Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types
Abstract
:1. Introduction
- This study can serve as a benchmarking basis for the use of CNNs for cloud detection;
- Thus far, no papers dealing with cloud detection on VENS images have been published except for the original MAJA algorithm proposal;
- This study explores the effect on the performance of a CNN of using various band and index combinations.
2. Data
2.1. The VENS Satellite
2.2. Training Dataset
- 1.
- Three-class dataset: thick clouds, thin clouds, cloudless
- thick cloud: an absolutely non-transparent cloud pixel;
- thin cloud: a pixel corrupted by a semi-transparent cloud;
- cloudless: clear and cloud-free pixels.
- 2.
- Binary class dataset: clouds, cloudless
- a derived product from the three-class dataset created by joining the two cloud classes (thick and thin) into one.
- 1
- VENS scenes containing all spectral bands (see Table 1);
- 2
- RGB VENS scenes;
- 3
- RGB + NDVI VENS scenes.
3. Methodology
3.1. Architectures
3.1.1. U-Net
3.1.2. SegNet
3.1.3. DeepLabv3+
- ResNet-50: 17,860,786, out of which 17,826,002 were trainable
- ResNet-101: 36,931,250, out of which 36,844,242 were trainable
- ResNet-152: 52,644,018, out of which 52,510,930 were trainable
3.2. Experiments
3.2.1. Experiment Settings
3.2.2. Loss Functions
4. Results
4.1. Comparison among Architectures
4.2. Comparison among Datasets
4.3. Comparison with MAJA
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACCA | Automated Cloud Cover Assessment |
CNN | Convolutional Neural Network |
FCN | Fully Convolutional Network |
Fmask | Function of Mask |
LEDAPS | Landsat Ecosystem Disturbance Adaptive Processing System |
MAJA | MACCS-ATCOR Joint Algorithm |
NDVI | Normalized Difference Vegetation Index |
ReLU | Rectified Linear Unit |
RGB | Red, Green, Blue |
VENS | Vegetation and Environment New Micro-Satellite |
XBAER-CM | eXtensible Bremen AErosol Retrieval |
References
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in Understanding Clouds from ISCCP. Bull. Am. Meteoroligcal Soc. 1999, 80, 2261–2288. [Google Scholar] [CrossRef]
- Asner, G.P. Cloud Cover in Landsat Observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Irish, R. Landsat 7 Automatic Cloud Cover Assessment. In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI; SPIE: Bellingham, WA, USA, 2000. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Koren, I.; Remer, L.A.; Kaufman, Y.J.; Rudich, Y.; Martins, J.V. On the Twilight Zone Between Clouds and Aerosols. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, B.V.; Chen, L.; Reichenbach, S.E.; Irish, R.R. Automated Cloud Cover Assessment for Landsat TM Images. In Imaging Spectrometry; SPIE: Bellingham, WA, USA, 1996. [Google Scholar]
- Vermote, E.; Saleous, N. LEDAPS Surface Reflectance Product Description; University of Maryland: College Park, MD, USA, 2007. [Google Scholar]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. Image Signal Process. Remote Sens. 2017, 10427, 37–48. [Google Scholar]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4–7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Mei, L.; Vountas, M.; Gómez-Chova, L.; Rozanov, V.; Jäger, M.; Lotz, W.; Burrows, J.P.; Hollman, R. A Cloud Masking Algorithm for the XBAER Aerosol Retrieval Using MERIS Data. Remote Sens. Environ. 2016, 197, 37–48. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A Multi-Temporal Method for Cloud Detection, Applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 Images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Automated Cloud, Cloud Shadow, and Snow Detection in Multitemporal Landsat Data: An Algorithm Designed Specifically for Monitoring Land Cover Change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Chen, Y.; Fan, R.; Bilal, M.; Yang, X.; Wang, J.; Li, W. Multilevel Cloud Detection for High-Resolution Remote Sensing Imagery Using Multiple Convolutional Neural Networks. ISPRS Int. J.-Geo-Inf. 2018, 7, 181. [Google Scholar] [CrossRef]
- Ma, N.; Sun, L.; Zhou, C.; He, Y. Cloud Detection Algorithm for Multi-Satellite Remote Sensing Imagery Based on a Spectral Library and 1D Convolutional Neural Network. