Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Field Data
2.2. Burn Severity Indices
2.3. Calculating Burn Severity: Paired Scene Approach
2.4. Calculating Burn Severity: Composite Approach
2.5. Evaluating Remotely Sensed Indices of Burn Severity
2.6. Assessing the Effects of Imagery Resolution on Estimates of Categorical Burn Severity Classes and High-Severity Patch Interiors within Fires
3. Results
3.1. Landsat and Sentinel Burn Severity Correspondence with Field Data
3.2. High-Severity Patch Interior and Severity Class Estimates between Fires
4. Discussion
4.1. Image Compositing Approaches
4.2. The Paired Scene Approach
4.3. The Effect of Imagery Resolution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dillon, G.K.; Panunto, M.H.; Davis, B.; Birch, D.S.; Jolly, W.M. Development of a Severe Fire Potential Map for the Contiguous United States; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2020; p. 107.
- Cansler, C.A.; McKenzie, D. Climate, Fire Size, and Biophysical Setting Control Fire Severity and Spatial Pattern in the Northern Cascade Range, USA. Ecol. Appl. 2014, 24, 1037–1056. [Google Scholar] [CrossRef]
- Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W. Fire Frequency, Area Burned, and Severity: A Quantitative Approach to Defining a Normal Fire Year. Fire Ecol. 2011, 7, 51–65. [Google Scholar] [CrossRef]
- Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F. Climate, Lightning Ignitions, and Fire Severity in Yosemite National Park, California, USA. Int. J. Wildland Fire 2009, 18, 765. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Brown, R.E.; Ashmun, L.E. Emergency Post-Fire Rehabilitation Treatment Effects on Burned Area Ecology and Long-Term Restoration. Fire Ecol. 2009, 5, 115–128. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Henareh Khalyani, A. Examining Post-Fire Vegetation Recovery with Landsat Time Series Analysis in Three Western North American Forest Types. Fire Ecol. 2019, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Lacouture, D.L.; Broadbent, E.N.; Crandall, R.M. Detecting Vegetation Recovery after Fire in a Fire-Frequented Habitat Using Normalized Difference Vegetation Index (NDVI). Forests 2020, 11, 749. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA); USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006.
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote Sensing Techniques to Assess Active Fire Characteristics and Post-Fire Effects. Int. J. Wildland Fire 2006, 15, 319. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat Data to Assess Fire and Burn Severity in the North American Boreal Forest Region: An Overview and Summary of Results. Int. J. Wildland Fire 2008, 17, 443. [Google Scholar] [CrossRef]
- Guindon, L.; Gauthier, S.; Manka, F.; Parisien, M.-A.; Whitman, E.; Bernier, P.; Beaudoin, A.; Villemaire, P.; Skakun, R. Trends in Wildfire Burn Severity across Canada, 1985 to 2015. Can. J. For. Res. 2021, 51, 1230–1244. [Google Scholar] [CrossRef]
- Picotte, J.J.; Cansler, C.A.; Kolden, C.A.; Lutz, J.A.; Key, C.; Benson, N.C.; Robertson, K.M. Determination of Burn Severity Models Ranging from Regional to National Scales for the Conterminous United States. Remote Sens. Environ. 2021, 263, 112569. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ Detection Capabilities for Burn Severity. Remote Sens. Environ. 2004, 92, 397–408. [Google Scholar] [CrossRef]
