Monitoring Seedling Emergence, Growth, and Survival Using Repeat High-Resolution Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Study Design
2.3. Analysis
3. Results
3.1. Average Height
3.2. Seedling Density
3.3. Herbivory Detection
4. Discussion
5. Conclusions and Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Institute, W.R. Forests and Rangelands. In World Resources 1986; Basic Books, Inc.: New York, NY, USA, 1986; pp. 273–280. [Google Scholar]
- Bestelmeyer, B.T.; Brown, J.R.; Havstad, K.M.; Alexander, R.; Chavez, G.; Herrick, J.E. Development and use of state-and-transition models for rangelands. Rangel. Ecol. Manag. J. Range Manag. Arch. 2003, 56, 114–126. [Google Scholar]
- Bedunah, D.J.; Angerer, J.P. Rangeland degradation, poverty, and conflict: How can rangeland scientists contribute to effective responses and solutions? Rangel. Ecol. Manag. 2012, 65, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.J.; Grime, J. An experimental study of plant community invasibility. Ecology 1996, 77, 776–790. [Google Scholar] [CrossRef]
- Brooks, M.L.; D’antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of invasive alien plants on fire regimes. BioScience 2004, 54, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Holle, B.V.; Simberloff, D. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 2005, 86, 3212–3218. [Google Scholar] [CrossRef] [Green Version]
- Scasta, J.D.; Weir, J.R.; Stambaugh, M.C. Droughts and wildfires in Western U.S. rangelands. Rangelands 2016, 38, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Mack, M.C.; D’Antonio, C.M. Impacts of biological invasions on disturbance regimes. Trends Ecol. Evol. 1998, 13, 195–198. [Google Scholar] [CrossRef]
- Svejcar, T.; Boyd, C.; Davies, K.; Hamerlynck, E.; Svejcar, L. Challenges and limitations to native species restoration in the Great Basin, USA. Plant Ecol. 2017, 218, 81–94. [Google Scholar] [CrossRef]
- Stringham, T.K.; Krueger, W.C.; Shaver, P.L. State and transition modeling: An ecological process approach. Rangel. Ecol. Manag. J. Range Manag. Arch. 2003, 56, 106–113. [Google Scholar]
- Charles, H.; Dukes, J.S. Impacts of invasive species on ecosystem services. In Biological Invasions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 217–237. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Hardegree, S.P.; Jones, T.A.; Roundy, B.A.; Shaw, N.L.; Monaco, T.A. Assessment of range planting as a conservation practice [chapter 4]. In Conservation Benefits of Rangeland Practices: Assessment, Recommendations, and Knowledge Gaps; Briske, D.D., Ed.; Allen Press: Lawrence, KS, USA, 2011; pp. 171–212. [Google Scholar]
- Merritt, D.J.; Dixon, K.W. Restoration seed banks—A matter of scale. Science 2011, 332, 424–425. [Google Scholar] [CrossRef]
- Office, U.S.A. Wildland Fires; Office, G.A., Ed.; Washington, DC, USA, 2003.
- Sheley, R.; James, J.; Rinella, M.; Blumenthal, D.; DiTomasso, J. A scientific assessment of invasive plant management on anticipated conservation benefits. In Conservation Benefits of Rangeland Practices: Assessment, Recommendations, and Knowledge Gaps; Allen Press: Lawrence, KS, USA, 2011; pp. 291–335. [Google Scholar]
- Bosco, T.; Bertiller, M.B.; Carrera, A.L. Micro-environmental conditions affect grass and shrub seedling emergence in denuded areas of the arid Patagonian Monte, Argentina. Flora-Morphol. Distrib. Funct. Ecol. Plants 2015, 210, 66–71. [Google Scholar] [CrossRef]
- Boyd, C.S.; James, J.J. Variation in timing of planting influences bluebunch wheatgrass demography in an arid system. Rangel. Ecol. Manag. 2013, 66, 117–126. [Google Scholar] [CrossRef]
- Hardegree, S.P.; Moffet, C.A.; Flerchinger, G.N.; Cho, J.; Roundy, B.A.; Jones, T.A.; James, J.J.; Clark, P.E.; Pierson, F.B. Hydrothermal assessment of temporal variability in seedbed microclimate. Rangel. Ecol. Manag. 2013, 66, 127–135. [Google Scholar] [CrossRef]
- James, J.J.; Svejcar, T. Limitations to postfire seedling establishment: The role of seeding technology, water availability, and invasive plant abundance. Rangel. Ecol. Manag. 2010, 63, 491–495. [Google Scholar] [CrossRef]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Jones, M.O.; Naugle, D.E.; Twidwill, D.; Uden, D.R.; Maetas, J.D.; Allred, B.W. Beyond inventories: Emergence of a new era in rangeland monitoring. Rangel. Ecol. Manag. 2020, 73, 577–583. [Google Scholar] [CrossRef]
- Lawley, V.; Lewis, M.; Clarke, M.; Ostendorf, B. Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecol. Indic. 2016, 60, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- What Is Remote Sensing? Available online: https://oceanservice.noaa.gov/facts/remotesensing.html (accessed on 25 June 2018).
