Characterizing the Turning Points in Ecosystem Functioning and Their Linkages to Drought and Human Activities over the Arid and Semi-Arid Regions of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. MODIS Data
2.2.2. Meteorological Data
2.2.3. Other Data
2.3. Methods
2.3.1. Estimation of RUE
2.3.2. Calculation of Drought Index
2.3.3. BFAST Family Algorithms
2.3.4. Determining the Turning Point Occurrence Index (TPOI)
2.3.5. Correspondence Analysis (CA) of SPEI Grades and TP Types
2.3.6. Frequency of Land Cover Change
3. Results
3.1. Turning Points in Ecosystem Functioning Based on RUE
3.1.1. Spatial Distribution of TPOI
3.1.2. Trend Types of EF
3.1.3. Timing of TPs
3.2. Effects of Drought on TPs in Ecosystem Functioning
3.2.1. TPs of SPEI
3.2.2. CA of Drought and TP Types
3.3. The Linkage between the Frequency of Land Cover Change and TPOI
3.4. The Impact of Population Density and GDP Changes on the TPs
4. Discussion
4.1. Relationship between Change Trends of Precipitation, NDVI, and RUE
4.2. Abrupt Change Characteristics of Ecosystem Functioning
4.3. Influencing Factors of TPs in Ecosystem Functioning
4.4. Applicability of the BFAST Family Algorithms for Detecting Changes in Ecosystem Functioning
5. Conclusions
- (1)
- The ecosystem functions of the arid and semi-arid regions of northern China changed significantly over the past 20 years. TPs were detected in 63.2% of the study area. High TPOI (TPOI > 0.6) accounted for 15.2% of the total pixels. In terms of the year of occurrence, 59.4% of the TPs were observed after 2010. The most frequent TP type was Type 6 (Interruption: decrease with positive break), followed by Type 8 (which is a reversal: decrease to increase).
- (2)
- A total of 26.64% of the TPs in EF were dominated by drought events, while 55.67% of the TPs might be related to a humid climate. There were no wet and dry events detected in 17.69% of the TPs, which was possibly related to human factors. A total of 95.36% of the TPs occurred in the areas with GDP growth, and the TPs were not highly concentrated in areas of increasing population density. There was little difference in the proportions of TPOI among different frequencies of land cover change.
- (3)
- The two TP types of ecosystem function, i.e., Type 6 (Interruption: decrease with positive break) and Type 7 (Reversal: increase to decrease) had a strong correlation with persistent climate wetting, and the former type simultaneously accounted for a larger proportion in the regions with decreasing population density. In contrast, Type 5 (Reversal: increase to decrease), Type 4 (Monotonic decrease with negative break), and Type 8 (Reversal: decrease to increase) were strongly correlated with continuous drought events, among which Type 5 accounted for a higher proportion in areas of increased population density (76%).
- (4)
- The combination use of BFAST family algorithms and multiple breakpoint test methods provide an effective way to reveal more spatial and temporal characteristics of ecosystem functioning abrupt changes. The year and month information for TPs in EF detected from monthly RUE time series enables us to more accurately link them with occurrence and duration of drought. The implementation of CA analysis helps us understand the consistent relationship between dry/wet conditions and TP types, so as to better characterize the overall situation of regional ecosystem functioning abrupt changes.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middleton, N.; Thomas, D. World Atlas of Desertification, 2nd ed.; Arnold: London, UK; John Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ji, M.; Liu, Y.; Zhang, L.; Gong, D. An overview of arid and semi-arid climate change. Adv. Clim. Chang. Res. 2013, 9, 9–14. [Google Scholar]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Jax, K. Function and “functioning” in ecology: What does it mean? Oikos 2005, 111, 641–648. [Google Scholar] [CrossRef]
- Jax, K. Ecosystem Functioning; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hooper, D.U.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.; Loreau, M.; Naeem, S. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Cabello, J.; Fernández, N.; Alcaraz-Segura, D.; Oyonarte, C.; Pineiro, G.; Altesor, A.; Delibes, M.; Paruelo, J.M. The ecosystem functioning dimension in conservation: Insights from remote sensing. Biodivers. Conserv. 2012, 21, 3287–3305. [Google Scholar] [CrossRef] [Green Version]
- Berdugo, M.; Kéfi, S.; Soliveres, S.; Maestre, F.T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 2017, 1, 3. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Horion, S.; Prishchepov, A.V.; Verbesselt, J.; de Beurs, K.; Tagesson, T.; Fensholt, R. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob. Chang. Biol. 2016, 22, 2801–2817. [Google Scholar] [CrossRef]
- Adeel, Z.; Safriel, U.; Niemeijer, D.; White, R. Ecosystems and Human Well-Being: Desertification Synthesis; World Resources Institute (WRI): Washington, DC, USA, 2005. [Google Scholar]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Horion, S.; Ivits, E.; De Keersmaecker, W.; Tagesson, T.; Vogt, J.; Fensholt, R. Mapping European ecosystem change types in response to land-use change, extreme climate events, and land degradation. Land Degrad. Dev. 2019, 30, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Ponce Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Seddon, A.W.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.-j.; Wang, X.-p.; Zhao, C.-y. Drought sensitivity of vegetation photosynthesis along the aridity gradient in northern China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102418. [Google Scholar] [CrossRef]
- Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Ivits, E.; Rasmussen, K. Global-scale mapping of changes in ecosystem functioning from earth observation-based trends in total and recurrent vegetation. Glob. Ecol. Biogeogr. 2015, 24, 1003–1017. [Google Scholar] [CrossRef] [Green Version]
- Bernardino, P.N.; De Keersmaecker, W.; Fensholt, R.; Verbesselt, J.; Somers, B.; Horion, S.; Silva, T. Global-scale characterization of turning points in arid and semi-arid ecosystem functioning. Glob. Ecol. Biogeogr. 2020, 29, 1230–1245. [Google Scholar] [CrossRef]
- Le Houerou, H.N. Rain use efficiency: A unifying concept in arid-land ecology. J. Arid Environ. 1984, 7, 213–247. [Google Scholar] [CrossRef]
- Chi, D.; Wang, H.; Li, X.; Liu, H.; Li, X. Assessing the effects of grazing on variations of vegetation NPP in the Xilingol Grassland, China, using a grazing pressure index. Ecol. Indic. 2018, 88, 372–383. [Google Scholar] [CrossRef]
- Chang, J.; Tian, J.; Zhang, Z.; Chen, X.; Chen, Y.; Chen, S.; Duan, Z. Changes of Grassland Rain Use Efficiency and NDVI in Northwestern China from 1982 to 2013 and Its Response to Climate Change. Water 2018, 10, 1689. [Google Scholar]