- White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote Sensing of Forest Fire Severity and Vegetation Recovery. Int. J. Wildland Fire 1996, 6, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Cansler, C.A.; McKenzie, D. How Robust Are Burn Severity Indices When Applied in a New Region? Evaluation of Alternate Field-Based and Remote-Sensing Methods. Remote Sens. 2012, 4, 456–483. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W. Calibration and Validation of the Relative Differenced Normalized Burn Ratio (RdNBR) to Three Measures of Fire Severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656. [Google Scholar] [CrossRef]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating Burn Severity from Landsat DNBR and RdNBR Indices across Western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Saberi, S.J.; Agne, M.C.; Harvey, B.J. Do You CBI What I See? The Relationship between the Composite Burn Index and Quantitative Field Measures of Burn Severity Varies across Gradients of Forest Structure. Int. J. Wildland Fire 2022, 31, 112–123. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Picotte, J.J.; Bhattarai, K.; Howard, D.; Lecker, J.; Epting, J.; Quayle, B.; Benson, N.; Nelson, K. Changes to the Monitoring Trends in Burn Severity Program Mapping Production Procedures and Data Products. Fire Ecol. 2020, 16, 16. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and Comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) Spectral Indices for Estimating Fire Severity in a Mediterranean Pine Ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Picotte, J.J.; Robertson, K.M. Validation of Remote Sensing of Burn Severity in South-Eastern US Ecosystems. Int. J. Wildland Fire 2011, 20, 453. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Hawbaker, T.J.; Teske, C.; Ku, A.; Noble, J.; Picotte, J. Mapping Wetland Burned Area from Sentinel-2 across the Southeastern United States and Its Contributions Relative to Landsat-8 (2016–2019). Fire 2021, 4, 52. [Google Scholar] [CrossRef]
- Key, C.H. Ecological and Sampling Constraints on Defining Landscape Fire Severity. Fire Ecol. 2006, 2, 34–59. [Google Scholar] [CrossRef]
- Kolden, C.A.; Abatzoglou, J.T.; Lutz, J.A.; Cansler, C.A.; Kane, J.T.; Wagtendonk, J.W.V.; Key, C.H. Climate Contributors to Forest Mosaics: Ecological Persistence Following Wildfire. Northwest Sci. 2015, 89, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.; Urban, D.L. Interactions between Forest Heterogeneity and Surface Fire Regimes in the Southern Sierra Nevada. Can. J. For. Res. 1999, 29, 202–212. [Google Scholar] [CrossRef]
- Furniss, T.J.; Kane, V.R.; Larson, A.J.; Lutz, J.A. Detecting Tree Mortality with Landsat-Derived Spectral Indices: Improving Ecological Accuracy by Examining Uncertainty. Remote Sens. Environ. 2020, 237, 111497. [Google Scholar] [CrossRef]
- Blomdahl, E.M.; Kolden, C.A.; Meddens, A.J.H.; Lutz, J.A. The Importance of Small Fire Refugia in the Central Sierra Nevada, California, USA. For. Ecol. Manag. 2019, 432, 1041–1052. [Google Scholar] [CrossRef]
- Kolden, C.A.; Lutz, J.A.; Key, C.H.; Kane, J.T.; van Wagtendonk, J.W. Mapped versus Actual Burned Area within Wildfire Perimeters: Characterizing the Unburned. For. Ecol. Manag. 2012, 286, 38–47. [Google Scholar] [CrossRef]
- Walker, R.; Coop, J.; Downing, W.; Krawchuk, M.; Malone, S.; Meigs, G. How Much Forest Persists through Fire? High-Resolution Mapping of Tree Cover to Characterize the Abundance and Spatial Pattern of Fire Refugia across Mosaics of Burn Severity. Forests 2019, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Chambers, M.E.; Fornwalt, P.J.; Malone, S.L.; Battaglia, M.A. Patterns of Conifer Regeneration Following High Severity Wildfire in Ponderosa Pine—Dominated Forests of the Colorado Front Range. For. Ecol. Manag. 2016, 378, 57–67. [Google Scholar] [CrossRef]
- Harvey, B.J.; Donato, D.C.; Turner, M.G. High and Dry: Post-Fire Tree Seedling Establishment in Subalpine Forests Decreases with Post-Fire Drought and Large Stand-Replacing Burn Patches. Glob. Ecol. Biogeogr. 2016, 25, 655–669. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A Remote Sensing Approach to Mapping Fire Severity in South-Eastern Australia Using Sentinel 2 and Random Forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- White, L.A.; Gibson, R.K. Comparing Fire Extent and Severity Mapping between Sentinel 2 and Landsat 8 Satellite Sensors. Remote Sens. 2022, 14, 1661. [Google Scholar] [CrossRef]
