Refining Rates of Active Crustal Deformation in the Upper Plate of Subduction Zones, Implied by Geological and Geodetic Data: The E-Dipping West Crati Fault, Southern Italy
Abstract
:1. Introduction
2. Material and Methods
2.1. The E-Dipping West Crati Fault
2.1.1. Geological Background
2.1.2. Raised Middle–Late Quaternary Palaeoshorelines and Existing Age Controls in Northern Calabria, in the Tyrrhenian Side
Ref. | Dating Method | Dated Sample Description | Profile Number | Reported Age (ka) | Assigned Highstand (ka) | Palaeoshoreline Elevations (m a.s.l) |
---|---|---|---|---|---|---|
Carobene et al., 1991, [93] | U/Th dating on corals | “Cladocora coespitosa bearing biocalcarenite is present along almost the entire studied portion of the coast. The deposit appears as a relic of the original one after the action of the marine erosion. […] The age was confirmed by field observations and age determinations carried out in Calabria.” | North Profile 18 | 329 (+196 and −64) | 340 (MIS 9e) | 14–15 |
Cerrone et al., 2021, [56] | U/Th dating on corals | “The inferred elevation of the platform inner edge is +22 m with a ± 1 m uncertainty because of a colluvial cover. The abrasion platform is mantled by an up to 20 cm thick conglomerate composed of pebble- to boulder-size clasts. The matrix is locally abundant and consists of coarse- to very coarse-grained sandstone. An overlying bioconstruction consists of encrusting algae, bryozoans, gastropod and bivalve shells, and colonial C. caespitosa corals (samples GRP1 and GRP2; Figure 7b). The bioconstructed body is blanketed by coarse-grained sandstones to granule-grade deposits showing horizontally to low-angle lamination; at the top beds are bundled into weakly discordant sets (Figure 7c).” | North Profile 18 | 83 ± 3.6 | 100 (MIS 5c) | 22 |
Cerrone et al., 2021, [56] | U/Th dating on corals | “A C. caespitosa colony and a flowstone coating a coral bioconstruction have been sampled for U-series dating (samples SLC and SLC05, respectively) […]. At Scalea, the T2 abrasion platform is located at elevations of >12 m (outer edge). For the T2 inner edge, which is hidden by the slope deposits, we inferred an elevation in the range of 16 ± 1 mby integrating GPS measurements with topographic data.” | North Profile 18 | 98 ± 4.0 | 100 (MIS c) | 16 |
Age (ka) | Elevation of Highstands (mm) | Age (ka) | Elevation of Highstands (mm) | Age (ka) | Elevation of Highstands (mm) |
---|---|---|---|---|---|
0 | 0 | 200 | −5000 | 550 | 10000 |
30 | −80000 | 217 | −30000 | 560 | 3000 |
50 | −60000 | 240 | −5000 | 590 | 20000 |
76.5/80 | −30000 | 285 | −30000 | 620 | 20000 |
100 | −25000 | 310 | −22000 | 695 | 10000 |
115 | −21000 | 340 | 5000 | 740 | 5000 |
119 | −5000 | 410 | −5000 | 800 | 20000 |
125 | 5000 | 478 | 0 | 855 | 20000 |
175 | −30000 | 525 | 20000 | 980 | 25000 |
2.2. Methods
2.2.1. Elevation Data from DEM-Based Topographic Analysis of Mapped Marine Terraces
2.2.2. Synchronous Correlation Approach to Model Multiple Glacio-Eustatic Sea-Level Highstands and Multiple Raised Marine Terraces
2.2.3. GNSS Data Analysis and Strain Rate Computation
2.2.4. Vertical Co-Seismic Deformation Calculation to Estimate Earthquake Scenarios for the West Crati Fault
3. Results
3.1. Synchronous Correlation Modelling to Refine Ages for Undated Marine Terraces
3.2. Uplift and Uplift Rates along the Strike of the West Crati Normal Fault
3.3. Strain Rate, Extension Rate, and Vertical Rates from GNSS Measurements
4. Discussion
4.1. Local Tectonic Implications: Estimating Geodetic Fault Throw Rate and ERI for the West Crati Fault
4.2. Regional Implications for Upper-Plate Crustal Deformation above Subduction Zones
4.3. Co-Seismic Deformation Scenario Associated with the West Crati Fault
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plafker, G. Alaskan Earthquake of 1964 and Chilean Earthquake of 1960: Implications for Arc Tectonics. J. Geophys. Res. 1972, 77, 901–925. [Google Scholar] [CrossRef]
- Lomnitz, C. Major Earthquakes of Chile: A Historical Survey, 1535-1960. Seismol. Res. Lett. 2004, 75, 368–378. [Google Scholar] [CrossRef]
- Cisternas, M.; Atwater, B.F.; Torrejón, F.; Sawai, Y.; Machuca, G.; Lagos, M.; Eipert, A.; Youlton, C.; Salgado, I.; Kamataki, T.; et al. Predecessors of the Giant 1960 Chile Earthquake. Nature 2005, 437, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Holdahl, S.R.; Sauber, J. Coseismic Slip in the 1964 Prince William Sound Earthquake: A New Geodetic Inversion. Pure Appl. Geophys. PAGEOPH 1994, 142, 55–82. [Google Scholar] [CrossRef]
- Subarya, C.; Chlieh, M.; Prawirodirdjo, L.; Avouac, J.-P.; Bock, Y.; Sieh, K.; Meltzner, A.J.; Natawidjaja, D.H.; McCaffrey, R. Plate-Boundary Deformation Associated with the Great Sumatra–Andaman Earthquake. Nature 2006, 440, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.C.; Carton, H.; Tapponnier, P.; Hananto, N.D.; Chauhan, A.P.S.; Hartoyo, D.; Bayly, M.; Moeljopranoto, S.; Bunting, T.; Christie, P.; et al. Seismic Evidence for Broken Oceanic Crust in the 2004 Sumatra Earthquake Epicentral Region. Nat. Geosci. 2008, 1, 777–781. [Google Scholar] [CrossRef]
- Kodaira, S.; No, T.; Nakamura, Y.; Fujiwara, T.; Kaiho, Y.; Miura, S.; Takahashi, N.; Kaneda, Y.; Taira, A. Coseismic Fault Rupture at the Trench Axis during the 2011 Tohoku-Oki Earthquake. Nat. Geosci. 2012, 5, 646–650. [Google Scholar] [CrossRef]
- Anderson, R.S.; Densmore, A.L.; Ellis, M.A. The Generation and Degradation of Marine Terraces. Basin Res. 1999, 11, 7–19. [Google Scholar] [CrossRef]
- Roberts, G.P.; Meschis, M.; Houghton, S.; Underwood, C.; Briant, R.M. The Implications of Revised Quaternary Palaeoshoreline Chronologies for the Rates of Active Extension and Uplift in the Upper Plate of Subduction Zones. Quat. Sci. Rev. 2013, 78, 169–187. [Google Scholar] [CrossRef]