- Davies, K.W.; Petersen, S.L.; Johnson, D.D.; Davis, D.B.; Madsen, M.D.; Zvirzdin, D.L.; Bates, J.D. Estimating juniper cover from National Agriculture Imagery Program (NAIP) imagery and evaluating relationships between potential cover and environmental variables. Rangel. Ecol. Manag. 2010, 63, 630–637. [Google Scholar] [CrossRef]
- Madsen, M.D.; Zvirzdin, D.L.; Davis, B.D.; Petersen, S.L.; Roundy, B.A. Feature extraction techniques for measuring pinon and juniper tree cover and density, and comparison with field-based management surveys. Environ. Manag. 2011, 47, 766–776. [Google Scholar] [CrossRef]
- Yu, Z.; Cao, Z.; Wu, X.; Bai, X.; Qin, Y.; Zhuo, W.; Xiao, Y.; Zhang, X.; Xue, H. Automatic image-based detection technology for two critical growth stages of maize: Emergence and three-leaf stage. Agric. For. Meteorol. 2013, 174, 65–84. [Google Scholar] [CrossRef]
- Rovero, F.; Zimmermann, F.; Berzi, D.; Meek, P. “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix 2013, 24, 148–156. [Google Scholar]
- Kays, R.; Kranstauber, B.; Jansen, P.; Carbone, C.; Rowcliffe, M.; Fountain, T.; Tilak, S. Camera traps as sensor networks for monitoring animal communities. In Proceedings of the 2009 IEEE 34th Conference on Local Computer Networks, Zurich, Switzerland, 20–23 October 2009; pp. 811–818. [Google Scholar]
- Sun, C.; Beirne, C.; Burgar, J.M.; Howey, T.; Fisher, J.T.; Burton, A.C. Simultaneous monitoring of vegetation dynamics and wildlife activity with camera traps to assess habitat change. Remote Sens. Ecol. Conserv. 2021, 7, 666–684. [Google Scholar] [CrossRef]
- Hofmeester, T.R.; Young, S.; Juthberg, S.; Singh, N.J.; Widemo, F.; Andren, H.; Linnell, J.D.C.; Cromsigt, J.P.G.M. Using by-catch data from wildlife surveys to quantify climatic parameters and timing of phenology for plants and animals using camera traps. Remote Sens. Ecol. Conserv. 2020, 6, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Karanth, K.U.; Nichols, J.D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 1998, 79, 2852–2862. [Google Scholar] [CrossRef]
- Hall, L.K.; Larsen, R.T.; Knight, R.N.; McMillan, B.R. Feral horses influence both spatial and temporal patterns of water use by native ungulates in a semi-arid environment. Ecosphere 2018, 9, e02096. [Google Scholar] [CrossRef]
- Larsen, R.T.; Flinders, J.T.; Mitchell, D.L.; Perkins, E.R.; Whiting, D.G. Chukar watering patterns and water site selection. Rangel. Ecol. Manag. 2007, 60, 559–565. [Google Scholar] [CrossRef]
- Rendall, A.R.; Sutherland, D.R.; Cooke, R.; White, J. Camera trapping: A contemporary approach to monitoring invasive rodents in high conservation priority ecosystems. PLoS ONE 2014, 9, e86592. [Google Scholar]
- White, J.D.; Bronner, G.N.; Midgley, J.J. Camera-trapping and seed-labelling reveals widespread granivory and scatter-hoarding of nuts by rodents in the Fynbos Biome. Afr. Zool. 2017, 52, 31–41. [Google Scholar] [CrossRef]
- Burton, A.C.; Neilson, E.; Moreira, D.; Ladle, A.; Steenweg, R.; Fisher, J.T.; Bayne, E.; Boutin, S. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 2015, 52, 675–685. [Google Scholar] [CrossRef]
- Questad, E.J.; Antill, M.; Liu, N.; Stavros, E.N.; Townsend, P.A.; Bonfield, S.; Schimel, D. A camera-based method for collecting rapid vegetation data to support remote-sensing studies of shrubland biodiversity. Remote Sens. 2022, 14, 1933. [Google Scholar] [CrossRef]
- Cooper, W.S. An apparatus for photographic recording of quadrats. J. Ecol. 1924, 12, 317–321. [Google Scholar] [CrossRef]
- Booth, D.T.; Cox, S.E.; Louhaichi, M.; Johnson, D.E. Lightweight camera stand for close-to-earth remote sensing. Rangel. Ecol. Manag. 2004, 57, 675–679. [Google Scholar] [CrossRef]
