Mapping the Spatiotemporal Pattern of Sandy Island Ecosystem Health during the Last Decades Based on Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.1.1. Study Area
2.1.2. Data Source
2.2. Part 1 of the Sandy Island Ecosystem Health: The State
2.2.1. Three Components and 12 Factors
2.2.2. Spatial Simulations of Field Data
2.2.3. Calculation of SIEHI-1
2.3. Part 2 of the Sandy Island Ecosystem Health: The Resilience
2.3.1. Three Disturbances
2.3.2. Resilience of Different Components under the Multiple Disturbances
2.3.3. Calculation of SIEHI-2
2.4. Sandy Island Ecosystem Health Index (SIEHI)
2.4.1. Calculation of SIEHI
2.4.2. Analyses of SIEHI-1, SIEHI-2, and SIEHI in Chongming Island
3. Results
3.1. Assessment Results of Part 1
3.1.1. States of the Three Components in the Four Years
3.1.2. Maps of SIEHI-1 in the Four Years
3.2. Assessment Results of Part 2
3.2.1. Resilience under Multiple Disturbances across Different Years
3.2.2. Maps of SIEHI-2 in the Four Years
3.3. Assessment Results of the Sandy Island Ecosystem Health
3.3.1. Maps of SIEHI in the Four Years
3.3.2. Spatiotemporal Characteristics of the Sandy Island Ecosystem Health
4. Discussion
4.1. Key Issues in Assessing the Sandy Island Ecosystem health
4.1.1. Two Parts of the Sandy Island Ecosystem Health
4.1.2. Adequate Utilization of Remote Sensing Data in the Assessment
4.2. Driving Factors of Spatiotemporal Variations of the Sandy Island Ecosystem Health
4.2.1. Contributions of Components and Factors to the Spatiotemporal Variations
4.2.2. Contributions of Disturbances and Resilience to the Spatiotemporal Variations
4.2.3. Driving Factors of the Spatiotemporal Variations
4.3. Novel Suggestions Based on The Sandy Island Ecosystem Health
4.3.1. Influence Coefficients of Different Human Activities on the Sandy Island Ecosystem
4.3.2. Measures for the Sandy Island Ecosystem-Based Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Natural Resources of China, 2018. Bulletin of Island Statistical Survey in 2017. Available online: http://gi.mnr.gov.cn/201807/t20180727_2156215.html (accessed on 12 December 2021).
- Cohen, M.C.L.; Lara, R.J.; Smith, C.B.; Angélica, R.S.; Dias, B.S.; Pequeno, T. Wetland dynamics of Marajó Island, northern Brazil, during the last 1000 years. Catena 2008, 76, 70–77. [Google Scholar] [CrossRef]
- França, M.C.; Francisquini, M.I.; Cohen, M.C.L.; Pessenda, L.C.R.; Rossetti, D.F.; Guimarães, J.T.F.; Smith, C.B. The last mangroves of Marajó Island—Eastern Amazon: Impact of climate and/or relative sea-level changes. Rev. Palaeobot. Palynol. 2012, 187, 50–65. [Google Scholar] [CrossRef]
- Chi, Y.; Zheng, W.; Shi, H.; Sun, J.; Fu, Z. Spatial heterogeneity of estuarine wetland ecosystem health influenced by complex natural and anthropogenic factors. Sci. Total Environ. 2018, 634, 1445–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, Y.; Zhang, Z.; Gao, J.; Xie, Z.; Zhao, M.; Wang, E. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Cai, W.; Song, X.; Zhang, P.; Xin, Z.; Zhou, Y.; Wang, Y.; Wei, W. Carbon emissions and driving forces of an island economy: A case study of Chongming Island, China. J. Clean. Prod. 2020, 254, 120028. [Google Scholar] [CrossRef]
- Li, B.; Yuan, X.; Chen, M.; Bo, S.; Xia, L.; Guo, Y.; Zhao, S.; Ma, Z.; Wang, T. How to strive for balance of coastal wind energy development with waterbird conservation in the important coastal wetlands, a case study in the Chongming Islands of East China. J. Clean. Prod. 2020, 263, 121547. [Google Scholar] [CrossRef]
- Hu, Z.; Li, H.; Bao, Y.; Ge, B. Biodiversity comparison of macrobenthic communities at tidal flat of Lingkun Island. Acta Ecol. Sin. 2008, 28, 1498–1507. [Google Scholar]
- Fu, J.; Huang, H.; Yang, X. Comparison of land use classification methods used in analysis of the Tangshan Bay three islands using remote sensing images based on ENVI. Mar. Sci. 2014, 38, 20–26. [Google Scholar]
- Chi, Y.; Zhang, Z.; Wang, J.; Xie, Z.; Gao, J. Island protected area zoning based on ecological importance and tenacity. Ecol. Indic. 2020, 112, 106139. [Google Scholar] [CrossRef]
- Chi, Y.; Liu, D.; Wang, J.; Wang, E. Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China. Land Use Policy 2020, 99, 104846. [Google Scholar] [CrossRef]