- Higginbottom, T.P.; Symeonakis, E. Identifying Ecosystem Function Shifts in Africa Using Breakpoint Analysis of Long-Term NDVI and RUE Data. Remote Sens. 2020, 12, 1894. [Google Scholar] [CrossRef]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing Land Degradation/Recovery in the African Sahel from Long-Term Earth Observation Based Primary Productivity and Precipitation Relationships. Remote Sens. 2013, 5, 664–686. [Google Scholar]
- Holm, A.M.; Cridland, S.W.; Roderick, M.L. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sens. Environ. 2003, 85, 145–158. [Google Scholar] [CrossRef]
- Prince, S.D.; Wessels, K.J.; Tucker, C.J.; Nicholson, S.E. Desertification in the Sahel: A reinterpretation of a reinterpretation. Glob. Chang. Biol. 2007, 13, 1308–1313. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, X.; Vázquez-Jiménez, R. Evaluating the performance of remote sensed rain-use efficiency as an indicator of ecosystem functioning in semi-arid ecosystems. Int. J. Remote Sens. 2018, 39, 3344–3362. [Google Scholar]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Landmann, T.; Dubovyk, O. Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 76–82. [Google Scholar] [CrossRef]
- Gong, D.-Y.; Shi, P.-J.; Wang, J.-A. Daily precipitation changes in the semi-arid region over northern China. J. Arid Environ. 2004, 59, 771–784. [Google Scholar] [CrossRef]
- Linli, A.; Jianping, H.; Yu, R.; Guolong, Z. Characteristic and cause analysis of terrestrial water storage change in drylands of northern China. J. Arid Meteorol. 2022, 40, 169–178. [Google Scholar]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Hua, T.; Wang, X.; Zhang, C.; Lang, L.; Li, H. Responses of vegetation activity to drought in northern China. Land Degrad. Dev. 2017, 28, 1913–1921. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Zhang, Y.; Qin, S.; Shao, Y.; Gao, Y. Responses of vegetation to climatic variations in the desert region of northern China. Catena 2019, 175, 27–36. [Google Scholar] [CrossRef]
- Kang, W.; Liu, S.; Chen, X.; Feng, K.; Guo, Z.; Wang, T. Evaluation of ecosystem stability against climate changes via satellite data in the eastern sandy area of northern China. J. Environ. Manag. 2022, 308, 114596. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Y.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.; Liu, D.; Zhao, X.; Fan, J. Effects of land-use conversions on the ecosystem services in the agro-pastoral ecotone of northern China. J. Clean. Prod. 2020, 249, 119360. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Hentze, K.; Thonfeld, F.; Menz, G. Beyond trend analysis: How a modified breakpoint analysis enhances knowledge of agricultural production after Zimbabwe’s fast track land reform. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 78–87. [Google Scholar] [CrossRef]
- Horion, S.; Bernardino, P.; De Keersmaecker, W.; Fensholt, R.; Lhermitte, S.; Schurgers, G.; Souverijns, N.; Van De Kerchove, R.; Verbeeck, H.; Verbesselt, J.; et al. Understanding Turning Points in Dryland Ecosystem Functioning (U-TURN). In Proceedings of the EGU General Assembly Conference Abstracts, Online. 3–8 May 2020; p. 8486. [Google Scholar]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); University of Arizona, Vegetation Index and Phenology Lab: Tucson, AZ, USA, 2015. [Google Scholar]
- Fensholt, R.; Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 2011, 115, 438–451. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, S.D.; De Colstoun, E.B.; Kravitz, L. Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Glob. Chang. Biol. 1998, 4, 359–374. [Google Scholar] [CrossRef]
- Abel, C.; Horion, S.; Tagesson, T.; Brandt, M.; Fensholt, R. Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS). Remote Sens. Environ. 2019, 224, 317–332. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. The potential contribution of satellite remote sensing to the understanding of arid lands processes. In Vegetation and Climate Interactions in Semi-Arid Regions; Henderson-Sellers, A., Pitman, A.J., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 59–72. [Google Scholar]
- Cui, L.; Shi, J. Evaluation and comparison of growing season metrics in arid and semi-arid areas of northern China under climate change. Ecol. Indic. 2021, 121, 107055. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, G.; Guo, E. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901-2014 using Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, R.; Wu, Y.; Zhao, S. Effects of multi-temporal scale drought on vegetation dynamics in Inner Mongolia from 1982 to 2015, China. Ecol. Indic. 2022, 136, 108666. [Google Scholar] [CrossRef]
- Jiang, R.; Xie, J.; He, H.; Luo, J.; Zhu, J. Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012. Nat. Hazards 2015, 75, 2885–2903. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Lei, T.; He, B.; Wu, Z.; Liu, M.; Mo, X.; Geng, G.; Li, X.; Zhou, H. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quat. Int. 2014, 349, 10–21. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, J.; Qi, J.; Zhang, X.; Zeng, Y.; Shui, W.; Xu, Z.; Zhang, R.; Wu, X.; Cong, J. A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018. Earth Syst. Sci. Data 2021, 13, 331–341. [Google Scholar] [CrossRef]
- Tong, S.; Bao, Y.; Te, R.; Ma, Q.; Ha, S.; Lusi, A. Analysis of drought characteristics in Xilingol grassland of Northern China based on SPEI and its impact on vegetation. Math Probl. Eng. 2017, 2017, 5209173. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, B.; Zhang, Y.; Zhang, L.; Ji, M.; Xu, Y.; Zhang, X.; Zhang, Y. The sensitivity of the SPEI to potential evapotranspiration and precipitation at multiple timescales on the Huang-Huai-Hai Plain, China. Theor. Appl. Climatol. 2021, 143, 87–99. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, G.; An, W.; Zou, X.; Li, H.; Hou, M. Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth Parts A B C 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Masiliūnas, D.; Tsendbazar, N.-E.; Herold, M.; Verbesselt, J. BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis. Remote Sens. 2021, 13, 3308. [Google Scholar] [CrossRef]
- Potter, C.; TAN, P.N.; Steinbach, M.; Klooster, S.; Kumar, V.; Myneni, R.; Genovese, V. Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Glob. Chang. Biol. 2003, 9, 1005–1021. [Google Scholar] [CrossRef] [Green Version]
- Cryer, J.D.; Chan, K.-S. Time Series Analysis: With Applications in R; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2. [Google Scholar]
- Fernández, N.; Paruelo, J.M.; Delibes, M. Ecosystem functioning of protected and altered Mediterranean environments: A remote sensing classification in Doñana, Spain. Remote Sens. Environ. 2010, 114, 211–220. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; García-Haro, F.; San-Miguel-Ayanz, J. Conventional and fuzzy comparisons of large scale land cover products: Application to CORINE, GLC2000, MODIS and GlobCover in Europe. ISPRS J. Photogramm. Remote Sens. 2012, 74, 185–201. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Xu, H.-j.; Wang, X.-p.; Zhao, C.-y.; Shan, S.-y.; Guo, J. Seasonal and aridity influences on the relationships between drought indices and hydrological variables over China. Weather. Clim. Extrem. 2021, 34, 100393. [Google Scholar] [CrossRef]
- Miao, L.; Li, S.; Zhang, F.; Chen, T.; Shan, Y.; Zhang, Y. Future drought in the dry lands of Asia under the 1.5 and 2.0 C warming scenarios. Earths Future 2020, 8, e2019EF001337. [Google Scholar] [CrossRef]
- Liang, C.; Chen, T.; Dolman, H.; Shi, T.; Wei, X.; Xu, J.; Hagan, D.F.T. Drying and wetting trends and vegetation covariations in the drylands of China. Water 2020, 12, 933. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, S.; Li, C.; Ye, C.; Gao, D.; Chen, P. The trend shift caused by ecological restoration accelerates the vegetation greening of China’s drylands since the 1980s. Environ. Res. Lett. 2022, 17, 044062. [Google Scholar] [CrossRef]
- Yang, L.; Horion, S.; He, C.; Fensholt, R. Tracking Sustainable Restoration in Agro-Pastoral Ecotone of Northwest China. Remote Sens. 2021, 13, 5031. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X. Multiple afforestation programs accelerate the greenness in the ‘Three North’region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X.; Tian, H.; Wu, X.; Gao, Z.; Feng, Y.; Piao, S.; Lv, N.; Pan, N.; Fu, B. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Glob. Chang. Biol. 2021, 27, 5848–5864. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Sun, Z.; Han, Z.; Dong, Y.; Liu, H.; Meng, X.; Ma, J. Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environ. Sci. Pollut. Res. 2021, 28, 42516–42532. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, Y.; Shen, Y.; Li, X.; Xu, J. Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci. 2011, 21, 1007–1018. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, S.; Feng, X.; Niu, Y. Analysis and prediction of vegetation dynamics under the background of climate change in Xinjiang, China. PeerJ 2020, 8, e8282. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Xiao, X.; Zhang, Y.; Qin, Y.; Dang, X.; Wang, J.; Zou, Z.; Doughty, R.B.; Brandt, M.; Tong, X. Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degrad. Dev. 2019, 30, 1620–1631. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Li, J.; Hua, T. Identifying the effect of climate change on desertification in northern China via trend analysis of potential evapotranspiration and precipitation. Ecol. Indic. 2020, 112, 106141. [Google Scholar] [CrossRef]
- Pei, F.; Zhou, Y.; Xia, Y. Application of normalized difference vegetation index (NDVI) for the detection of extreme precipitation change. Forests 2021, 12, 594. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, B.; Yang, X.; Jin, Y.; Li, J.; Xia, L.; Chen, S.; Ma, H. Remote sensing estimates of grassland aboveground biomass based on MODIS net primary productivity (NPP): A case study in the Xilingol grassland of Northern China. Remote Sens. 2014, 6, 5368–5386. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, Y.; Wang, Z. Analysis of Summer Drought of 2007 Year in Suihua. Heilongjiang Meteor. 2008, 25, 15–16. (In Chinese) [Google Scholar]
- Zhang, Q.; Tang, H.; Cui, F.; Dai, L. SPEI-based analysis of drought characteristics and trends in Hulun Buir grassland. Acta Ecol. Sin. 2019, 39, 7110–7123. (In Chinese) [Google Scholar]
- Li, L.; Tian, M.; Liang, H.; Chen, Y.; Feng, C.; Qu, K.; Qian, J. Spatial and temporal changes of vegetation coverage and influencing factors in Hulun Buir grassland during 2000–2016. J. Ecol. Rural Environ. 2018, 34, 584–591. [Google Scholar]
- Na, R.; Du, H.; Na, L.; Shan, Y.; He, H.S.; Wu, Z.; Zong, S.; Yang, Y.; Huang, L. Spatiotemporal changes in the Aeolian desertification of Hulunbuir Grassland and its driving factors in China during 1980–2015. Catena 2019, 182, 104123. [Google Scholar] [CrossRef]
- Kang, W.; Kang, S.; Liu, S.; Han, Y. Assessing the degree of land degradation and rehabilitation in the Northeast Asia dryland region using net primary productivity and water use efficiency. Land Degrad. Dev. 2020, 31, 816–827. [Google Scholar] [CrossRef]
- Li, W.; Li, Y. Rangeland Degradation Control in China: A Policy Review. In The End of Desertification? Disputing Environmental Change in the Drylands; Behnke, R., Mortimore, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 491–511. [Google Scholar]
- Ruihua, L.I.; Xiaobing, L.I.; Wang, H.; Deng, F.; Xu, L.I. Grazing pressure evaluation and soil N storage response in typical steppe of Inner Mongolia, China. Acta Ecol. Sin. 2016, 36, 758–768. (In Chinese) [Google Scholar]
- Wu, R.-j. From the Fifth to the Seventh National Population Census in China: The Spatio-temporal Coupling of Population Distribution and Economic Growth as well as the Regional Balanced Development. J. East China Norm. Univ. Philos. Soc. Sci. 2021, 53, 12. (In Chinese) [Google Scholar]