- Lajoie, K.R. Coastal Tectonics. In Active Tectonics: Impact on Society; National Academies Press: Washington, DC, USA, 1986; pp. 95–124. [Google Scholar]
- D’Agostino, N.; Jackson, J.A.; Dramis, F.; Funiciello, R. Interactions between Mantle Upwelling, Drainage Evolution and Active Normal Faulting: An Example from the Central Apennines (Italy). Geophys. J. Int. 2001, 147, 475–497. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Miller, M.S.; Serpelloni, E.; Willett, S.D. Isostasy, Dynamic Topography, and the Elevation of the Apennines of Italy. Earth Planet. Sci. Lett. 2014, 407, 163–174. [Google Scholar] [CrossRef]
- McCloskey, J.; Nalbant, S.S.; Steacy, S. Indonesian Earthquake: Earthquake Risk from Co-Seismic Stress. Nature 2005, 434, 291. [Google Scholar] [CrossRef] [PubMed]
- Meltzner, A.J.; Sieh, K.; Abrams, M.; Agnew, D.C.; Hudnut, K.W.; Avouac, J.-P.; Natawidjaja, D.H. Uplift and Subsidence Associated with the Great Aceh-Andaman Earthquake of 2004. J. Geophys. Res. Solid Earth 2006, 111, no. B2. [Google Scholar] [CrossRef] [Green Version]
- Nalbant, S.; McCloskey, J.; Steacy, S.; NicBhloscaidh, M.; Murphy, S. Interseismic Coupling, Stress Evolution, and Earthquake Slip on the Sunda Megathrust. Geophys. Res. Lett. 2013, 40, 4204–4208. [Google Scholar] [CrossRef]
- Nic Bhloscaidh, M.; McCloskey, J.; Naylor, M.; Murphy, S.; Lindsay, A. Reconstruction of the Slip Distributions in Historical Earthquakes on the Sunda Megathrust, W. Sumatra. Geophys. J. Int. 2015, 202, 1339–1361. [Google Scholar] [CrossRef] [Green Version]
- González-alfaro, J.; Vargas, G.; Ortlieb, L.; González, G.; Ruiz, S.; Báez, J.C.; Mandeng-yogo, M.; Caquineau, S.; Álvarez, G. Abrupt Increase in the Coastal Uplift and Earthquake Rate since ~40 Ka at the Northern Chile Seismic Gap in the Central Andes. Earth Planet. Sci. Lett. 2018, 502, 32–45. [Google Scholar] [CrossRef]
- Ott, R.F.; Gallen, S.F.; Wegmann, K.W.; Biswas, R.H.; Herman, F.; Willett, S.D. Pleistocene Terrace Formation, Quaternary Rock Uplift Rates and Geodynamics of the Hellenic Subduction Zone Revealed from Dating of Paleoshorelines on Crete, Greece. Earth Planet. Sci. Lett. 2019, 525, 115757. [Google Scholar] [CrossRef]
- Roberts, G.P.; Houghton, S.L.; Underwood, C.; Papanikolaou, I.; Cowie, P.A.; Van Calsteren, P.; Wigley, T.; Cooper, F.J.; McArthur, J.M. Localization of Quaternary Slip Rates in an Active Rift in 105 Years: An Example from Central Greece Constrained by 234U- 230Th Coral Dates from Uplifted Paleoshorelines. J. Geophys. Res. Solid Earth 2009, 114, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J.; Meschis, M.; Roberts, G.P.; Ganas, A.; Gheorghiu, D. Temporally Constant Quaternary Uplift Rates and Their Relationship with Extensional Upper-Plate Faults in South Crete (Greece), Constrained with 36-Cl Cosmogenic Exposure Dating. Tectonics 2019, 38, 1189–1222. [Google Scholar] [CrossRef] [Green Version]
- Saillard, M.; Hall, S.R.; Audin, L.; Farber, D.L.; Hérail, G.; Martinod, J.; Regard, V.; Finkel, R.; Bondoux, F. Non-Steady Long-Term Uplift Rates and Pleistocene Marine Terrace Development along the Andean Margin of Chile (31° S) Inferred from 10 Be Dating. Earth Planet. Sci. Lett. 2009, 277, 50–63. [Google Scholar] [CrossRef]
- Shikakura, Y. Marine Terraces Caused by Fast Steady Uplift and Small Coseismic Uplift and the Time-Predictable Model: Case of Kikai Island, Ryukyu Islands, Japan. Earth Planet. Sci. Lett. 2014, 404, 232–237. [Google Scholar] [CrossRef]
- Shyu, J.B.H.; Wang, C.; Wang, Y.; Shen, C.; Chiang, H.; Liu, S.; Min, S.; Thu, L.; Than, O.; Thura, S. Upper-Plate Splay Fault Earthquakes along the Arakan Subduction Belt Recorded by Uplifted Coral Microatolls on Northern Ramree Island, Western Myanmar ( Burma ). Earth Planet. Sci. Lett. 2018, 484, 241–252. [Google Scholar] [CrossRef]
- Serpelloni, E.; Bürgmann, R.; Anzidei, M.; Baldi, P.; Mastrolembo Ventura, B.; Boschi, E. Strain Accumulation across the Messina Straits and Kinematics of Sicily and Calabria from GPS Data and Dislocation Modeling. Earth Planet. Sci. Lett. 2010, 298, 347–360. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, N.; Mantenuto, S.; D’Anastasio, E.; Giuliani, R.; Mattone, M.; Calcaterra, S.; Gambino, P.; Bonci, L. Evidence for Localized Active Extension in the Central Apennines (Italy) from Global Positioning System Observations. Geology 2011, 39, 291–294. [Google Scholar] [CrossRef]
- Briole, P.; Ganas, A.; Elias, P.; Dimitrov, D. The GPS Velocity Field of the Aegean. New Observations, Contribution of the Earthquakes, Crustal Blocks Model. Geophys. J. Int. 2021, 226, 468–492. [Google Scholar] [CrossRef]
- Iezzi, F.; Roberts, G.; Faure Walker, J.; Papanikolaou, I.; Ganas, A.; Deligiannakis, G.; Beck, J.; Wolfers, S.; Gheorghiu, D. Temporal and Spatial Earthquake Clustering Revealed through Comparison of Millennial Strain-Rates from 36Cl Cosmogenic Exposure Dating and Decadal GPS Strain-Rate. Sci. Rep. 2021, 11, 23320. [Google Scholar] [CrossRef]
- Tortorici, L.; Monaco, C.; Tansi, C.; Cocina, O. Recent and Active Tectonics in the Calabrian Arc (Southern Italy). Tectonophysics 1995, 243, 37–55. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. The Italian Earthquake Catalogue CPTI15. Bull. Earthq. Eng. 2020, 18, 2953–2984. [Google Scholar] [CrossRef]
- Basili, R.; Valensise, G.; Vannoli, P.; Burrato, P.; Fracassi, U.; Mariano, S.; Tiberti, M.M.; Boschi, E. The Database of Individual Seismogenic Sources (DISS), Version 3: Summarizing 20 Years of Research on Italy’s Earthquake Geology. Tectonophysics 2008, 453, 20–43. [Google Scholar] [CrossRef]
- INGV - DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas. Available online: https://data.ingv.it/dataset/488#additional-metadata (accessed on 4 September 2022).