- Claveran, R.A. Two modifications to the vegetation photographic charting method. J. Range Manag. 1966, 19, 371–373. [Google Scholar]
- Owens, M.; Gardiner, H.; Norton, B. A photographic technique for repeated mapping of rangeland plant populations in permanent plots. Rangel. Ecol. Manag. J. Range Manag. Arch. 1985, 38, 231–232. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Winters, C.; Rango, A. UAS remote sensing missions for rangeland applications. Geocarto Int. 2011, 26, 141–156. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Tarhouni, M.; Ben Salem, F.; Tlili, A.; Ouled Belgacem, A.; Neffati, M.; Louhaichi, M. Measurement of the aboveground biomass of some rangeland species using a digital non-destructive technique. Bot. Lett. 2016, 163, 281–287. [Google Scholar] [CrossRef]
- Chianucci, F.; Lucibelli, A.; Dell’Abate, M.T. Estimation of ground canopy cover in agricultural crops using downward-looking photography. Biosyst. Eng. 2018, 169, 209–216. [Google Scholar] [CrossRef]
- Sankey, J.B.; Sankey, T.T.; Li, J.; Ravi, S.; Wang, G.; Caster, J.; Kasprak, A. Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sens. Environ. 2021, 253, 112223. [Google Scholar] [CrossRef]
- Terrance Booth, D.; Cox, S.E.; Fifield, C.; Phillips, M.; Williamson, N. Image analysis compared with other methods for measuring ground cover. Arid. Land Res. Manag. 2005, 19, 91–100. [Google Scholar] [CrossRef]
- Booth, D.T.; Tueller, P.T. Rangeland monitoring using remote sensing. Arid. Land Res. Manag. 2003, 17, 455–467. [Google Scholar] [CrossRef]
- Booth, D.T.; Cox, S.E. Image-based monitoring to measure ecological change in rangeland. Front. Ecol. Environ. 2008, 6, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Bennett, L.T.; Judd, T.S.; Adams, M.A. Close-range vertical photography for measuring cover changes in perennial grasslands. Rangel. Ecol. Manag. J. Range Manag. Arch. 2000, 53, 634–641. [Google Scholar]
- Shafran-Nathan, R.; Svoray, T.; Perevolotsky, A. Continuous droughts’ effect on herbaceous vegetation cover and productivity in rangelands: Results from close-range photography and spatial analysis. Int. J. Remote Sens. 2013, 34, 6263–6281. [Google Scholar] [CrossRef]
- Tobler, M.W.; Hartley, A.Z.; Carrillo-Percastegui, S.E.; Powell, G.V.N. Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J. Appl. Ecol. 2015, 52, 413–421. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Stefano, P.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Wilhoit, J.; Kutz, L.; Fly, D.; South, D. PC-based multiple camera machine vision systems for pine seedling measurements. Appl. Eng. Agric. 1994, 10, 841–847. [Google Scholar] [CrossRef]
- Kaizu, Y.; Imou, K. A dual-spectral camera system for paddy rice seedling row detection. Comput. Electron. Agric. 2008, 63, 49–56. [Google Scholar] [CrossRef]
- Niwa, H.; Imai, Y.; Kamada, M. The effectiveness of a method that uses stabilized cameras and photogrammetry to survey the size and distribution of individual trees in a mangrove forest. J. For. Res. 2021, 26, 314–320. [Google Scholar] [CrossRef]
- Putro, A.W.; Nugroho, A.P.; Sutiarso, L.; Okayasu, T. Application of 3D reconstruction system based on close-range photogrammetry method for plant growth estimation. IOP Conf. Ser. Earth Environ. Sci. 2022, 1038, 012051. [Google Scholar] [CrossRef]
- Lu, H.; Tang, L.; Whitham, S.A.; Mei, Y. A robotic platform for corn seedling morphological traits characterization. Sensors 2017, 17, 2082. [Google Scholar] [CrossRef] [Green Version]
- PRISM Climate Group, Oregon State University PRISM Climate Data. 2016. Available online: https://prism.oregonstate.edu (accessed on 8 September 2022).