- Maillard, O.; Flores-Valencia, M.; Michme, G.; Coronado, R.; Bachfischer, M.; Azurduy, H.; Vides-Almonacid, R.; Flores, R.; Angulo, S.; Mielich, N. Phenology Patterns and Postfire Vegetation Regeneration in the Chiquitania Region of Bolivia Using Sentinel-2. Fire 2022, 5, 70. [Google Scholar] [CrossRef]
- Konkathi, P.; Shetty, A. Inter Comparison of Post-Fire Burn Severity Indices of Landsat-8 and Sentinel-2 Imagery Using Google Earth Engine. Earth Sci. Inform. 2021, 14, 645–653. [Google Scholar] [CrossRef]
- Lasaponara, R.; Tucci, B.; Ghermandi, L. On the Use of Satellite Sentinel 2 Data for Automatic Mapping of Burnt Areas and Burn Severity. Sustainability 2018, 10, 3889. [Google Scholar] [CrossRef] [Green Version]
- Morresi, D.; Marzano, R.; Lingua, E.; Motta, R.; Garbarino, M. Mapping Burn Severity in the Western Italian Alps through Phenologically Coherent Reflectance Composites Derived from Sentinel-2 Imagery. Remote Sens. Environ. 2022, 269, 112800. [Google Scholar] [CrossRef]
- Silva-Cardoza, A.I.; Vega-Nieva, D.J.; Briseño-Reyes, J.; Briones-Herrera, C.I.; López-Serrano, P.M.; Corral-Rivas, J.J.; Parks, S.A.; Holsinger, L.M. Evaluating a New Relative Phenological Correction and the Effect of Sentinel-Based Earth Engine Compositing Approaches to Map Fire Severity and Burned Area. Remote Sens. 2022, 14, 3122. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vázquez, Á.; Caldeira, R. Evaluation of Forest Fire on Madeira Island Using Sentinel-2A MSI Imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the Use of Sentinel-2A MSI for Wildfire Burning & Severity Detection. Int. J. Remote Sens. 2019, 40, 905–930. [Google Scholar] [CrossRef]
- Colson, D.; Petropoulos, G.P.; Ferentinos, K.P. Exploring the Potential of Sentinels-1 & 2 of the Copernicus Mission in Support of Rapid and Cost-Effective Wildfire Assessment. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 262–276. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L. Evaluation and Comparison of Landsat 8, Sentinel-2 and Deimos-1 Remote Sensing Indices for Assessing Burn Severity in Mediterranean Fire-Prone Ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 137–144. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI Data for Initial Assessing of Burn Severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Delcourt, C.J.F.; Combee, A.; Izbicki, B.; Mack, M.C.; Maximov, T.; Petrov, R.; Rogers, B.M.; Scholten, R.C.; Shestakova, T.A.; van Wees, D.; et al. Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests. Remote Sens. 2021, 13, 2311. [Google Scholar] [CrossRef]
- Parks, S.; Holsinger, L.; Voss, M.; Loehman, R.; Robinson, N. Mean Composite Fire Severity Metrics Computed with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential. Remote Sens. 2018, 10, 879. [Google Scholar] [CrossRef] [Green Version]
- Parks, P.; Holsinger, L.; Koontz, M.; Collins, L.; Whitman, E.; Parisien, M.-A.; Loehman, R.; Barnes, J.; Bourdon, J.-F.; Boucher, J.; et al. Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sens. 2019, 11, 1735. [Google Scholar] [CrossRef] [Green Version]
- Soulard, C.E.; Albano, C.M.; Villarreal, M.L.; Walker, J.J. Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sens. 2016, 8, 371. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.-A.; Holsinger, L.M.; Park, J.; Parks, S.A. A Method for Creating a Burn Severity Atlas: An Example from Alberta, Canada. Int. J. Wildland Fire 2020, 29, 995. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Ellenwood, J.R.; Krist, F.J., Jr.; Romero, S.A. National Individual Tree Species Atlas; USDA Forest Service: Washington, DC, USA, 2015.
