09 | 17.78 | 25.31 |
1999 | 30.64 | 34.05 | 36.87 | 35.91 | 32.06 | 24.68 | 17.80 | 25.23 |
2004 | 30.25 | 33.62 | 35.83 | 35.18 | 31.40 | 24.88 | 17.68 | 24.86 |
2008 | 28.92 | 32.89 | 35.05 | 34.37 | 30.58 | 24.79 | 17.54 | 23.98 |
2013 | 28.72 | 32.94 | 35.11 | 34.01 | 29.50 | 23.42 | 17.17 | 24.13 |
2017 | 28.00 | 31.61 | 33.26 | 32.36 | 28.29 | 23.44 | 17.37 | 24.37 |
2021 | 27.13 | 31.19 | 32.43 | 31.06 | 27.31 | 22.82 | 16.78 | 23.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Sun, Z.; Sun, P. Rapid Glacier Shrinkage in the Gongga Mountains in the Last 27 Years. Remote Sens. 2022, 14, 5397. https://doi.org/10.3390/rs14215397
Zhou S, Sun Z, Sun P. Rapid Glacier Shrinkage in the Gongga Mountains in the Last 27 Years. Remote Sensing. 2022; 14(21):5397. https://doi.org/10.3390/rs14215397
Chicago/Turabian StyleZhou, Shuaibo, Zhangli Sun, and Peijun Sun. 2022. "Rapid Glacier Shrinkage in the Gongga Mountains in the Last 27 Years" Remote Sensing 14, no. 21: 5397. https://doi.org/10.3390/rs14215397
APA StyleZhou, S., Sun, Z., & Sun, P. (2022). Rapid Glacier Shrinkage in the Gongga Mountains in the Last 27 Years. Remote Sensing, 14(21), 5397. https://doi.org/10.3390/rs14215397