- Huang, B.; Ouyang, Z.; Zheng, H.; Zhang, H.; Wang, X. Construction of an ecoisland: A case study of Chongming Island, China. Ocean Coast Manag. 2008, 51, 575–588. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhang, L.; Kuang, R. Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. J. Hydrol. 2014, 511, 432–442. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Li, L.; Wang, Z.; Song, K. Spatiotemporal dynamics of coastal wetlands and reclamation in the Yangtze Estuary during past 50 years (1960s–2015). Chin. Geogr. Sci. 2018, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Pedroli, B.; Liu, G.; Liu, Q.; Liu, H.; Shu, L. Soil salinity development in the Yellow River Delta in relation to groundwater dynamics. Land Degrad. Dev. 2012, 23, 175–189. [Google Scholar] [CrossRef]
- Yu, J.; Li, Y.; Han, G.; Zhou, D.; Fu, Y.; Guan, B.; Wang, G.; Ning, K.; Wu, H.; Wang, J. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environ. Earth Sci. 2014, 72, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Walter, J.; Lück, E.; Bauriegel, A.; Facklam, M.; Zeitz, J. Seasonal dynamics of soil salinity in peatlands: A geophysical approach. Geoderma 2018, 310, 1–11. [Google Scholar] [CrossRef]
- Aragüés, R.; Medina, E.T.; Zribi, W.; Clavería, I.; Álvaro-Fuentes, J.; Faci, J. Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig. Sci. 2014, 33, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Simplifying field-scale assessment ofspatiotemporal changes of soil salinity. Sci. Total Environ. 2017, 587–588, 273–281. [Google Scholar] [CrossRef]
- Thiam, S.; Villamor, G.B.; Kyei-Baffour, N.; Matty, F. Soil salinity assessment and coping strategies in the coastal agricultural landscape in Djilor district, Senegal. Land Use Policy 2019, 88, 104191. [Google Scholar] [CrossRef]
- Shen, G.; Ibrahim, A.N.; Wang, Z.; Ma, C.; Gong, J. Spatial–temporal land-use/land-cover dynamics and their impacts on surface temperature in Chongming Island of Shanghai, China. Int. J. Remote Sens. 2015, 36, 4037–4053. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, C.; Yang, X.; Chen, X.; Meng, F.; Lu, C.; Pan, T.; Qi, W. Urban landscape extraction and analysis in the mega-city of China’s coastal regions using high-resolution satellite imagery: A case of Shanghai, China. Int. J. Appl. Earth. Obs. 2018, 72, 140–150. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.; Chen, J.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, B.; Huang, Y.; Yu, P.; Zhao, Y. Assessing the ecological health of the Chongming Dongtan Nature Reserve, China, using different benthic biotic indices. Mar. Pollut. Bull. 2019, 146, 76–84. [Google Scholar] [CrossRef]
- Styers, D.M.; Chappelka, A.H.; Marzen, L.J.; Somers, G.L. Developing a land-cover classification to select indicators of forest ecosystem health in a rapidly urbanizing landscape. Landscape Urban Plan. 2010, 94, 158–165. [Google Scholar] [CrossRef]
- Wu, N.; Liu, A.; Wang, Y.; Li, L.; Chao, L.; Liu, G. An assessment framework for grassland ecosystem health with consideration of natural succession: A case study in Bayinxile, China. Sustainability 2019, 11, 1096. [Google Scholar] [CrossRef] [Green Version]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.A.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.R. Geospatial assessment of ecosystem health of coastal urban wetlands in Ghana. Ocean Coast. Manag. 2020, 193, 105226. [Google Scholar] [CrossRef]
- Zhang, Y.; Leung, J.Y.S.; Zhang, Y.; Cai, Y.; Zhang, Z.; Li, K. Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages. Environ. Pollut. 2021, 275, 116655. [Google Scholar] [CrossRef]
- Halpern, B.S.; Longo, C.; Hardy, D.; McLeod, K.L.; Samhouri, J.F.; Katona, S.K.; Kleisner, K.; Lester, S.E.; Leary, J.O.; Ranelletti, M.; et al. An index to assess the health and benefits of the global ocean. Nature 2012, 488, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Chen, R.; Meadows, M.E.; Liu, X. Application of the Ocean Health Index to assess ecosystem health for the coastal areas of Shanghai, China. Ecol. Indic. 2021, 126, 107650. [Google Scholar] [CrossRef]
- Su, M.; Xie, H.; Yue, W.; Zhang, L.; Yang, Z.; Chen, S. Urban ecosystem health evaluation for typical Chinese cities along the Belt and Road. Ecol. Indic. 2019, 101, 572–582. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Pereira, P.; Mandal, A. Exploring the spatio-temporal dynamics of ecosystem health: A study on a rapidly urbanizing metropolitan area of Lower Gangetic Plain, India. Ecol. Indic. 2021, 125, 107584. [Google Scholar] [CrossRef]
- Peterson, E.E.; Cunningham, S.A.; Thomas, M.; Collings, S.; Bonnett, G.D.; Harch, B. An assessment framework for measuring agroecosystem health. Ecol. Indic. 2017, 79, 265–275. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.S.; Jardine, T.D.; Bradford, L.; Bharadwaj, L.; Kythreotis, A.P.; Fresque-Baxter, J.; Kelly, E.; Somers, G.; Doig, L.E.; Jones, P.D.; et al. Bridging science and traditional knowledge to assess cumulative impacts of stressors on ecosystem health. Environ. Int. 2017, 102, 125–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Xie, S.; Wang, Y.; Huang, J.; Cheng, X. Effects of urban expansion on ecosystem health in Southwest China from a multi-perspective analysis. J. Clean. Prod. 2021, 294, 126341. [Google Scholar] [CrossRef]