Data Source | Layer(s) | Temporal Resolution | Spatial Resolution | Links |
---|---|---|---|---|
MOD13A3 | NDVI, VI Quality | monthly | about 1 km × 1 km | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 9 December 2021) |
MCD12Q1 | Land Cover Type 5 | yearly | 500 m × 500 m | |
Grid P, | monthly | about 1 km × 1 km | http://www.geodata.cn/data/ (accessed on 27 December 2021) | |
TerraClimate | P, PET | monthly | about 4 km × 4 km | https://code.earthengine.google.com/ (accessed on 8 October 2021) |
Meteorological stations | P, T | daily | 692 meteorological stations | http://data.cma.cn/ (accessed on 25 April 2021) |
Population density | 2000, 2005, 2010, 2015 | 1 km × 1 km | https://doi.org/10.7927/H45Q4T5F (accessed on 22 December 2021) | |
GDP | https://www.resdc.cn/Default.aspx (accessed on 20 October 2021) | |||
Chinese geomorphological data | ||||
DEM | 2000 | 30 m | http://www.geodata.cn (accessed on 6 March 2022) |
Mark | Grade | SPEI Values |
---|---|---|
SPEI 1 | Extreme drought | SPEI ≤ −2.0 |
SPEI 2 | Severe drought | −2.0 < SPEI ≤ −1.5 |
SPEI 3 | Moderate drought | −1.5 < SPEI ≤ −1.0 |
SPEI 4 | Mild drought | −1.0 < SPEI ≤ −0.5 |
SPEI 5 | Normal | −0.5 < SPEI < 0.5 |
SPEI 6 | Mild wet | 0.5 ≤ SPEI ≤ 1.0 |
SPEI 7 | Moderate wet | 1.0 ≤ SPEI ≤ 1.5 |
SPEI 8 | Severe wet | 1.5 ≤ SPEI < 2.0 |
SPEI 9 | Extreme wet | 2.0 ≤ SPEI |
Type | Trend before Break | Break | Trend after Break | Mark |
---|---|---|---|---|
Monotonic increase | increase | NA | increase | Type 1 |
Monotonic decrease | decrease | NA | decrease | Type 2 |
Monotonic increase with positive break | increase | positive | increase | Type 3 |
Monotonic decrease with negative break | decrease | negative | decrease | Type 4 |
Interruption: increase with negative break | increase | negative | increase | Type 5 |
Interruption: decrease with positive break | decrease | positive | decrease | Type 6 |
Reversal: increase to decrease | increase | positive/negative | decrease | Type 7 |
Reversal: decrease to increase | decrease | positive/negative | increase | Type 8 |
Type | Significance of the Trend before TP | Significance of the Trend after TP |
---|---|---|
Both segments significant(or no TP and significant) | p < 0.1 | p < 0.1 |
Only first segment significant | p < 0.1 | insignificant |
Only 2nd segment significant | insignificant | p < 0.1 |
Both segments insignificant (or no TP and not significant) | insignificant | insignificant |
Class | Population Density Difference (Person/km2) | GDP Difference (Ten Thousand Yuan/km2) |
---|---|---|
Decrease | <0 | <0 |
Lower increase | 0–0.13 | 0–100 |
Higher increase | >0.13 | >100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, X.; Huang, F.; Zhang, H.; Wang, P. Characterizing the Turning Points in Ecosystem Functioning and Their Linkages to Drought and Human Activities over the Arid and Semi-Arid Regions of Northern China. Remote Sens. 2022, 14, 5396. https://doi.org/10.3390/rs14215396
Hong X, Huang F, Zhang H, Wang P. Characterizing the Turning Points in Ecosystem Functioning and Their Linkages to Drought and Human Activities over the Arid and Semi-Arid Regions of Northern China. Remote Sensing. 2022; 14(21):5396. https://doi.org/10.3390/rs14215396
Chicago/Turabian StyleHong, Xiuchao, Fang Huang, Hongwei Zhang, and Ping Wang. 2022. "Characterizing the Turning Points in Ecosystem Functioning and Their Linkages to Drought and Human Activities over the Arid and Semi-Arid Regions of Northern China" Remote Sensing 14, no. 21: 5396. https://doi.org/10.3390/rs14215396
APA StyleHong, X., Huang, F., Zhang, H., & Wang, P. (2022). Characterizing the Turning Points in Ecosystem Functioning and Their Linkages to Drought and Human Activities over the Arid and Semi-Arid Regions of Northern China. Remote Sensing, 14(21), 5396. https://doi.org/10.3390/rs14215396