- Picotte, J.J.; Arkle, R.; Bastian, H.; Benson, N.; Cansler, A.; Caprio, T.; Dillon, G.; Key, C.; Klein, R.N.; Kopper, K.; et al. Composite Burn Index (CBI) Data for the Conterminous US, Collected between 1996 and 2018; [Data Set]; U.S. Geological Survey: Reston, WV, USA, 2019. [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A. Detecting Unburned Areas within Wildfire Perimeters Using Landsat and Ancillary Data across the Northwestern United States. Remote Sens. Environ. 2016, 186, 275–285. [Google Scholar] [CrossRef]
- Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. Challenges of Assessing Fire and Burn Severity Using Field Measures, Remote Sensing and Modelling. Int. J. Wildland Fire 2014, 23, 1045. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based Estimates of Error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- García, M.J.L.; Caselles, V. Mapping Burns and Natural Reforestation Using Thematic Mapper Data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Parks, S.; Dillon, G.; Miller, C. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Thode, A.E. Quantifying Burn Severity in a Heterogeneous Landscape with a Relative Version of the Delta Normalized Burn Ratio (DNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Cohen, W.B.; Spies, T.A.; Alig, R.J.; Oetter, D.R.; Maiersperger, T.K.; Fiorella, M. Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems 2002, 5, 122–137. [Google Scholar] [CrossRef]
- Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L. Interactions among Wildland Fires in a Long-Established Sierra Nevada Natural Fire Area. Ecosystems 2009, 12, 114–128. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, International Society for Optics and Photonics, Warsaw, Poland, 11–13 September 2017; Volume 10427, p. 1042704. [Google Scholar] [CrossRef] [Green Version]
- Ranghetti, L.; Boschetti, M.; Nutini, F.; Busetto, L. “Sen2r”: An R Toolbox for Automatically Downloading and Preprocessing Sentinel-2 Satellite Data. Comput. Geosci. 2020, 139, 104473. [Google Scholar] [CrossRef]
- Holsinger, L.M.; Parks, S.A.; Saperstein, L.B.; Loehman, R.A.; Whitman, E.; Barnes, J.; Parisien, M.-A. Improved Fire Severity Mapping in the North American Boreal Forest Using a Hybrid Composite Method. Remote Sens. Ecol. Conserv. 2022, 8, 222–235. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 14 November 2021).
- Kuhn, M. Caret: Classification and Regression Training; R Package Version 6.0-90; 2021. Available online: https://CRAN.R-project.org/package=caret (accessed on 14 November 2021).
- Collins, B.M.; Roller, G.B. Early Forest Dynamics in Stand-Replacing Fire Patches in the Northern Sierra Nevada, California, USA. Landsc. Ecol. 2013, 28, 1801–1813. [Google Scholar] [CrossRef]
- Clark, J.S.; Silman, M.; Kern, R.; Macklin, E.; HilleRisLambers, J. Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests. Ecology 1999, 80, 1475–1494. [Google Scholar] [CrossRef]
- Haire, S.L.; McGarigal, K. Effects of Landscape Patterns of Fire Severity on Regenerating Ponderosa Pine Forests (Pinus Ponderosa) in New Mexico and Arizona, USA. Landsc. Ecol. 2010, 25, 1055–1069. [Google Scholar] [CrossRef]