- Pan, Z.; He, J.; Liu, D.; Wang, J.; Guo, X. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Z.; Jiang, B.; Lu, F.; Wang, H.; Wang, D.; Zhang, M.; Cui, L. Improving wetland ecosystem health in China. Ecol. Indic. 2020, 113, 106184. [Google Scholar] [CrossRef]
- Zhao, C.; Pan, T.; Dou, T.; Liu, J.; Liu, C.; Ge, Y.; Zhang, Y.; Yu, X.; Mitrovic, S.; Lim, R. Making global river ecosystem health assessments objective, quantitative and comparable. Sci. Total Environ. 2019, 667, 500–510. [Google Scholar] [CrossRef]
- Smith, T.B.; Nemeth, R.S.; Blondeau, J.; Calnan, J.M.; Kadison, E.; Herzlieb, S. Assessing coral reef health across onshore to offshore stress gradients in the US Virgin Islands. Mar. Pollut. Bull. 2008, 56, 1983–1991. [Google Scholar] [CrossRef]
- Wu, L.; You, W.; Ji, Z.; Xiao, S.; He, D. Ecosystem health assessment of Dongshan Island based on its ability to provide ecological services that regulate heavy rainfall. Ecol. Indic. 2018, 84, 393–403. [Google Scholar]
- Chi, Y.; Liu, D.; Xing, W.; Wang, J. Island ecosystem health in the context of human activities with different types and intensities. J. Clean. Prod. 2021, 281, 125334. [Google Scholar] [CrossRef]
- Dybiec, J.M.; Albert, D.A.; Danz, N.P.; Wilcox, D.A.; Uzarski, D.G. Development of a preliminary vegetation-based indicator of ecosystem health for coastal wetlands of the Laurentian Great Lakes. Ecol. Indic. 2020, 119, 106768. [Google Scholar] [CrossRef]
- Conroy, B.M.; Hamylton, S.M.; Kumbier, K.; Kelleway, J.J. Assessing the structure of coastal forested wetland using field and remote sensing data. Estuar. Coast. Shelf Sci. 2022, 271, 107861. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Chen, Q.; Huang, Y.; Tian, J.; Cai, M.; Huang, Y.; Jiao, Y.; Yang, Y.; Du, X.; et al. Effects of reclamation methods and habitats on macrobenthic communities and ecological health in estuarine coastal wetlands. Mar. Pollut. Bull. 2021, 168, 112420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Shi, Y.; Lu, H.; He, M.; Huang, W.; Siemann, E. Soil bacterial communities and co-occurrence changes associated with multi-nutrient cycling under rice-wheat rotation reclamation in coastal wetland. Ecol. Indic. 2022, 144, 109485. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Du, J.; He, P.; Zhong, S.; Wu, P.; Lu, H.; Fang, S. Quantifying the dynamics and driving forces of the coastal wetland landscape of the Yangtze River Estuary since the 1960s. Reg. Stud. Mar. Sci. 2019, 32, 100854. [Google Scholar] [CrossRef]
- Estrela-Segrelles, C.; Gómez-Martinez, G.; Pérez-Martín, M.Á. Risk assessment of climate change impacts on Mediterranean coastal wetlands. Application in Júcar River Basin District (Spain). Sci. Total Environ. 2021, 790, 148032. [Google Scholar] [CrossRef]
- Visschers, L.L.B.; Santos, C.D.; Franco, A.M.A. Accelerated migration of mangroves indicate large-scale saltwater intrusion in Amazon coastal wetlands. Sci. Total Environ. 2022, 836, 155679. [Google Scholar] [CrossRef]
- Agboola, J.I.; Ndimele, P.E.; Odunuga, S.; Akanni, A.; Kosemani, B.; Ahove, M.A. Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction. Estuar. Coast. Shelf Sci. 2016, 183, 73–81. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; He, G.; Zhang, L.; Lu, Y. Delineating pollution threat intensity from onshore industries to coastal wetlands in the Bohai Rim, the Yangtze River Delta, and the Pearl River Delta, China. J. Clean. Prod. 2021, 320, 128880. [Google Scholar] [CrossRef]
- Monsalve, E.R.; Quiroga, E. Farmed shrimp aquaculture in coastal wetlands of Latin America—A review of environmental issues. Mar. Pollut. Bull. 2022, 183, 113956. [Google Scholar] [CrossRef]
- Sahana, M.; Saini, M.; Areendran, G.; Imdad, K.; Sarma, K.; Sajjad, H. Assessing Wetland ecosystem health in Sundarban Biosphere Reserve using pressure-state-response model and geospatial techniques. Remote Sens. Appl. Soc. Environ. 2022, 26, 100754. [Google Scholar] [CrossRef]
- Duan, H.; Yu, X.; Zhang, L.; Xia, S.; Liu, Y.; Mao, D.; Zhang, G. An evaluating system for wetland ecological risk: Case study in coastal mainland China. Sci. Total Environ. 2022, 828, 154535. [Google Scholar] [CrossRef] [PubMed]
- Rapport, D.J. What constitutes ecosystem health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Rapport, D.J.; Costanza, R.; McMichael, A.J. Assessing ecosystem health. Trends Ecol. Evol. 1998, 13, 397–402. [Google Scholar] [CrossRef]
