Varela, S.; Zheng, X.; Njuguna, J.N.; Sacks, E.J.; Allen, D.P.; Ruhter, J.; Leakey, A.D.B.
Deep Convolutional Neural Networks Exploit High-Spatial- and -Temporal-Resolution Aerial Imagery to Phenotype Key Traits in Miscanthus. Remote Sens. 2022, 14, 5333.
https://doi.org/10.3390/rs14215333
AMA Style
Varela S, Zheng X, Njuguna JN, Sacks EJ, Allen DP, Ruhter J, Leakey ADB.
Deep Convolutional Neural Networks Exploit High-Spatial- and -Temporal-Resolution Aerial Imagery to Phenotype Key Traits in Miscanthus. Remote Sensing. 2022; 14(21):5333.
https://doi.org/10.3390/rs14215333
Chicago/Turabian Style
Varela, Sebastian, Xuying Zheng, Joyce N. Njuguna, Erik J. Sacks, Dylan P. Allen, Jeremy Ruhter, and Andrew D. B. Leakey.
2022. "Deep Convolutional Neural Networks Exploit High-Spatial- and -Temporal-Resolution Aerial Imagery to Phenotype Key Traits in Miscanthus" Remote Sensing 14, no. 21: 5333.
https://doi.org/10.3390/rs14215333
APA Style
Varela, S., Zheng, X., Njuguna, J. N., Sacks, E. J., Allen, D. P., Ruhter, J., & Leakey, A. D. B.
(2022). Deep Convolutional Neural Networks Exploit High-Spatial- and -Temporal-Resolution Aerial Imagery to Phenotype Key Traits in Miscanthus. Remote Sensing, 14(21), 5333.
https://doi.org/10.3390/rs14215333