- Cowie, P.A.; Roberts, G.P. Constraining Slip Rates and Spacings for Active Normal Faults. J. Struct. Geol. 2001, 23, 1901–1915. [Google Scholar] [CrossRef]
- Cowie, P.A.; Roberts, G.P.; Bull, J.M.; Visini, F. Relationships between Fault Geometry, Slip Rate Variability and Earthquake Recurrence in Extensional Settings. Geophys. J. Int. 2012, 189, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Sgambato, C.; Faure Walker, J.P.; Roberts, G.P. Uncertainty in Strain-Rate from Field Measurements of the Geometry, Rates and Kinematics of Active Normal Faults: Implications for Seismic Hazard Assessment. J. Struct. Geol. 2020, 131, 103934. [Google Scholar] [CrossRef]
- Spina, V.; Tondi, E.; Mazzoli, S. Complex Basin Development in a Wrench-Dominated Back-Arc Area: Tectonic Evolution of the Crati Basin, Calabria, Italy. J. Geodyn. 2011, 51, 90–109. [Google Scholar] [CrossRef] [Green Version]
- Brozzetti, F.; Cirillo, D.; Liberi, F.; Piluso, E.; Faraca, E.; De Nardis, R.; Lavecchia, G. Structural Style of Quaternary Extension in the Crati Valley (Calabrian Arc): Evidence in Support of an East-Dipping Detachment Fault. Ital. J. Geosci. 2017, 136, 434–453. [Google Scholar] [CrossRef]
- Roda-Boluda, D.C.; Whittaker, A.C. Structural and Geomorphological Constraints on Active Normal Faulting and Landscape Evolution in Calabria, Italy. J. Geol. Soc. Lond. 2017, 174, 701–720. [Google Scholar] [CrossRef]
- Westaway, R. Quaternary Uplift of Southern Italy. J. Geophys. Res. 1993, 98, 741–772. [Google Scholar] [CrossRef]
- Gvirtzman, Z.; Nur, A. Plate Detachment, Asthenosphere Upwelling, and Topography across Subduction Zones. Geology 1999, 27, 563. [Google Scholar] [CrossRef]
- Carobene, L.; Ferrini, G. Morphological, Sedimentological and Tectonic Features of Diamante-m. Carpinoso Marine Terrace Flight (Tyrrhenian Coast of Northern Calabria, Italy). Earth Surf. Process. Landf. 1993, 18, 225–239. [Google Scholar] [CrossRef]
- Robustelli, G.; Muto, F.; Scarciglia, F.; Spina, V.; Critelli, S. Eustatic and Tectonic Control on Late Quaternary Alluvial Fans along the Tyrrhenian Sea Coast of Calabria (South Italy). Quat. Sci. Rev. 2005, 24, 2101–2119. [Google Scholar] [CrossRef]
- Ferranti, L.; Antonioli, F.; Mauz, B.; Amorosi, A.; Dai Pra, G.; Mastronuzzi, G.; Monaco, C.; Orrù, P.; Pappalardo, M.; Radtke, U.; et al. Markers of the Last Interglacial Sea-Level High Stand along the Coast of Italy: Tectonic Implications. Quat. Int. 2006, 145–146, 30–54. [Google Scholar] [CrossRef]
- Bennett, R.A.; Wernicke, B.P.; Niemi, N.A.; Friedrich, A.M.; Davis, J.L. Contemporary Strain Rates in the Northern Basin and Range Province from GPS Data. Tectonics 2003, 22. [Google Scholar] [CrossRef]
- Friedrich, A.M.; Wernicke, B.P.; Niemi, N.A.; Bennett, R.A.; Davis, J.L. Comparison of Geodetic and Geologic Data from the Wasatch Region, Utah, and Implications for the Spectral Character of Earth Deformation at Periods of 10 to 10 Million Years. J. Geophys. Res. Solid Earth 2003, 108, 2199. [Google Scholar] [CrossRef]
- McClusky, S.; Reilinger, R.; Mahmoud, S.; Ben Sari, D.; Tealeb, A. GPS Constraints on Africa (Nubia) and Arabia Plate Motions. Geophys. J. Int. 2003, 155, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Serpelloni, E.; Anzidei, M.; Baldi, P.; Casula, G.; Galvani, A. Crustal Velocity and Strain-Rate Fields in Italy and Surrounding Regions: New Results from the Analysis of Permanent and Non-Permanent GPS Networks. Geophys. J. Int. 2005, 161, 861–880. [Google Scholar] [CrossRef] [Green Version]
- Devoti, R.; Devoti, R.; D’Agostino, N.; Serpelloni, E.; Pietrantonio, G.; Riguzzi, F.; Avallone, A.; Cavaliere, A.; Cheloni, D.; Cecere, G.; et al. A Combined Velocity Field of the Mediterranean Region. Ann. Geophys. 2017, 60, S0215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Bock, Y.; Johnson, H.; Fang, P.; Williams, S.; Genrich, J.; Wdowinski, S.; Behr, J. Southern California Permanent GPS Geodetic Array: Error Analysis of Daily Position Estimates and Site Velocities. J. Geophys. Res. Solid Earth 1997, 102, 18035–18055. [Google Scholar] [CrossRef]
- Masson, C.; Mazzotti, S.; Vernant, P. Precision of Continuous GPS Velocities from Statistical Analysis of Synthetic Time Series. Solid Earth 2019, 10, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- D’Agostino, N.; D’Anastasio, E.; Gervasi, A.; Guerra, I.; Nedimović, M.R.; Seeber, L.; Steckler, M. Forearc Extension and Slow Rollback of the Calabrian Arc from GPS Measurements. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Cifelli, F.; Mattei, M.; Rossetti, F. Tectonic Evolution of Arcuate Mountain Belts on Top of a Retreating Subduction Slab: The Example of the Calabrian Arc. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the Western Mediterranean. Geol. Soc. Lond. Spec. Publ. 1989, 45, 265–283. [Google Scholar] [CrossRef]
- Gutscher, M.-A.; Kopp, H.; Krastel, S.; Bohrmann, G.; Garlan, T.; Zaragosi, S.; Klaucke, I.; Wintersteller, P.; Loubrieu, B.; Le Faou, Y.; et al. Active Tectonics of the Calabrian Subduction Revealed by New Multi-Beam Bathymetric Data and High-Resolution Seismic Profiles in the Ionian Sea (Central Mediterranean). Earth Planet. Sci. Lett. 2017, 461, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and Shortening in the Apennines as Result of Arc Migration Driven by Sinking of the Lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Rehault, J.-P.; Boillot, G.; Mauffret, A. The Western Mediterranean Basin Geological Evolution. Mar. Geol. 1984, 55, 447–477. [Google Scholar] [CrossRef]
- Selvaggi, G.; Chiarabba, C. Seismicity and P-Wave Velocity Image of the Southern Tyrrhenian Subduction Zone. Geophys. J. Int. 1995, 121, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Ghisetti, F.; Vezzani, L. Different Styles of Deformation in the Calabrian Arc (Southern Italy): Implications for a Seismotectonic Zoning. Tectonophysics 1982, 85, 149–165. [Google Scholar] [CrossRef]
- Kastens, K.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Emeis, K.C.; Glacon, G.; Hasegawa, S.; et al. ODP Leg 107 in the Tyrrhenian Sea: Insights into Passive Margin and Back-Arc Basin Evolution. Geol. Soc. Am. Bull. 1988, 100, 1140–1156. [Google Scholar] [CrossRef]
- Pepe, F.; Bertotti, G.; Cella, F.; Marsella, E. Rifted Margin Formation in the South Tyrrhenian Sea: A High-Resolution Seismic Profile across the North Sicily Passive Continental Margin. Tectonics 2000, 19, 241–257. [Google Scholar] [CrossRef]