- Costanza, R.; Norton, B.G.; Haskell, B.J. Ecosystem Health: New Goals for Environmental Management; Island Press: Washington, DC, USA, 1992. [Google Scholar]
- Whitford, W.G.; Rapport, D.J.; de Soyza, A.G. Using resistance and resilience measurements for ‘fitness’ tests in ecosystem health. J. Environ. Manag. 1999, 57, 21–29. [Google Scholar] [CrossRef]
- Lackey, R.T. Values, policy, and ecosystem health. BioScience 2001, 51, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Gewin, V. The state of the planet. Nature 2002, 417, 112–113. [Google Scholar] [CrossRef]
- Wiegand, J.; Raffaelli, D.; Smart, J.C.R.; White, P.C.L. Assessment of temporal trends in ecosystem health using a holistic indicator. J. Environ. Manag. 2010, 91, 1446–1455. [Google Scholar] [CrossRef]
- He, J.; Pan, Z.; Liu, D.; Guo, X. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 10, 553–564. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.; Shi, R.; Zhang, Z.; Yu, W.; Li, Y.; Chen, G.; Gao, J. Ecosystem health monitoring in the Shanghai-Hangzhou Bay Metropolitan Area: A hidden Markov modeling approach. Environ. Int. 2019, 133, 105170. [Google Scholar] [CrossRef]
- Sasaki, T.; Furukawa, T.; Iwasaki, Y.; Seto, M.; Mori, A.S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 2015, 57, 395–408. [Google Scholar] [CrossRef]
- Nathwani, J.; Lu, X.; Wu, C.; Fu, G.; Qin, X. Quantifying security and resilience of Chinese coastal urban ecosystems. Sci. Total Environ. 2019, 672, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Liu, X.; Ding, C.; Xu, B.; Zhou, G.; Zhu, L. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 2020, 57, 101064. [Google Scholar] [CrossRef]
- Jian, P.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar]
- Zhan, J.; Zhang, F.; Chu, X.; Liu, W.; Zhang, Y. Ecosystem services assessment based on emergy accounting in Chongming Island, Eastern China. Ecol. Indic. 2019, 105, 464–473. [Google Scholar] [CrossRef]
- Qiao, G.; Mi, H.; Wang, W.; Tong, X.; Li, Z.; Li, T.; Liu, S.; Hong, Y. 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. Int. J. Appl. Earth Obs. 2018, 68, 238–251. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, E.; Wang, J. Identifying the anthropogenic influence on the spatial distribution of plant diversity in an estuarine island through multiple gradients. Glob. Ecol. Conserv. 2020, 21, e00833. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Hu, J.; Zhang, W.; Fu, X.; Le, Y.; Jin, F. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China. J. Environ. Sci. 2011, 23, 87–94. [Google Scholar] [CrossRef]
- Chi, Y.; Zhao, M.; Sun, J.; Xie, Z.; Wang, E. Mapping soil total nitrogen in an estuarine area with high landscape fragmentation using a multiple-scale approach. Geoderma 2019, 339, 70–84. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Liu, D.; Xie, Z. Reconstructions of four-dimensional spatiotemporal characteristics of soil organic carbon stock in coastal wetlands during the last decades. Catena 2022, 218, 106553. [Google Scholar] [CrossRef]
- Ding, D.; Jiang, Y.; Wu, Y.; Shi, T. Landscape character assessment of water-land ecotone in an island area for landscape environment promotion. J. Clean. Prod. 2020, 259, 120934. [Google Scholar] [CrossRef]
- Ma, X.; de Jong, M.; den Hartog, H. Assessing the implementation of the Chongming Eco Island policy: What a broad planning evaluation framework tells more than technocratic indicator systems. J. Clean. Prod. 2018, 172, 872–886. [Google Scholar] [CrossRef]
- Fang, J.; Liu, M.; Liu, W.; Pathak, S.; Li, S.; Tang, X.; Zhou, L.; Sun, F. Piloting a capital-based approach for characterizing and evaluating drivers of island sustainability- An application in Chongming Island. J. Clean. Prod. 2020, 261, 121123. [Google Scholar] [CrossRef]
- Yuan, L.; Ge, Z.; Fan, X.; Zhang, L. Ecosystem-based coastal zone management: A comprehensive assessment of coastal ecosystems in the Yangtze Estuary coastal zone. Ocean Coast. Manag. 2014, 95, 63–71. [Google Scholar] [CrossRef]
- The People’s Government of Chongming District in Shanghai, 2018. Master Plan and General Land-Use Plan of Chongming District, Shanghai, 2017–2035. Available online: https://www.shcm.gov.cn/zjcm/ztgh/mobile/index.html (accessed on 2 February 2022).
- Bureau of Statistics of Chongming District in Shanghai, 2022. Statistics Bulletin of the National Economic and Social Development of Chongming District in Shanghai. 2021. Available online: https://www.shcm.gov.cn/govxxgk/qtjj/2022-04-19/4065d02c-28fd-4344-b864-8d26c7e13f97.html (accessed on 8 August 2022).