- Kemp, K.B.; Higuera, P.E.; Morgan, P. Fire Legacies Impact Conifer Regeneration across Environmental Gradients in the U.S. Northern Rockies. Landsc. Ecol. 2016, 31, 619–636. [Google Scholar] [CrossRef]
- Parks, S.A.; Abatzoglou, J.T. Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests from 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Rollins, M.G. LANDFIRE: A Nationally Consistent Vegetation, Wildland Fire, and Fuel Assessment. Int. J. Wildland Fire 2009, 18, 235. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Dillon, G.K.; Holden, Z.A.; Morgan, P.; Crimmins, M.A.; Heyerdahl, E.K.; Luce, C.H. Both Topography and Climate Affected Forest and Woodland Burn Severity in Two Regions of the Western US, 1984 to 2006. Ecosphere 2011, 2, 1–33. [Google Scholar] [CrossRef]
- Kolden, C.A.; Smith, A.M.S.; Abatzoglou, J.T. Limitations and Utilization of Monitoring Trends in Burn Severity Products for Assessing Wildfire Severity in the USA. Int. J. Wildland Fire 2015, 24, 1023–1028. [Google Scholar] [CrossRef]
- Moravec, D.; Komárek, J.; López-Cuervo Medina, S.; Molina, I. Effect of Atmospheric Corrections on NDVI: Intercomparability of Landsat 8, Sentinel-2, and UAV Sensors. Remote Sens. 2021, 13, 3550. [Google Scholar] [CrossRef]
- Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United States Demonstration and Characterization of MODIS-Based Landsat ETM+ Atmospheric Correction. Remote Sens. Environ. 2014, 140, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Yang, J. Atmospheric Effects on the Performance and Threshold Extrapolation of Multi-Temporal Landsat Derived DNBR for Burn Severity Assessment. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 10–20. [Google Scholar] [CrossRef]
- Chen, D.; Loboda, T.V.; Hall, J.V. A Systematic Evaluation of Influence of Image Selection Process on Remote Sensing-Based Burn Severity Indices in North American Boreal Forest and Tundra Ecosystems. ISPRS J. Photogramm. Remote Sens. 2020, 159, 63–77. [Google Scholar] [CrossRef]
- Jeronimo, S.M.A.; Kane, V.R.; Churchill, D.J.; Lutz, J.A.; North, M.P.; Asner, G.P.; Franklin, J.F. Forest Structure and Pattern Vary by Climate and Landform across Active-Fire Landscapes in the Montane Sierra Nevada. For. Ecol. Manag. 2019, 437, 70–86. [Google Scholar] [CrossRef]
- Harvey, B.J.; Andrus, R.A.; Anderson, S.C. Incorporating Biophysical Gradients and Uncertainty into Burn Severity Maps in a Temperate Fire-Prone Forested Region. Ecosphere 2019, 10, e02600. [Google Scholar] [CrossRef] [Green Version]
- Holden, Z.A.; Morgan, P.; Smith, A.M.S.; Vierling, L. Beyond Landsat: A Comparison of Four Satellite Sensors for Detecting Burn Severity in Ponderosa Pine Forests of the Gila Wilderness, NM, USA. Int. J. Wildland Fire 2010, 19, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Meng, R.; Wu, J.; Schwager, K.L.; Zhao, F.; Dennison, P.E.; Cook, B.D.; Brewster, K.; Green, T.M.; Serbin, S.P. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity across Spatial Scales in a Pine Barrens Ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.T.; Collins, B.M.; Miller, J.D.; North, M.P.; Stephens, S.L. Changing Spatial Patterns of Stand-Replacing Fire in California Conifer Forests. For. Ecol. Manag. 2017, 406, 28–36. [Google Scholar] [CrossRef]