- Pepe, F.; Sulli, A.; Agate, M.; Di Maio, D.; Kok, A.; Lo Iacono, C.; Catalano, R. Plio-Pleistocene Geological Evolution of the Northern Sicily Continental Margin (Southern Tyrrhenian Sea): New Insights from High-Resolution, Multi-Electrode Sparker Profiles. Geo-Mar. Lett. 2003, 23, 53–63. [Google Scholar] [CrossRef]
- Meschis, M.; Roberts, G.P.; Robertson, J.; Briant, R.M. The Relationships Between Regional Quaternary Uplift, Deformation Across Active Normal Faults, and Historical Seismicity in the Upper Plate of Subduction Zones: The Capo D’Orlando Fault, NE Sicily. Tectonics 2018, 37, 1231–1255. [Google Scholar] [CrossRef] [Green Version]
- Trincardi, F.; Zitellini, N. The Rifting of the Tyrrhenian Basin. Geo-Mar. Lett. 1987, 7, 1–6. [Google Scholar] [CrossRef]
- Monaco, C.; Tortorici, L. Active Faulting in the Calabrian Arc and Eastern Sicily. J. Geodyn. 2000, 29, 407–424. [Google Scholar] [CrossRef]
- Serpelloni, E.; Faccenna, C.; Spada, G.; Dong, D.; Williams, S.D.P. Vertical GPS Ground Motion Rates in the Euro-Mediterranean Region: New Evidence of Velocity Gradients at Different Spatial Scales along the Nubia-Eurasia Plate Boundary. J. Geophys. Res. Solid Earth 2013, 118, 6003–6024. [Google Scholar] [CrossRef] [Green Version]
- Mastrolembo Ventura, B.; Serpelloni, E.; Argnani, A.; Bonforte, A.; Bürgmann, R.; Anzidei, M.; Baldi, P.; Puglisi, G. Fast Geodetic Strain-Rates in Eastern Sicily (Southern Italy): New Insights into Block Tectonics and Seismic Potential in the Area of the Great 1693 Earthquake. Earth Planet. Sci. Lett. 2014, 404, 77–88. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Galli, P.; Galadini, F.; Pantosti, D. Twenty Years of Paleoseismology in Italy. Earth-Sci. Rev. 2008, 88, 89–117. [Google Scholar] [CrossRef]
- Chapman, N.; Berryman, K.; Villamor, P.; Epstein, W.; Cluff, L.; Kawamura, H. Active Faults and Nuclear Power Plants. Eos Trans. Am. Geophys. Union 2014, 95, 33–34. [Google Scholar] [CrossRef]
- Yeats, R. Active Faults of the World; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139035644. [Google Scholar]
- Gvirtzman, Z.; Nur, A. Residual Topography, Lithospheric Structure and Sunken Slabs in the Central Mediterranean. Earth Planet. Sci. Lett. 2001, 187, 117–130. [Google Scholar] [CrossRef]
- Meschis, M.; Scicchitano, G.; Roberts, G.P.; Robertson, J.; Barreca, G.; Monaco, C.; Spampinato, C.; Sahy, D.; Antonioli, F.; Mildon, Z.K.; et al. Regional Deformation and Offshore Crustal Local Faulting as Combined Processes to Explain Uplift through Time Constrained by Investigating Differentially-uplifted Late Quaternary Palaeoshorelines: The Foreland Hyblean Plateau, SE Sicily. Tectonics 2020. [Google Scholar] [CrossRef]
- Balescu, S.; Dumas, B.; Guérémy, P.; Lamothe, M.; Lhénaff, R.; Raffy, J. Thermoluminescence Dating Tests of Pleistocene Sediments from Uplifted Marine Shorelines along the Southwest Coastline of the Calabrian Peninsula (Southern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 130, 25–41. [Google Scholar] [CrossRef]
- Bonardi, G.; Cavazza, W.; Perrone, V.; Rossi, S. Calabria-Peloritani Terrane and Northern Ionian Sea. In Anatomy of an Orogen: The apennines and adjacent mediterranean basins; Springer: Berlin/Heidelberg, Germany, 2001; pp. 287–306. [Google Scholar]
- Doglioni, C.; Innocenti, F.; Mariotti, G. Why Mt Etna ? Terra Nov. 2001, 13, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Dumas, B.; Gueremy, P.; Hearty, P.J.; Lhenaff, R.; Raffy, J. Morphometric Analysis and Amino Acid Geochronology of Uplifted Shorelines in a Tectonic Region near Reggio Calambria, South Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1988, 68, 273–289. [Google Scholar] [CrossRef]
- Dumas, B.; Gueremy, P.; Lhenaff, R.; Raffy, J. Rapid Uplift, Stepped Marine Terraces and Raised Shorelines on the Calabrian Coast of Messina Strait, Italy. Earth Surf. Process. Landf. 1993, 18, 241–256. [Google Scholar] [CrossRef]
- Dumas, B.; Guérémy, P.; Raffy, J. Evidence for Sea-Level Oscillations by the “Characteristic Thickness” of Marine Deposits from Raised Terraces of Southern Calabria (Italy). Quat. Sci. Rev. 2005, 24, 2120–2136. [Google Scholar] [CrossRef]
- Ferranti, L.; Monaco, C.; Antonioli, F.; Maschio, L.; Kershaw, S.; Verrubbi, V. The Contribution of Regional Uplift and Coseismic Slip to the Vertical Crustal Motion in the Messina Straits, Southern Italy: Evidence from Raised Late Holocene Shorelines. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Miyauchi, T.; Dai Pra, G.; Sylos Labini, S. Geochronology of Pleistocene Marine Terraces and Regional Tectonics in the Tyrrhenian Coast of South Calabria, Italy. Quaternario 1994, 7, 17–34. [Google Scholar]
- Jacques, E.; Monaco, C.; Tapponnier, P.; Tortorici, L.; Winter, T. Faulting and Earthquake Triggering during the 1783 Calabria Seismic Sequence. Geophys. J. Int. 2001, 147, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Ferranti, L.; Monaco, C.; Morelli, D.; Antonioli, F.; Maschio, L. Holocene Activity of the Scilla Fault, Southern Calabria: Insights from Coastal Morphological and Structural Investigations. Tectonophysics 2008, 453, 74–93. [Google Scholar] [CrossRef]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-Resolution DEM for the Italian Territory: Comparison with Global-Coverage DEMs and Anaglyph-Mode Exploration via the Web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef] [Green Version]
- Armijo, R.; Meyer, B.; King, G.C.P.; Rigo, A.; Papanastassiou, D. Quaternary Evolution of the Corinth Rift and Its Implications for the Late Cenozoic Evolution of the Aegean. Geophys. J. Int. 1996, 126, 11–53. [Google Scholar] [CrossRef] [Green Version]
- Pedoja, K.; Jara-Muñoz, J.; De Gelder, G.; Robertson, J.; Meschis, M.; Fernandez-Blanco, D.; Nexer, M.; Poprawski, Y.; Dugué, O.; Delcaillau, B.; et al. Neogene-Quaternary Slow Coastal Uplift of Western Europe through the Perspective of Sequences of Strandlines from the Cotentin Peninsula (Normandy, France). Geomorphology 2018, 303, 338–356. [Google Scholar] [CrossRef]
- Robertson, J.; Roberts, G.P.; Iezzi, F.; Meschis, M.; Gheorghiu, D.M.; Sahy, D.; Bristow, C.; Sgambato, C. Distributed Normal Faulting in the Tip Zone of the South Alkyonides Fault System, Gulf of Corinth, Constrained Using 36Cl Exposure Dating of Late-Quaternary Wave-Cut Platforms. J. Struct. Geol. 2020, 136, 104063. [Google Scholar] [CrossRef] [Green Version]