- Borges, P.A.V.; Cardoso, P.; Kreft, H.; Whittaker, R.J.; Fattorini, S.; Emerson, B.C.; Gil, A.; Gillespie, R.G.; Matthews, T.J.; Santos, A.M.C.; et al. Global Island Monitoring Scheme (GIMS): A proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodivers. Conserv. 2018, 27, 2567–2586. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Fonseca, C.; Benedicto-Royuela, J. Land cover trade-offs in small oceanic islands: A temporal analysis of Pico Island, Azores. Land Degrad. Dev. 2018, 29, 349–360. [Google Scholar] [CrossRef]
- Wilson, B.R.; Wilson, S.C.; Sindel, B.; Williams, L.K.; Hawking, K.L.; Shaw, J.; Tighe, M.; Hua, Q.; Kristiansen, P. Soil properties on sub-Antarctic Macquarie Island: Fundamental indicators of ecosystem function and potential change. Catena 2019, 177, 167–179. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Fu, Z.; Xie, Z. Spatial pattern of plant diversity in a group of uninhabited islands from the perspectives of island and site scales. Sci. Total Environ. 2019, 664, 334–346. [Google Scholar] [CrossRef]
- Craven, D.; Knight, T.M.; Barton, K.E.; Bialic-Murphy, L.; Chase, J.M. Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proc. Natl. Acad. Sci. USA 2019, 116, 16436–16441. [Google Scholar] [CrossRef] [Green Version]
- Thies, C.; Tscharntke, T. Landscape structure and biological control in agroecosystems. Science 1999, 285, 893–895. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Zhang, Y.; Chen, S. Accelerated expansion of built-up area after bridge connection with mainland: A case study of Zhujiajian Island. Ocean Coast Manag. 2018, 152, 62–69. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, T. Assessment of consistency in forest-dominated vegetation observations between aster and Landsat ETM+ images in subtropical coastal areas of Southeastern China. Agric. For. Meteorol. 2013, 168, 1–9. [Google Scholar] [CrossRef]
- Sun, J.; Chi, Y.; Fu, Z.; Li, T.; Dong, K. Spatiotemporal variation of plant diversity under a unique estuarine wetland gradient system. Chin. Geogr. Sci. 2020, 30, 217–232. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.M.H. Biodiversity and ecosystem stability in a decade–long grassland experiment. Nature 2006, 441, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Yang, R.; Guo, W. Exotic Spartina alterniflora enhances the soil functions of a coastal ecosystem. Soil Sci. Soc. Am. J. 2018, 82, 901–909. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.; Shi, H.; Zheng, W.; Wang, E. Archipelagic landscape patterns and their ecological effects in multiple scales. Ocean Coast. Manag. 2018, 152, 120–134. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Rasel, S.M.M.; Groen, T.A.; Hussin, Y.A.; Diti, I.J. Proxies for soil organic carbon derived from remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 157–166. [Google Scholar] [CrossRef]
- Rossel, R.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Wang, S.; Adhikari, K.; Wang, Q.; Jin, X.; Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 2018, 84, 263–272. [Google Scholar] [CrossRef]
- Paul, S.S.; Coops, N.C.; Johnson, M.S.; Krzic, M.; Chandna, A.; Smukler, S.M. Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation. Geoderma 2020, 363, 114177. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within asemiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Sertel, E.; Gorji, T.; Tanik, A. Monitoring soil salinity via remote sensing technologyunder data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneityin urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Tong, S.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Aldabaa, A.A.A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 2015, 239–240, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, D.; Niekerk, A.V. Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates. Geoderma 2017, 299, 1–12. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, J.; Lyu, H.; Pan, S.; Chen, S. Impacts of topography change on saltwater intrusion over the past decade in the Changjiang Estuary. Estuar. Coast. Shelf. Sci. 2019, 231, 106469. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Jing, Y.; Li, J. The impact of land use on riparian soil dissolved organic matter and on streamwater quality on Chongming Island China. Reg. Environ. Change 2016, 16, 2399–2408. [Google Scholar] [CrossRef]