- Harvey, B.J.; Donato, D.C.; Turner, M.G. Drivers and Trends in Landscape Patterns of Stand-Replacing Fire in Forests of the US Northern Rocky Mountains (1984–2010). Landsc. Ecol. 2016, 31, 2367–2383. [Google Scholar] [CrossRef]
- Singleton, M.P.; Thode, A.E.; Sánchez Meador, A.J.; Iniguez, J.M.; Stevens, J.T. Management Strategy Influences Landscape Patterns of High-Severity Burn Patches in the Southwestern United States. Landsc. Ecol. 2021, 36, 3429–3449. [Google Scholar] [CrossRef]
- Collins, B.M.; Stevens, J.T.; Miller, J.D.; Stephens, S.L.; Brown, P.M.; North, M.P. Alternative Characterization of Forest Fire Regimes: Incorporating Spatial Patterns. Landsc. Ecol. 2017, 32, 1543–1552. [Google Scholar] [CrossRef]
- Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical Patterns of the Effects of Changing Scale on Landscape Metrics. Landsc. Ecol. 2002, 17, 761–782. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Smith, A.M.S.; Cansler, C.A.; Abatzoglou, J.T.; Meigs, G.W.; Downing, W.M.; Krawchuk, M.A. Fire Refugia: What Are They, and Why Do They Matter for Global Change? BioScience 2018, 68, 944–954. [Google Scholar] [CrossRef]
Map ID | Fire | Year | Fire Size (ha) | Elevation (m) | CBI Plots | Data Source * | Overstory Species (in Order of Prevalence) |
---|---|---|---|---|---|---|---|
1 | Hayes Two | 2016 | 1081 | 988–1903 | 31 | 3 | ABAM, ABLA, TSHE, PSME, TSME |
2 | Norse Peak | 2017 | 20,590 | 830–2099 | 35 | 1 | ABAM, PSME, TSME, TSHE, PIEN |
3 | Rock Creek | 2016 | 552 | 983–1359 | 11 | 1 | PSME, ABGR, PIPO |
4 | Jolly Mountain | 2017 | 15,399 | 693–1929 | 12 | 1 | PSME, ABGR, TSHE, PIPO, THPL |
5 | Jones | 2017 | 4144 | 328–1147 | 27 | 1 | PSME, TSHE, THPL |
6 | Rebel | 2017 | 3653 | 570–1633 | 8 | 1 | PSME, TSHE, THPL, ABGR |
7 | Milli 0843 CS | 2017 | 9722 | 1092–2200 | 65 | 1 | PIPO, TSME, ABAM, PICO, ABGR |
8 | Rail | 2016 | 17,693 | 1325–2370 | 23 | 1 | PICO, ABGR, PSME, PIPO, LAOC, ABCO |
9 | Pioneer | 2016 | 76,572 | 1002–2649 | 12 | 1 | PSME, PICO, ABLA, PIPO, PIEN |
10 | Kenow | 2017 | 20,058 | 1263–2409 | 147 | 5 | ABLA, PIEN, PSME |
11 | Lolo Peak | 2017 | 25,152 | 1010–2779 | 21 | 1 | PSME, ABLA, PICO, LAOC, PIEN, PIPO |
12 | Liberty | 2017 | 11,191 | 1339–2330 | 9 | 1 | ABLA, PICO, PSME, PIEN, LAOC |
13 | Rice Ridge | 2017 | 69,202 | 1266–2652 | 27 | 1 | PSME, ABLA, PIEN, PICO, LAOC, PIAL |
14 | Meyers | 2017 | 27,738 | 1664–2921 | 23 | 1 | PICO, ABLA, PIEN, PIAL, PSME |
15 | Maple | 2016 | 20,835 | 2003–2666 | 36 | 1, 3 | PICO, PSME, ABLA, PIEN |
16 | Berry | 2016 | 8394 | 2061–2797 | 27 | 1 | PICO, ABLA, PIEN |
17 | Legion Lake | 2017 | 22,162 | 1022–1719 | 32 | 2 | PIPO |
18 | Bald Mountain | 2018 | 8496 | 1694–3229 | 17 | 4 | PSME, POTR, ABLA, ABCO |
19 | Mammoth | 2019 | 270 | 2757–3129 | 25 | 6 | PIEN, ABLA, PSME, POTR |
20 | Trail Mountain | 2018 | 7416 | 2121–3233 | 38 | 4 | PSME, POTR, ABLA, PIEN |
21 | Skull Flat | 2019 | 674 | 2272–3031 | 31 | 6 | ABCO, PSME, ABLA, POTR |
22 | Skull Flat 2 | 2019 | 1022 | 2313–3030 | 30 | 6 | ABLA, POTR, ABCO, PSME |
23 | Brianhead | 2017 | 30,042 | 2169–3371 | 72 | 4 | ABLA, POTR, PIEN, PIPO |
24 | Little Bear | 2019 | 1078 | 2395–2828 | 47 | 6 | PIPO, ABCO, PIFL, PSME |
25 | Chippean | 2019 | 91 | 2323–2405 | 33 | 6 | PIPO, PSME, PIED, JUOS |