- De Santis, V.; Scardino, G.; Meschis, M.; Ortiz, J.E.; Sánchez-Palencia, Y.; Caldara, M. Refining the Middle-Late Pleistocene Chronology of Marine Terraces and Uplift History in a Sector of the Apulian Foreland (Southern Italy) by Applying a Synchronous Correlation Technique and Amino Acid Racemization to Patella Spp. and Thetystrombus Latus. Ital. J. Geosci. 2021, 140. [Google Scholar] [CrossRef]
- Papanikolaou, I.D.; Roberts, G.P. Geometry, Kinematics and Deformation Rates along the Active Normal Fault System in the Southern Apennines: Implications for Fault Growth. J. Struct. Geol. 2007, 29, 166–188. [Google Scholar] [CrossRef]
- Carobene, L.; Dai Pra, G. Middle and Upper Pleistocene Sea Level Highstands along the Tyrrhenian Coast of Basilicata (Southern Italy). Quaternario 1991, 4, 173–202. [Google Scholar]
- Cerrone, C.; Ascione, A.; Robustelli, G.; Tuccimei, P.; Soligo, M.; Balassone, G.; Mormone, A. Late Quaternary Uplift and Sea Level Fluctuations along the Tyrrhenian Margin of Basilicata - Northern Calabria (Southern Italy): New Constraints from Raised Paleoshorelines. Geomorphology 2021, 395, 107978. [Google Scholar] [CrossRef]
- Bianca, M.; Monaco, C.; Tortorici, L.; Cernobori, L. Quaternary Normal Faulting in Southeastern Sicily (Italy): A Seismic Source for the 1693 Large Earthquake. Geophys. J. Int. 1999, 139, 370–394. [Google Scholar] [CrossRef] [Green Version]
- Catalano, S.; De Guidi, G.; Monaco, C.; Tortorici, G.; Tortorici, L. Long-Term Behaviour of the Late Quaternary Normal Faults in the Straits of Messina Area (Calabrian Arc): Structural and Morphological Constraints. Quat. Int. 2003, 101–102, 81–91. [Google Scholar] [CrossRef]
- Bianca, M.; Catalano, S.; De Guidi, G.; Gueli, A.; Monaco, C.; Ristuccia, G.M.; Stella, G.; Tortorici, G.; Tortorici, L.; Troja, S.O. Luminescence Chronology of Pleistocene Marine Terraces of Capo Vaticano Peninsula (Calabria, Southern Italy). Quat. Int. 2011, 232, 114–121. [Google Scholar] [CrossRef]
- Giunta, G.; Gueli, A.M.; Monaco, C.; Orioli, S.; Ristuccia, G.M.; Stella, G.; Troja, S.O. Middle-Late Pleistocene Marine Terraces and Fault Activity in the Sant’Agata Di Militello Coastal Area (North-Eastern Sicily). J. Geodyn. 2012, 55, 32–40. [Google Scholar] [CrossRef]
- Gallen, S.F.; Wegmann, K.W.; Bohnenstiehl, D.R.; Pazzaglia, F.J.; Brandon, M.T.; Fassoulas, C. Active Simultaneous Uplift and Margin-Normal Extension in a Forearc High, Crete, Greece. Earth Planet. Sci. Lett. 2014, 398, 11–24. [Google Scholar] [CrossRef]
- Tortorici, G.; Bianca, M.; De Guidi, G.; Monaco, C.; Tortorici, L. Fault Activity and Marine Terracing in the Capo Vaticano Area (Southern Calabria) during the Middle-Late Quaternary. Quat. Int. 2003, 101–102, 269–278. [Google Scholar] [CrossRef]
- Houghton, S.L.; Roberts, G.P.; Papanikolaοu, I.D.; McArthur, J.M. New 234U- 230Th Coral Dates from the Western Gulf of Corinth: Implications for Extensional Tectonics. Geophys. Res. Lett. 2003, 30, 2013. [Google Scholar] [CrossRef] [Green Version]
- Meschis, M.; Roberts, G.P.; Robertson, J.; Mildon, Z.K.; Sahy, D.; Goswami, R.; Sgambato, C.; Faure Walker, J.; Michetti, A.M.; Iezzi, F. Out of Phase Uplift-Rate Changes During the Quaternary Reveal Normal Fault Interaction, Implied by Deformed Marine Palaeoshorelines, in Southern Italy. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Siddall, M.; Rohling, E.J.; Almogi-Labin, A.; Hemleben, C.; Meischner, D.; Schmelzer, I.; Smeed, D.A. Sea-Level Fluctuations during the Last Glacial Cycle. Nature 2003, 423, 853–858. [Google Scholar] [CrossRef]
- Rohling, E.J.; Foster, G.L.; Grant, K.M.; Marino, G.; Roberts, A.P.; Tamisiea, M.E.; Williams, F. Sea-Level and Deep-Sea-Temperature Variability over the Past 5.3 Million Years. Nature 2014, 508, 477–482. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, 485. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Klein, E.C. A Geodetic Plate Motion and Global Strain Rate Model. Geochem. Geophys. Geosystems 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
- Teza, G.; Pesci, A.; Galgaro, A. Grid_strain and Grid_strain3: Software Packages for Strain Field Computation in 2D and 3D Environments. Comput. Geosci. 2008, 34, 1142–1153. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3. Graphic-Rich Deformation & Stress-Change Software for Earthquake, Tectonic and Volcano Research and Teaching - User Guide. USGS Open-File Rep. 2011, 1060, 63. [Google Scholar]
- Mildon, Z.K.; Toda, S.; Faure Walker, J.P.; Roberts, G.P. Evaluating Models of Coulomb Stress Transfer: Is Variable Fault Geometry Important? Geophys. Res. Lett. 2016, 43, 12–407. [Google Scholar] [CrossRef]
- Meschis, M.; Roberts, G.P.; Mildon, Z.K.; Robertson, J.; Michetti, A.M.; Faure Walker, J.P. Slip on a Mapped Normal Fault for the 28th December 1908 Messina Earthquake (Mw 7.1) in Italy. Sci. Rep. 2019, 9, 6481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Stein, R.S. Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and Nearby Thrust and Strike-Slip Faults. J. Geophys. Res. Solid Earth 2004, 109, 1–19. [Google Scholar] [CrossRef]
- Iezzi, F.; Mildon, Z.; Walker, J.F.; Roberts, G.; Goodall, H.; Wilkinson, M.; Robertson, J. Coseismic Throw Variation Across Along-Strike Bends on Active Normal Faults: Implications for Displacement Versus Length Scaling of Earthquake Ruptures. J. Geophys. Res. Solid Earth 2018, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Faccenna, C.; Molin, P.; Orecchio, B.; Olivetti, V.; Bellier, O.; Funiciello, F.; Minelli, L.; Piromallo, C.; Billi, A. Topography of the Calabria Subduction Zone (Southern Italy): Clues for the Origin of Mt. Etna. Tectonics 2011, 30, 1–20. [Google Scholar] [CrossRef]
- Pedoja, K.; Husson, L.; Johnson, M.E.; Melnick, D.; Witt, C.; Pochat, S.; Nexer, M.; Delcaillau, B.; Pinegina, T.; Poprawski, Y.; et al. Coastal Staircase Sequences Reflecting Sea-Level Oscillations and Tectonic Uplift during the Quaternary and Neogene. Earth Sci. Rev. 2014, 132, 13–38. [Google Scholar] [CrossRef]
- Meschis, M.; Roberts, G.P.; Robertson, J.; Mildon, Z.K.; Sahy, D.; Goswami, R.; Sgambato, C.; Walker, J.F.; Michetti, A.M.; Iezzi, F. Out of Phase Quaternary Uplift-Rate Changes Reveal Normal Fault Interaction, Implied by Deformed Marine Palaeoshorelines. Geomorphology 2022, 416, 108432. [Google Scholar] [CrossRef]
- Antonioli, F.; Ferranti, L.; Lambeck, K.; Kershaw, S.; Verrubbi, V.; Dai Pra, G. Late Pleistocene to Holocene Record of Changing Uplift Rates in Southern Calabria and Northeastern Sicily (Southern Italy, Central Mediterranean Sea). Tectonophysics 2006, 422, 23–40. [Google Scholar] [CrossRef]