- Nijland, W.; Coops, N.; Coogan, S.; Bater, C.; Wulder, M.; Nielsen, S.; McDermid, G.; Stenhouse, G. Vegetation phenology can be captured with digital repeat photography and linked to variability of root nutrition in Hedysarum alpinum. Appl. Veg. Sci. 2013, 16, 317–324. [Google Scholar] [CrossRef]
- Hardin, P.J.; Jackson, M.W. An unmanned aerial vehicle for rangeland photography. Rangel. Ecol. Manag. 2005, 58, 439–442. [Google Scholar] [CrossRef]
- Robel, R.; Briggs, J.; Dayton, A.; Hulbert, L. Relationships between visual obstruction measurements and weight of grassland vegetation. J. Range Manag. 1970, 23, 295–297. [Google Scholar] [CrossRef] [Green Version]
- Fieberg, J. Estimating population abundance using sightability models: R SightabilityModel package. J. Stat. Softw. 2012, 51, 1–20. [Google Scholar] [CrossRef]
- Yamazaki, F.; Liu, W.; Takasaki, M. Characteristics of shadow and removal of its effects for remote sensing imagery. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. IV-426–IV-429. [Google Scholar]
- Youtie, B.A.; Stafford, M.; Johnson, J.B. Herbivorous and parasitic insect guilds associated with Great Basin wildrye (Elymus cinereus) in southern Idaho. Great Basin Nat. 1987, 47, 644–651. [Google Scholar]
- Damgaard, C. Estimating mean plant cover from different types of cover data: A coherent tatistical framework. Ecosphere 2014, 5, 20. [Google Scholar] [CrossRef]
Type 3 Tests of Fixed Effects for Avg Seedling Height | ||||
---|---|---|---|---|
Effect | Num DF | Den DF | F Value | Pr > F |
Date | 10 | 260 | 6.81 | <0.0001 |
Row | 3 | 81 | 0.98 | 0.4076 |
Treatment | 1 | 26 | 34.77 | <0.0001 |
Date × Treatment | 10 | 260 | 12.66 | <0.0001 |
Type 3 Tests of Fixed Effects for Seedling Density | ||||
---|---|---|---|---|
Effect | Num DF | Den DF | F Value | Pr > F |
Date | 10 | 260 | 8.02 | <0.0001 |
Row | 3 | 81 | 2.45 | 0.0698 |
Treatment | 1 | 26 | 15.15 | 0.0006 |
Date × Row | 30 | 813 | 2.38 | <0.0001 |
Date × Treatment | 10 | 260 | 2.24 | 0.0160 |
Herbivore/Type of Damage | Number of Events | Percent |
---|---|---|
Lepus californicus | 338 | 36.15 |
Unknown Herbivory-Day | 209 | 22.35 |
Thomomys bottae | 161 | 17.22 |
Buried | 65 | 6.95 |
Dipodomys sp. | 63 | 6.74 |
Acrididae | 52 | 5.56 |
Eremophila alpestris | 24 | 2.57 |
Trampled | 13 | 1.39 |
Urocitellus mollis | 6 | 0.64 |
Unknown Herbivory-Night | 2 | 0.21 |
Antilocapra americana | 2 | 0.21 |
Grand Total | 935 | 100.00 |
Cause of Damage | Percent |
---|---|
Herbivores | 69.09 |
Buried and Trampled | 8.34 |
Unknown Herbivory—Day | 22.36 |
Unknown Herbivory—Night | 0.21 |
Total | 100.00 |
Fenced Herbivory | Number of Events | Percent |
---|---|---|
Unknown Herbivory | 50 | 22.73 |
Acrididae | 8 | 3.64 |
Eremophila aplestris | 1 | 0.45 |
Thomomys bottae | 161 | 73.18 |
Grand Total | 220 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, J.R.; Petersen, S.L.; Madsen, M.D.; McMillan, B.R.; Eggett, D.L.; Lawrence, C.R. Monitoring Seedling Emergence, Growth, and Survival Using Repeat High-Resolution Imagery. Remote Sens. 2022, 14, 5365. https://doi.org/10.3390/rs14215365
Morris JR, Petersen SL, Madsen MD, McMillan BR, Eggett DL, Lawrence CR. Monitoring Seedling Emergence, Growth, and Survival Using Repeat High-Resolution Imagery. Remote Sensing. 2022; 14(21):5365. https://doi.org/10.3390/rs14215365
Chicago/Turabian StyleMorris, Jesse R., Steven L. Petersen, Matthew D. Madsen, Brock R. McMillan, Dennis L. Eggett, and C. Russell Lawrence. 2022. "Monitoring Seedling Emergence, Growth, and Survival Using Repeat High-Resolution Imagery" Remote Sensing 14, no. 21: 5365. https://doi.org/10.3390/rs14215365
APA StyleMorris, J. R., Petersen, S. L., Madsen, M. D., McMillan, B. R., Eggett, D. L., & Lawrence, C. R. (2022). Monitoring Seedling Emergence, Growth, and Survival Using Repeat High-Resolution Imagery. Remote Sensing, 14(21), 5365. https://doi.org/10.3390/rs14215365