26 | Fuller | 2016 | 6180 | 1314–2761 | 73 | 2 | PIPO, ABCO, PIED, JUOS, POTR |
Band Name | Sentinel-2 MSI | Landsat 8 OLI | ||||
---|---|---|---|---|---|---|
Index Number | Wavelength (nm) | Spatial Resolution (m) | Index Number | Wavelength (nm) | Spatial Resolution (m) | |
Coastal aerosol | B1 | 432–453 | 60 | B1 | 433–453 | 30 |
Blue | B2 | 459–525 | 10 | B2 | 450–515 | 30 |
Green | B3 | 541–578 | 10 | B3 | 525–600 | 30 |
Red | B4 | 649–681 | 10 | B4 | 630–680 | 30 |
Red edge 1 | B5 | 696–712 | 20 | |||
Red edge 2 | B6 | 732–748 | 20 | |||
NIR (narrow 1) | B7 | 770–793 | 20 | |||
NIR | B8 | 780–886 | 10 | B5 | 845–885 | 30 |
NIR (narrow 2) | B8A | 853–875 | 20 | |||
Water vapor | B9 | 933–955 | 60 | |||
SWIR Cirrus | B10 | 1358–1392 | 60 | B9 | 1360–1380 | 30 |
SWIR 1 | B11 | 1563–1659 | 20 | B6 | 1560–1660 | 30 |
SWIR 2 | B12 | 2093–2290 | 20 | B7 | 2100–2300 | 30 |
Panchromatic | B8 | 500–680 | 15 |
Method | Pre-Fire Imagery Season | Post-Fire Imagery Season | ||
---|---|---|---|---|
Start | End | Start | End | |
Extended | 1 June YBF | 30 September YBF | 1 June YAF | 30 September YAF |
1 June YOF | Fire Start Day | |||
Hybrid | 20 May YBF | 31 August YBF | Day after fire ends YOF | 15 November YOF |
Day after snow cover ends YAF | 1 July YAF |
Composite Imagery Method | Spectral Index | Landsat 8 Surface Reflectance (Tier 1) | Sentinel-2 Top of Atmosphere (Level 1C) | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
Extended imagery seasons | dNBR | 0.552 | 0.538 | 0.561 | 0.526 |
RBR | 0.606 | 0.480 | 0.613 | 0.474 | |
RdNBR | 0.613 | 0.463 | 0.643 | 0.447 | |
RdNDVI | 0.554 | 0.519 | 0.426 | 0.765 | |
Hybrid imagery seasons | dNBR | 0.570 | 0.502 | 0.517 | 0.542 |
RBR | 0.627 | 0.443 | 0.573 | 0.489 | |
RdNBR | 0.641 | 0.423 | 0.579 | 0.487 | |
RdNDVI | 0.562 | 0.441 | 0.515 | 0.396 |
Spectral Index | Landsat 8 | Sentinel-2 | ||||
---|---|---|---|---|---|---|
Surface Reflectance (Tier 1) | Bottom of Atmosphere (Level 2A) | Top of Atmosphere (Level 1C) | ||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
dNBR | 0.537 | 0.517 | 0.578 | 0.505 | 0.533 | 0.538 |
RBR | 0.584 | 0.471 | 0.637 | 0.444 | 0.601 | 0.465 |
RdNBR | 0.607 | 0.447 | 0.633 | 0.443 | 0.421 | 0.661 |
RdNDVI | 0.481 | 0.544 | 0.597 | 0.492 | 0.578 | 0.492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howe, A.A.; Parks, S.A.; Harvey, B.J.; Saberi, S.J.; Lutz, J.A.; Yocom, L.L. Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America. Remote Sens. 2022, 14, 5249. https://doi.org/10.3390/rs14205249
Howe AA, Parks SA, Harvey BJ, Saberi SJ, Lutz JA, Yocom LL. Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America. Remote Sensing. 2022; 14(20):5249. https://doi.org/10.3390/rs14205249
Chicago/Turabian StyleHowe, Alexander A., Sean A. Parks, Brian J. Harvey, Saba J. Saberi, James A. Lutz, and Larissa L. Yocom. 2022. "Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America" Remote Sensing 14, no. 20: 5249. https://doi.org/10.3390/rs14205249
APA StyleHowe, A. A., Parks, S. A., Harvey, B. J., Saberi, S. J., Lutz, J. A., & Yocom, L. L. (2022). Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America. Remote Sensing, 14(20), 5249. https://doi.org/10.3390/rs14205249