- Colella, A.; De Boer, P.L.; Nio, S.D. Sedimentology of a Marine Intermontane Pleistocene Gilbert-Type Fan-Delta Complex in the Crati Basin, Calabria, Southern Italy. Sedimentology 1987, 34, 721–736. [Google Scholar] [CrossRef]
- Roberts, G.P.; Michetti, A.M.; Cowie, P.; Morewood, N.C.; Papanikolaou, I. Fault Slip-Rate Variations during Crustal-Scale Strain Localisation, Central Italy. Geophys. Res. Lett. 2002, 29, 9-1-9-4. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.P.; Michetti, A.M. Spatial and Temporal Variations in Growth Rates along Active Normal Fault Systems: An Example from The Lazio–Abruzzo Apennines, Central Italy. J. Struct. Geol. 2004, 26, 339–376. [Google Scholar] [CrossRef]
- Galli, P.; Bosi, V. Catastrophic 1638 Earthquakes in Calabria (Southern Italy): New Insights from Paleoseismological Investigation. J. Geophys. Res. Solid Earth 2003, 108, ETG 1-1-ETG 1-20. [Google Scholar] [CrossRef] [Green Version]
- Ferranti, L.; Palano, M.; Cannavò, F.; Mazzella, M.E.; Oldow, J.S.; Gueguen, E.; Mattia, M.; Monaco, C. Rates of Geodetic Deformation across Active Faults in Southern Italy. Tectonophysics 2014, 621, 101–122. [Google Scholar] [CrossRef]
- Quye-sawyer, J.; Whittaker, A.C.; Roberts, G.; Rood, D. Fault Throw and Regional Uplift Histories From Drainage Analysis: Evolution of Southern Italy. Tectonics 2021, 40, e2020TC006076. [Google Scholar] [CrossRef]
- Galli, P.; Bosi, V. Paleoseismology along the Cittanova Fault: Implications for Seismotectonics and Earthquake Recurrence in Calabria (Southern Italy). J. Geophys. Res. 2002, 107, 2044. [Google Scholar] [CrossRef]
- Faure Walker, J.P.; Roberts, G.P.; Sammonds, P.R.; Cowie, P. Comparison of Earthquake Strains over 102 and 104 Year Timescales: Insights into Variability in the Seismic Cycle in the Central Apennines, Italy. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Tansi, C.; Tallarico, A.; Iovine, G.; Folino Gallo, M.; Falcone, G. Interpretation of Radon Anomalies in Seismotectonic and Tectonic-Gravitational Settings: The South-Eastern Crati Graben (Northern Calabria, Italy). Tectonophysics 2005, 396, 181–193. [Google Scholar] [CrossRef]
- Spina, V.; Galli, P.; Tondi, E.; Critelli, S.; Cello, G. Kinematics and Structural Properties of an Active Fault Zone in the Sila Massif (Northern Calabria, Italy). Boll. Soc. Geol. Ital. 2007, 126, 427–438. [Google Scholar]
- Maesano, F.E.; Tiberti, M.M.; Basili, R. The Calabrian Arc: Three-Dimensional Modelling of the Subduction Interface. Sci. Rep. 2017, 7, 8887. [Google Scholar] [CrossRef] [Green Version]
- Carafa, M.M.C.; Kastelic, V.; Bird, P.; Maesano, F.E.; Valensise, G. A “Geodetic Gap” in the Calabrian Arc: Evidence for a Locked Subduction Megathrust? Geophys. Res. Lett. 2018, 45, 1794–1804. [Google Scholar] [CrossRef]
- Sgroi, T.; Polonia, A.; Barberi, G.; Billi, A.; Gasperini, L. New Seismological Data from the Calabrian Arc Reveal Arc-Orthogonal Extension across the Subduction Zone. Sci. Rep. 2021, 11, 473. [Google Scholar] [CrossRef] [PubMed]
- Gvirtzman, Z.; Nur, A. The Formation of Mount Etna as the Consequence of Slab Rollback. Nature 1999, 401, 782–785. [Google Scholar] [CrossRef]
- Mouslopoulou, V.; Oncken, O.; Hainzl, S.; Nicol, A. Uplift Rate Transients at Subduction Margins Due to Earthquake Clustering. Tectonics 2016, 35, 2370–2384. [Google Scholar] [CrossRef] [Green Version]
- Nicol, A.; Beavan, J. Shortening of an Overriding Plate and Its Implications for Slip on a Subduction Thrust, Central Hikurangi Margin, New Zealand. Tectonics 2003, 22. [Google Scholar] [CrossRef]
- Goes, S.; Giardini, D.; Jenny, S.; Hollenstein, C.; Kahle, H.-G.; Geiger, A. A Recent Tectonic Reorganization in the South-Central Mediterranean. Earth Planet. Sci. Lett. 2004, 226, 335–345. [Google Scholar] [CrossRef]
- Wortel, M.J.; Spakman, W. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science 2000, 290, 1910–1917. [Google Scholar] [CrossRef]
- Serpelloni, E.; Cavaliere, A.; Martelli, L.; Pintori, F.; Anderlini, L.; Borghi, A.; Randazzo, D.; Bruni, S.; Devoti, R.; Perfetti, P.; et al. Surface Velocities and Strain-Rates in the Euro-Mediterranean Region From Massive GPS Data Processing. Front. Earth Sci. 2022, 10, 1–21. [Google Scholar] [CrossRef]
- Mildon, Z.K.; Roberts, G.; Walker, J.F.; Beck, J.; Papanikolaou, I.; Michetti, A.; Toda, S.; Iezzi, F.; Campbell, L.; McCaffrey, K. Earthquake Clustering Controlled by Shear Zone Interaction. Earth Sci. Phys. Sci. Math. Tecton. Struct. 2019. [Google Scholar] [CrossRef] [Green Version]
- Michetti, A.M.; Ferreli, L.; Serva, L.; Vittori, E. Geological Evidence for Strong Historical Earthquakes in an “Aseismic” Region: The Pollino Case (Southern Italy). J. Geodyn. 1997, 24, 67–86. [Google Scholar] [CrossRef]
- Catalano, S.; De Guidi, G. Late Quaternary Uplift of Northeastern Sicily: Relation with the Active Normal Faulting Deformation. J. Geodyn. 2003, 36, 445–467. [Google Scholar] [CrossRef]
- Cheloni, D.; D’Agostino, N.; D’Anastasio, E.; Avallone, A.; Mantenuto, S.; Giuliani, R.; Mattone, M.; Calcaterra, S.; Gambino, P.; Dominici, D.; et al. Coseismic and Initial Post-Seismic Slip of the 2009 Mw 6.3 L’Aquila Earthquake, Italy, from GPS Measurements. Geophys. J. Int. 2010, 181, 1539–1546. [Google Scholar] [CrossRef] [Green Version]
- Serpelloni, E.; Anderlini, L.; Belardinelli, M.E. Fault Geometry, Coseismic-Slip Distribution and Coulomb Stress Change Associated with the 2009 April 6, Mw 6.3, L’Aquila Earthquake from Inversion of GPS Displacements. Geophys. J. Int. 2012, 188, 473–489. [Google Scholar] [CrossRef] [Green Version]
- Lavecchia, G.; Castaldo, R.; de Nardis, R.; De Novellis, V.; Ferrarini, F.; Pepe, S.; Brozzetti, F.; Solaro, G.; Cirillo, D.; Bonano, M.; et al. Ground Deformation and Source Geometry of the 24 August 2016 Amatrice Earthquake (Central Italy) Investigated through Analytical and Numerical Modeling of DInSAR Measurements and Structural-Geological Data. Geophys. Res. Lett. 2016, 43, 12–389. [Google Scholar] [CrossRef]
- Papanikolaou, I.D.; Foumelis, M.; Parcharidis, I.; Lekkas, E.L.; Fountoulis, I.G. Deformation Pattern of the 6 and 7 April 2009, MW=6.3 and MW=5.6 Earthquakes in L’Aquila (Central Italy) Revealed by Ground and Space Based Observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 73–87. [Google Scholar] [CrossRef]
- Stein, R.S.; Barrientos, S.E. Planar High-Angle Faulting in the Basin and Range: Geodetic Analysis of the 1983 Borah Peak, Idaho, Earthquake. J. Geophys. Res. 1985, 90, 11355. [Google Scholar] [CrossRef] [Green Version]