- Helmus, M.R.; Mahler, D.L.; Losos, J.B. Island biogeography of the Anthropocene. Nature 2014, 513, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Zalidis, G. Management of river water for irrigation to mitigate soil salinization on a coastal wetland. J. Environ. Manag. 1998, 54, 161–167. [Google Scholar] [CrossRef]
- Zarroca, M.; Bach, J.; Linares, R.; Pellicer, X.M. Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). J. Hydrol. 2011, 409, 407–422. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Coastal Sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J. Geophys. Res. Oceans 2012, 117, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zovko, M.; Romić, D.; Colombo, C.; Di Iorio, E.; Romić, M.; Buttafuoco, G.; Castrignanò, A. A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma 2018, 332, 60–72. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Liu, W.; Wang, J.; Zhao, M. Mapping coastal wetland soil salinity in different seasons using an improved comprehensive land surface factor system. Ecol. Indic. 2019, 107, 105517. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Cao, J.; Ma, Y. Ecological risk assessment of exploitation and utilization in Chuanshan archipelago, Guangdong Province, China. Acta Ecol. Sin. 2015, 35, 2265–2276. [Google Scholar]
- Xie, Z.; Li, X.; Jiang, D.; Lin, S.; Yang, B.; Chen, S. Threshold of island anthropogenic disturbance based on ecological vulnerability assessment—A case study of Zhujiajian Island. Ocean Coast Manag. 2019, 167, 127–136. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, X.; Tang, Q. Human activity intensity of land surface: Concept, method and application in China. J. Geogr. Sci. 2016, 26, 13491361. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ryo, M.; Lehmann, A. Classifying human influences on terrestrial ecosystems. Global Change Biol. 2021, 27, 2273–2278. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, P.; Jetz, W.; Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl. Acad. Sci. USA 2013, 110, 15307–15312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, C.L.S.; Waiser, T.H.; Brown, D.J.; Hallmark, C.T. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma 2009, 151, 249–256. [Google Scholar] [CrossRef]
- Chen, L.; Sun, R.; Liu, H. Eco-environmental effects of urban landscape pattern changes: Progresses, problems, and perspectives. Acta Ecol. Sin. 2013, 33, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.; Wang, R.; Zhao, J. Ecosystem services and their economic valuation. Chin. J. Appl. Ecol. 1999, 10, 635–640. [Google Scholar]
- Brown, M.T.; Vivas, M.B. Landscape development intensity index. Environ. Monit. Assess. 2005, 101, 289–309. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, K.; Wang, Y. Basic points and progress in technical methods of early-warning of the national resource and environmental carrying capacity (V 2016). Prog. Geogr. 2017, 36, 266–276. [Google Scholar]
- Shi, C.; Yao, S. Analysis on the theory of “Lucid Water and Lush Mountains are Invaluable Assets” based on ecological Marxism. For. Econ. 2018, 3, 7–10. [Google Scholar]
- Li, Y.; Dongye, G.; Li, X. Countermeasure on sustainable utilization of saline soil in Yellow River Delta. J. Soil Water Conserv. 2003, 7, 55–58. [Google Scholar]
- Chen, H.; Jia, B.; Lau, S.S.Y. Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. Habitat Int. 2008, 32, 28–40. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Y.; Tang, L.; Shi, L.; Shao, G. China’s cities need to grow in a more compact way. Environ. Sci. Technol. 2011, 45, 8607–8608. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Liu, M. Discussion of Planning and Operating of Chongming Qianwei Village’s Nongjiale tourism site. Phys. Procedia 2012, 24, 1649–1654. [Google Scholar] [CrossRef]
Predictor | H’ | E | BD | TOC | TN | AP | AK | Sa |