- Cowie, P.A.; Scholz, C.H.; Roberts, G.P.; Faure Walker, J.P.; Steer, P. Viscous Roots of Active Seismogenic Faults Revealed by Geologic Slip Rate Variations. Nat. Geosci. 2013, 3, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, W. Nonlinear Strain Buildup and the Earthquake Cycle on the San Andreas Fault. J. Geophys. Res. Solid Earth 1983, 88, 5893–5902. [Google Scholar] [CrossRef] [Green Version]
- Sibson, R.H. Fault Rocks and Fault Mechanisms. J. Geol. Soc. London. 1977, 133, 191–213. [Google Scholar] [CrossRef]
- Cambiotti, G.; Palano, M.; Orecchio, B.; Marotta, A.M.; Barzaghi, R.; Neri, G.; Sabadini, R. New Insights into Long-Term Aseismic Deformation and Regional Strain Rates from GNSS Data Inversion: The Case of the Pollino and Castrovillari Faults. Remote Sens. 2020, 12, 2921. [Google Scholar] [CrossRef]
GNSS Station | Time Series | UTM33N Coordinates (m) | Velocity (EU Plate) (mm/yr) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | Name | Nearby town | L a (y) | U b | East | North | Up | VE | σE | VN | σN | VZ | σZ |
1 | GRI1 | Grisolia | 6.4 | Y | 573088 | 4399248 | 553 | 0.72 | 0.11 | 3.80 | 0.14 | 0.2 | 0.4 |
2 | DIMT | Diamante | 2.5 | N c | 570497 | 4392120 | 79 | - | - | - | - | - | - |
3 | DIA1 | Diamante | 1.8 | N c | 569428 | 4396439 | 88 | - | - | - | - | - | - |
4 | AQSA | Acquaformosa | 9.6 | Y | 592906 | 4397353 | 882 | 0.62 | 0.05 | 4.43 | 0.08 | 0.09 | 0.20 |
5 | SLDV | San Lorenzo V. | 6.4 | Y | 609955 | 4392139 | 309 | 1.31 | 0.07 | 3.96 | 0.12 | 0.9 | 0.4 |
6 | CORC | Corigliano C. | 3.0 | N c | 633640 | 4386851 | 85 | - | - | - | - | - | - |
7 | ROS4 | Rossano | 4.7 | Y | 640893 | 4384649 | 96 | 1.69 | 0.23 | 4.92 | 0.16 | −0.3 | 0.5 |
8 | CETR | Cetraro | 9.7 | Y | 582077 | 4375918 | 674 | 0.74 | 0.08 | 3.72 | 0.06 | −0.38 | 0.19 |
9 | LATT | Lattarico | 1.2 | N c | 597897 | 4368776 | 445 | - | - | - | - | - | - |
10 | REGI | Regina | 4.1 | N c | 599804 | 4367691 | 388 | - | - | - | - | ||
11 | TVRN | Taverna | 4.6 | Y | 605516 | 4365324 | 197 | 1.37 | 0.16 | 4.14 | 0.12 | −2.3 | 0.4 |
12 | ARC1 | Quattromiglia | 9.6 | Y | 605613 | 4358221 | 280 | 1.11 | 0.10 | 4.23 | 0.11 | −1.6 | 0.4 |
13 | REND | Rende | 4.4 | N c | 602285 | 4355735 | 364 | - | - | - | - | - | - |
14 | CAR8 | Carolei | 12.5 | Y | 604490 | 4345552 | 679 | 1.25 | 0.03 | 4.06 | 0.07 | −0.02 | 0.13 |
15 | LUZZ | Luzzi | 11.3 | Y | 610828 | 4367063 | 437 | 1.32 | 0.10 | 4.11 | 0.11 | 0.1 | 0.3 |
16 | BISI | Bisignano | 3.1 | N c | 610636 | 4374498 | 429 | - | - | - | - | - | - |
17 | PIPA | Pietrapaola | 14.6 | Y | 656177 | 4372174 | 479 | 2.00 | 0.06 | 4.11 | 0.07 | 0.67 | 0.13 |
18 | CELI | Celico | 10.1 | Y | 629925 | 4362586 | 1277 | 1.74 | 0.06 | 3.97 | 0.06 | 0.09 | 0.18 |
19 | CAMO | Camigliatello | 8.0 | Y | 624871 | 4355509 | 1313 | 1.59 | 0.08 | 3.92 | 0.09 | −0.8 | 0.4 |
20 | COSE | Cosenza | 3.9 | N c | 613116 | 4339900 | 663 | - | - | - | - | - | - |
21 | CRLM | San Giovanni F. | 5.3 | Y | 633435 | 4348768 | 1610 | 1.12 | 0.16 | 3.90 | 0.17 | 0.5 | 0.4 |
22 | SAN3 | San Giovanni F. | 1.0 | N c | 645715 | 4347322 | 1178 | - | - | - | - | - | - |
23 | SGIF | San Giovanni F. | 3.0 | N c | 646751 | 4347342 | 1087 | - | - | - | - | - | - |
24 | CCRI | Caccuri | 5.3 | Y | 653302 | 4343359 | 710 | 2.29 | 0.16 | 4.03 | 0.16 | 0.2 | 0.4 |
25 | MEL2 | Melissa | 3.5 | N c | 674763 | 4353026 | 157 | - | - | - | - | - | - |
26 | CIRO | Ciro Marina | 2.9 | N c | 683641 | 4360671 | 52 | - | - | - | - | - | - |
27 | STSV | Santa Severina | 5.3 | Y | 665484 | 4334947 | 377 | 2.75 | 0.13 | 3.76 | 0.16 | 0.5 | 0.5 |
28 | AMA1 | Amantea | 4.7 | Y | 593103 | 4330645 | 59 | 0.95 | 0.09 | 4.27 | 0.14 | −0.1 | 0.5 |
29 | SERS | Sersale | 16.2 | Y | 646184 | 4322129 | 1215 | 1.95 | 0.05 | 3.70 | 0.05 | 0.55 | 0.11 |
30 | CUTR | Cutro | 8.8 | Y | 671901 | 4322204 | 269 | 2.66 | 0.10 | 1.84 | 0.16 | 1.4 | 1.0 |
31 | CROT | Crotone | 0.7 | N c | 682886 | 4326561 | 78 | - | - | - | - | - | - |
32 | KROT | Crotone | 9.0 | N d | 683809 | 4327804 | 62 | 6.57 | 0.09 | 3.90 | 0.12 | −2.0 | 0.2 |
Profile Number (Sea-Level Highstand Referred to Figure 2, Figure S1–10) | UTM 33N Coordinate (Easting) | UTM 33N Coordinate (Northing) | DEMs Elevations (m) | Predicted Elevations (m) | Our Proposed Age (ka) |
---|---|---|---|---|---|
1 (3) | 594,577 | 4,326,672 | 52 | 55 | 125 |
1 (7) | 594,735 | 4,326,814 | 95 | 91 | 240 |
1 (11) | 594,882 | 4,326,948 | 158 | 159 | 410 |
1 (12) | 595,085 | 4,327,075 | 197 | 191 | 478 |
1 (13) | 595,143 | 4,327,196 | 225 | 230 | 525 |
1 (16) | 595,182 | 4,327,281 | 253 | 256 | 590 |
1 (19) | 595,236 | 4,327,598 | 300 | 301 | 740 |
2 (3) | 593,615 | 4,329,939 | 60 | 60 | 125 |
2 (7) | 593,817 | 4,329,954 | 102 | 101 | 240 |
2 (10) | 593,945 | 4,329,965 | 152 | 155 | 340 |
2 (12) | 594,190 | 4,329,907 | 202 | 210 | 478 |
2 (13) | 594,447 | 4,329,735 | 259 | 251 | 525 |
2 (18) | 594,771 | 4,329,687 | 310 | 316 | 695 |
2 (19) | 594,981 | 4,329,601 | 343 | 331 | 740 |
2 (20) | 595,181 | 4,329,519 | 367 | 372 | 800 |
3 (3) | 593,516 | 4,331,156 | 67 | 61 | 125 |
3 (5) | 593,572 | 4,331,165 | 76 | 85 | 200 |
3 (7) | 593,639 | 4,331,176 | 103 | 103 | 240 |
3 (10) | 593,727 | 4,331,215 | 154 | 158 | 340 |
3 (13) | 593,982 | 4,331,238 | 255 | 256 | 525 |
3 (16) | 594,071 | 4,331,229 | 288 | 286 | 590 |
3 (17) | 594,265 | 4,331,201 | 305 | 299 | 620 |
3 (20) | 594,603 | 4,331,131 | 383 | 380 | 800 |
3 (21) | 594,700 | 4,331,137 | 399 | 405 | 855 |
4 (3) | 593,293 | 4,332,364 | 63 | 65 | 125 |
4 (7) | 593,539 | 4,332,240 | 109 | 110 | 240 |
4 (10) | 594,151 | 4,332,030 | 165 | 168 | 340 |
4 (11) | 594,300 | 4,332,070 | 200 | 192 | 410 |
4 (12) | 594,445 | 4,332,127 | 227 | 229 | 478 |
4 (16) | 594,686 | 4,332,204 | 296 | 303 | 590 |
4 (19) | 594,929 | 4,332,296 | 360 | 360 | 740 |
5 (3) | 592,302 | 4,333,971 | 71 | 71 | 125 |
5 (7) | 592,363 | 4,333,940 | 118 | 122 | 240 |
5 (9) | 592,439 | 4,333,898 | 139 | 142 | 310 |
5 (10) | 592,708 | 4,333,730 | 182 | 185 | 340 |
5 (12) | 592,863 | 4,333,758 | 251 | 253 | 478 |
5 (13) | 592,989 | 4,333,783 | 297 | 298 | 525 |
5 (16) | 593,250 | 4,333,869 | 325 | 333 | 590 |
5 (17) | 593,449 | 4,333,953 | 352 | 349 | 620 |
5 (18) | 593,572 | 4,334,011 | 374 | 378 | 695 |
6 (3) | 592,317 | 4,336,706 | 74 | 75 | 125 |
6 (7) | 592,452 | 4,336,784 | 130 | 129 | 240 |
6 (9) | 592,489 | 4,336,817 | 152 | 152 | 310 |
6 (10) | 592,584 | 4,336,878 | 199 | 195 | 340 |
6 (12) | 592,792 | 4,336,883 | 276 | 268 | 478 |