---|---|---|---|---|---|---|---|---|
Re2 | −0.161 | −0.160 | −0.050 | −0.380 ** | −0.389 ** | 0.170 | 0.122 | 0.192 * |
Re3 | −0.164 | −0.171 | 0.005 | −0.350 ** | −0.354 ** | 0.164 | 0.156 | 0.180 |
Re4 | −0.164 | −0.146 | −0.007 | −0.361 ** | −0.361 ** | 0.184 | 0.191 * | 0.237 * |
Re5 | 0.267 ** | 0.119 | 0.071 | 0.381 ** | 0.437 ** | 0.036 | −0.270 ** | −0.514 ** |
Re6 | 0.212 * | 0.100 | 0.165 | 0.069 | 0.142 | 0.114 | −0.265 ** | −0.411 ** |
Re7 | 0.119 | 0.044 | 0.160 | −0.113 | −0.043 | 0.181 | −0.146 | −0.245 * |
DVI | 0.266 ** | 0.139 | 0.061 | 0.416 ** | 0.462 ** | −0.022 | −0.277 ** | −0.491 ** |
NDVI | 0.273 ** | 0.183 | 0.096 | 0.403 ** | 0.448 ** | −0.058 | −0.330 ** | −0.515 ** |
SAVI | 0.270 ** | 0.157 | 0.073 | 0.418 ** | 0.465 ** | −0.037 | −0.298 ** | −0.504 ** |
SI1 | −0.164 | −0.150 | −0.020 | −0.374 ** | −0.376 ** | 0.183 | 0.172 | 0.229 * |
SI2 | −0.164 | −0.154 | −0.003 | −0.361 ** | −0.362 ** | 0.179 | 0.179 | 0.219 * |
SI3 | 0.234 * | 0.065 | 0.059 | 0.335 ** | 0.393 ** | 0.081 | −0.219 * | −0.483 ** |
LSW | −0.137 | −0.090 | −0.187 | 0.113 | 0.047 | −0.106 | 0.201 * | 0.238 * |
IBI | 0.060 | 0.046 | 0.202 * | −0.242 * | −0.209 * | 0.045 | −0.220 * | −0.146 |
BSI | −0.089 | −0.068 | 0.078 | −0.365 ** | −0.354 ** | 0.102 | 0.037 | 0.150 |
Item | 1988–1995 | 1995–2007 | 2007–2017 | ||||||
---|---|---|---|---|---|---|---|---|---|
ΔC1 | ΔC2 | ΔC3 | ΔC1 | ΔC2 | ΔC3 | ΔC1 | ΔC2 | ΔC3 | |
ΔD1 | 0.22 ** | −0.59 ** | 0.23 ** | 0.26 ** | −0.47 ** | 0.24 ** | 0.39 ** | −0.40 ** | 0.15 ** |
ΔD2 | 0.47 ** | 0.10 ** | −0.16 ** | 0.33 ** | 0.03 ** | −0.23 ** | 0.30 ** | 0.23 ** | −0.02 ** |
ΔD3 | 0.54 ** | 0.43 ** | 0.40 ** | 0.55 ** | 0.43 ** | 0.38 ** | 0.67 ** | 0.40 ** | 0.29 ** |
Item | SIEHI-1 | SIEHI-2 | SIEHI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1988 | 1995 | 2007 | 2017 | 1988 | 1995 | 2007 | 2017 | 1988 | 1995 | 2007 | 2017 | |
LCT1 | 0.70 | 0.60 | 0.68 | 0.75 | 0.43 | 0.44 | 0.47 | 0.46 | 0.53 | 0.50 | 0.55 | 0.57 |
LCT2 | 0.24 | 0.26 | 0.19 | 0.26 | 0.64 | 0.40 | 0.44 | 0.12 | 0.38 | 0.32 | 0.29 | 0.15 |
LCT3 | 0.49 | 0.44 | 0.56 | 0.41 | 0.42 | 0.50 | 0.58 | 0.47 | 0.43 | 0.45 | 0.55 | 0.42 |
LCT4 | 0.33 | 0.39 | 0.42 | 0.53 | 0.38 | 0.51 | 0.59 | 0.55 | 0.34 | 0.44 | 0.49 | 0.52 |
LCT5 | 0.14 | 0.16 | 0.20 | 0.23 | 0.38 | 0.45 | 0.46 | 0.36 | 0.19 | 0.24 | 0.26 | 0.24 |
LCT6 | 0.20 | 0.22 | 0.21 | 0.18 | 0.44 | 0.50 | 0.54 | 0.49 | 0.29 | 0.33 | 0.33 | 0.27 |
LCT7 | 0.19 | 0.19 | 0.22 | 0.30 | 0.30 | 0.54 | 0.59 | 0.59 | 0.22 | 0.30 | 0.35 | 0.41 |
LCT8 | 0.14 | 0.10 | 0.10 | 0.21 | 0.36 | 0.56 | 0.58 | 0.50 | 0.21 | 0.21 | 0.19 | 0.30 |
LCT9 | - | - | 0.11 | 0.17 | - | - | 0.65 | 0.57 | - | - | 0.25 | 0.29 |
CPA | 0.80 | 0.31 | 0.48 | 0.48 | 0.50 | 0.41 | 0.39 | 0.38 | 0.61 | 0.35 | 0.41 | 0.41 |
OPA | 0.58 | 0.45 | 0.63 | 0.53 | 0.44 | 0.42 | 0.45 | 0.45 | 0.47 | 0.43 | 0.52 | 0.46 |
NPA | 0.38 | 0.37 | 0.39 | 0.47 | 0.40 | 0.51 | 0.58 | 0.53 | 0.37 | 0.41 | 0.46 | 0.47 |
Item | Year | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|---|
SIEHI-1 | 1988 | 11.42 | 59.91 | 17.96 | 4.46 | 6.25 |
1995 | 15.95 | 40.32 | 36.40 | 6.01 | 1.32 | |
2007 | 15.25 | 36.18 | 34.24 | 10.00 | 4.33 | |
2017 | 11.46 | 28.53 | 31.02 | 22.03 | 6.96 | |
SIEHI-2 | 1988 | 10.71 | 40.20 | 39.13 | 8.61 | 1.35 |
1995 | 0.28 | 14.00 | 69.54 | 16.09 | 0.09 | |
2007 | 0.30 | 6.45 | 51.89 | 40.55 | 0.81 | |
2017 | 4.60 | 18.02 | 44.78 | 26.33 | 6.27 | |
SIEHI | 1988 | 9.29 | 53.28 | 31.71 | 5.30 | 0.42 |
1995 | 3.59 | 39.16 | 53.43 | 3.82 | 0.01 | |
2007 | 3.26 | 27.48 | 57.30 | 11.73 | 0.23 | |
2017 | 5.96 | 25.96 | 44.20 | 22.39 | 1.49 |
Item | SIEHI | SIEHI−1 | SIEHI−2 | C1 | C2 | C3 | VA | NDVI | NPP | H’ | BD | TOC | TN | AK | ILC | NP | TE | LII | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1988 | SIEHI | 1 | 0.720 ** | 0.706 ** | 0.550 ** | 0.516 ** | 0.485 ** | 0.582 ** | 0.465 ** | 0.606 ** | 0.274 ** | 0.265 ** | 0.540 ** | 0.414 ** | −0.199 ** | 0.497 ** | 0.321 ** | 0.210 ** | 0.267 ** |
SIEHI−1 | 0.720 ** | 1 | 0.096 ** | 0.799 ** | 0.741 ** | 0.614 ** | 0.784 ** | 0.639 ** | 0.838 ** | 0.541 ** | 0.249 ** | 0.776 ** | 0.671 ** | −0.254 ** | 0.699 ** | 0.366 ** | 0.240 ** | 0.322 ** | |
SIEHI−2 | 0.706 ** | 0.096 ** | 1 | 0.024 ** | 0.080 ** | 0.115 ** | 0.061 ** | 0.043 ** | 0.094 ** | −0.118 ** | 0.226 ** | 0.047 ** | −0.050 ** | −0.020 ** | 0.134 ** | 0.080 ** | 0.076 ** | 0.003 | |
1995 | SIEHI | 1 | 0.891 ** | 0.304 ** | 0.669 ** | 0.562 ** | 0.515 ** | 0.609 ** | 0.532 ** | 0.678 ** | 0.435 ** | 0.087 ** | 0.612 ** | 0.608 ** | −0.187 ** | 0.275 ** | 0.450 ** | 0.355 ** | 0.368 ** |
SIEHI−1 | 0.891 ** | 1 | −0.082 ** | 0.723 ** | 0.567 ** | 0.625 ** | 0.741 ** | 0.499 ** | 0.767 ** | 0.406 ** | 0.084 ** | 0.593 ** | 0.609 ** | −0.159 ** | 0.477 ** | 0.493 ** | 0.414 ** | 0.362 ** | |
SIEHI−2 | 0.304 ** | −0.082 ** | 1 | 0.034 ** | 0.042 ** | −0.177 ** | −0.166 ** | 0.154 ** | 0.004 | 0.176 ** | 0.027 ** | 0.131 ** | 0.095 ** | −0.142 ** | −0.263 ** | −0.084 ** | −0.095 ** | −0.047 ** | |
2007 | SIEHI | 1 | 0.882 ** | 0.316 ** | 0.780 ** | 0.638 ** | 0.434 ** | 0.685 ** | 0.682 ** | 0.753 ** | 0.568 ** | 0.180 ** | 0.724 ** | 0.612 ** | −0.240 ** | 0.290 ** | 0.356 ** | 0.202 ** | 0.369 ** |
SIEHI−1 | 0.882 ** | 1 | −0.084 ** | 0.830 ** | 0.724 ** | 0.544 ** | 0.801 ** | 0.653 ** | 0.862 ** | 0.521 ** | 0.192 ** | 0.742 ** | 0.643 ** | −0.118 ** | 0.539 ** | 0.375 ** | 0.244 ** | 0.349 ** | |
SIEHI−2 | 0.316 ** | −0.084 ** | 1 | 0.061 ** | −0.071 ** | −0.187 ** | −0.119 ** | 0.175 ** | −0.027 ** | 0.225 ** | 0.053 ** | 0.095 ** | 0.020 ** | −0.329 ** | −0.347 ** | −0.055 ** | −0.075 ** | −0.022 ** | |
2017 | SIEHI | 1 | 0.806 ** | 0.628 ** | 0.714 ** | 0.703 ** | 0.369 ** | 0.300 ** | 0.688 ** | 0.655 ** | 0.670 ** | 0.135 ** | 0.722 ** | 0.753 ** | −0.015 ** | 0.023 ** | 0.401 ** | 0.330 ** | 0.267 ** |
SIEHI−1 | 0.806 ** | 1 | 0.111 ** | 0.820 ** | 0.801 ** | 0.594 ** | 0.526 ** | 0.717 ** | 0.836 ** | 0.577 ** | 0.240 ** | 0.789 ** | 0.763 ** | 0.086 ** | 0.277 ** | 0.546 ** | 0.481 ** | 0.332 ** | |
SIEHI−2 | 0.628 ** | 0.111 ** | 1 | 0.161 ** | 0.189 ** | −0.096 ** | −0.180 ** | 0.237 ** | 0.070 ** | 0.396 ** | −0.054 ** | 0.212 ** | 0.303 ** | −0.084 ** | −0.251 ** | −0.004 | −0.009 ** | −0.002 |
Item | RC | RC1 | RC2 | RC3 | |
---|---|---|---|---|---|
1988–1995 | RC | 1 | 0.679 ** | 0.747 ** | 0.567 ** |
RC1 | 0.679 ** | 1 | 0.192 ** | −0.091 ** | |
RC2 | 0.747 ** | 0.192 ** | 1 | 0.442 ** | |
RC3 | 0.567 ** | −0.091 ** | 0.442 ** | 1 | |
1995–2007 | RC | 1 | 0.687 ** | 0.768 ** | 0.666 ** |
RC1 | 0.687 ** | 1 | 0.256 ** | 0.030 ** | |
RC2 | 0.768 ** | 0.256 ** | 1 | 0.493 ** | |
RC3 | 0.666 ** | 0.030 ** | 0.493 ** | 1 | |
2007–2017 | RC | 1 | 0.724 ** | 0.797 ** | 0.464 ** |
RC1 | 0.724 ** | 1 | 0.254** | −0.141 ** | |
RC2 | 0.797 ** | 0.254 ** | 1 | 0.482 ** | |
RC3 | 0.464 ** | −0.141 ** | 0.482 ** | 1 |
Human Activities | Relative SIEHI | Influence Coefficients | |
---|---|---|---|
Scheme 1 | Scheme 2 | ||
Plantation | 0.8942 | 0.3525 | 0.1883 |
Farming | 0.8560 | 0.4801 | 0.2564 |
Waterway construction | 0.4472 | 1 | 0.9843 |
Pond aquaculture | 0.5846 | 1 | 0.7396 |
Building construction | 0.6080 | 1 | 0.6980 |
Traffic development | 0.4384 | 1 | 1 |
Factory construction | 0.4926 | 1 | 0.9035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Y.; Liu, D. Mapping the Spatiotemporal Pattern of Sandy Island Ecosystem Health during the Last Decades Based on Remote Sensing. Remote Sens. 2022, 14, 5208. https://doi.org/10.3390/rs14205208
Chi Y, Liu D. Mapping the Spatiotemporal Pattern of Sandy Island Ecosystem Health during the Last Decades Based on Remote Sensing. Remote Sensing. 2022; 14(20):5208. https://doi.org/10.3390/rs14205208
Chicago/Turabian StyleChi, Yuan, and Dahai Liu. 2022. "Mapping the Spatiotemporal Pattern of Sandy Island Ecosystem Health during the Last Decades Based on Remote Sensing" Remote Sensing 14, no. 20: 5208. https://doi.org/10.3390/rs14205208
APA StyleChi, Y., & Liu, D. (2022). Mapping the Spatiotemporal Pattern of Sandy Island Ecosystem Health during the Last Decades Based on Remote Sensing. Remote Sensing, 14(20), 5208. https://doi.org/10.3390/rs14205208