6 (17) | 593,197 | 4,336,855 | 373 | 367 | 620 |
6 (21) | 593,662 | 4,336,811 | 496 | 499 | 855 |
6 (22) | 594,081 | 4,336,843 | 570 | 574 | 980 |
7 (3) | 592,273 | 4,338,099 | 80 | 85 | 125 |
7 (7) | 592,533 | 4,337,959 | 151 | 149 | 240 |
7 (9) | 592,617 | 4,337,983 | 173 | 176 | 310 |
7 (10) | 592,829 | 4,338,233 | 222 | 223 | 340 |
7 (11) | 592,961 | 4,338,295 | 250 | 257 | 410 |
7 (18) | 593,762 | 4,338,410 | 452 | 455 | 695 |
7 (22) | 594,576 | 4,338,738 | 676 | 652 | 980 |
8 (3a) | 592,094 | 4,340,246 | 70 | 71 | 119 |
8 (7) | 592,286 | 4,340,264 | 142 | 149 | 240 |
8 (9) | 592,419 | 592,419 | 172 | 176 | 310 |
8 (10) | 592,630 | 4,340,312 | 222 | 223 | 340 |
8 (13) | 593,024 | 4,340,539 | 350 | 356 | 525 |
8 (19) | 593,451 | 4,340,643 | 500 | 479 | 740 |
8 (21) | 593,668 | 4,340,708 | 560 | 567 | 855 |
8 (22) | 594,133 | 4,340,657 | 659 | 652 | 980 |
9 (3a) | 591,947 | 4,345,746 | 69 | 76 | 119 |
9 (3) | 592,186 | 4,345,688 | 89 | 90 | 125 |
9 (7) | 592,521 | 4,345,721 | 152 | 158 | 240 |
9 (9) | 592,673 | 4,345,653 | 198 | 189 | 310 |
9 (11) | 592,859 | 4,345,548 | 273 | 274 | 410 |
9 (12) | 592,988 | 4,345,472 | 326 | 325 | 478 |
9 (14) | 593,223 | 4,345,444 | 392 | 384 | 550 |
9 (17) | 593,271 | 4,345,348 | 441 | 442 | 620 |
9 (18) | 593,673 | 4,345,181 | 488 | 483 | 695 |
9 (20) | 594,214 | 4,345,271 | 554 | 564 | 800 |
10 (2) | 591,186 | 4,349,900 | 54 | 55 | 100 |
10 (3) | 591,463 | 4,349,932 | 107 | 105 | 125 |
10 (5) | 591,496 | 4,350,360 | 155 | 155 | 200 |
10 (7) | 591,802 | 4,350,462 | 193 | 187 | 240 |
10 (10) | 592,191 | 4,350,125 | 275 | 277 | 340 |
10 (11) | 592,420 | 4,350,009 | 327 | 323 | 410 |
10 (12) | 592928 | 4,350,068 | 380 | 382 | 478 |
10 (13) | 593,448 | 4,350,063 | 438 | 440 | 525 |
10 (16) | 593,914 | 4,349,906 | 495 | 492 | 590 |
10 (17) | 594,075 | 4,349,832 | 530 | 516 | 620 |
10 (21) | 594,834 | 4,349,974 | 715 | 704 | 855 |
11 (3) | 590,748 | 4,353,620 | 105 | 108 | 125 |
11 (5) | 591,116 | 4,353,604 | 164 | 159 | 200 |
11 (7) | 591,307 | 4,353,447 | 193 | 192 | 240 |
11 (10) | 591,562 | 4,353,463 | 282 | 282 | 340 |
11 (13) | 591,888 | 4,353,856 | 445 | 451 | 525 |
11 (18) | 592,297 | 4,354,227 | 575 | 580 | 695 |
11 (21) | 592,801 | 4,354,534 | 724 | 721 | 855 |
11 (22) | 593,148 | 4,354,702 | 829 | 829 | 980 |
12 (3) | 589,780 | 4,357,753 | 111 | 114 | 125 |
12 (7) | 590,100 | 4,357,968 | 204 | 204 | 240 |
12 (10) | 590,263 | 4,358,080 | 304 | 301 | 340 |
12 (12) | 590,853 | 4,358,420 | 425 | 416 | 478 |
12 (13) | 590,954 | 4,358,466 | 455 | 477 | 525 |
12 (17) | 591,183 | 4,358,598 | 554 | 559 | 620 |
12 (18) | 591,352 | 4,358,517 | 620 | 615 | 695 |
12 (20) | 591,717 | 4,358,500 | 718 | 716 | 800 |
12 (22) | 592,090 | 4,358,504 | 791 | 764 | 980 |
13 (3a) | 588,572 | 4,360,157 | 82 | 88 | 119 |
13 (3) | 588,760 | 4,360,207 | 105 | 103 | 125 |
13 (5) | 588,993 | 4,360,370 | 143 | 151 | 200 |
13 (7) | 589,152 | 4,360,359 | 179 | 182 | 240 |
13 (10) | 589,293 | 4,360,576 | 262 | 270 | 340 |
13 (11) | 589,581 | 4,360,361 | 313 | 315 | 410 |
13 (12) | 589,878 | 4,360,252 | 368 | 373 | 478 |
13 (13) | 590,251 | 4,360,329 | 430 | 430 | 525 |
14 (3a) | 587,763 | 4,362,534 | 83 | 84 | 119 |
14 (3) | 587,859 | 4,362,554 | 100 | 99 | 125 |
14 (7) | 588,166 | 4,362,794 | 165 | 175 | 240 |
14 (10) | 588,335 | 4,363,026 | 265 | 260 | 340 |
14 (12) | 589,246 | 4,363,683 | 365 | 359 | 478 |
14 (17) | 589,538 | 4,363,728 | 489 | 485 | 620 |
14 (18) | 589,821 | 4,363,867 | 535 | 531 | 695 |
14 (19) | 590,165 | 4,364,055 | 570 | 560 | 740 |
14 (20) | 590,381 | 4,364,175 | 630 | 620 | 800 |
14 (22) | 591,149 | 4,364,526 | 770 | 760 | 980 |
15 (3) | 586,354 | 4,366,727 | 88 | 91 | 125 |
15 (5) | 586,425 | 4,366,856 | 127 | 133 | 200 |
15 (7) | 586,510 | 4,367,020 | 166 | 161 | 240 |
15 (10) | 586,796 | 4,367,527 | 237 | 240 | 340 |
15 (11) | 586,947 | 4,367,589 | 284 | 278 | 410 |
15 (12) | 587,177 | 4,367,781 | 327 | 330 | 478 |
15 (13) | 587,531 | 4,368,309 | 385 | 382 | 525 |
15 (17) | 587,735 | 4,368,448 | 455 | 448 | 620 |
15 (20) | 587,945 | 4,368,854 | 565 | 572 | 800 |
15 (21) | 588,070 | 4,368,963 | 605 | 610 | 855 |
16 (3) | 584,796 | 4,368,769 | 92 | 88 | 125 |
16 (7) | 584,884 | 4,368,840 | 151 | 153 | 240 |
16 (10) | 585,129 | 4,369,074 | 238 | 229 | 340 |
16 (12) | 585,276 | 4,369,194 | 306 | 315 | 478 |
16 (13) | 585,597 | 4,369,189 | 375 | 367 | 525 |
16 (19) | 586,844 | 4,370,578 | 500 | 493 | 740 |
17 (3) | 582,033 | 4,372,206 | 80 | 83 | 125 |
17 (7) | 582,224 | 4,372,186 | 148 | 144 | 240 |
17 (11) | 582,468 | 4,372,026 | 255 | 249 | 410 |
17 (12) | 582,591 | 4,371,740 | 298 | 296 | 478 |
17 (13) | 583,393 | 4,371,879 | 340 | 346 | 525 |
17 (18) | 583,727 | 4,371,973 | 452 | 441 | 695 |
17 (22) | 584,311 | 4,372,050 | 623 | 633 | 980 |
18 (3) | 575,729 | 4,378,547 | 67 | 70 | 125 |
18 (7) | 575,820 | 4,378,637 | 119 | 120 | 240 |
18 (10) | 576,010 | 4,378,722 | 185 | 182 | 340 |
18 (12) | 576,223 | 4,378,824 | 249 | 249 | 478 |
18 (13) | 576,317 | 4,378,805 | 298 | 293 | 525 |
18 (19) | 576,628 | 4,378,786 | 392 | 390 | 740 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meschis, M.; Teza, G.; Serpelloni, E.; Elia, L.; Lattanzi, G.; Di Donato, M.; Castellaro, S. Refining Rates of Active Crustal Deformation in the Upper Plate of Subduction Zones, Implied by Geological and Geodetic Data: The E-Dipping West Crati Fault, Southern Italy. Remote Sens. 2022, 14, 5303. https://doi.org/10.3390/rs14215303
Meschis M, Teza G, Serpelloni E, Elia L, Lattanzi G, Di Donato M, Castellaro S. Refining Rates of Active Crustal Deformation in the Upper Plate of Subduction Zones, Implied by Geological and Geodetic Data: The E-Dipping West Crati Fault, Southern Italy. Remote Sensing. 2022; 14(21):5303. https://doi.org/10.3390/rs14215303
Chicago/Turabian StyleMeschis, Marco, Giordano Teza, Enrico Serpelloni, Letizia Elia, Giovanni Lattanzi, Miriana Di Donato, and Silvia Castellaro. 2022. "Refining Rates of Active Crustal Deformation in the Upper Plate of Subduction Zones, Implied by Geological and Geodetic Data: The E-Dipping West Crati Fault, Southern Italy" Remote Sensing 14, no. 21: 5303. https://doi.org/10.3390/rs14215303
APA StyleMeschis, M., Teza, G., Serpelloni, E., Elia, L., Lattanzi, G., Di Donato, M., & Castellaro, S. (2022). Refining Rates of Active Crustal Deformation in the Upper Plate of Subduction Zones, Implied by Geological and Geodetic Data: The E-Dipping West Crati Fault, Southern Italy. Remote Sensing, 14(21), 5303. https://doi.org/10.3390/rs14215303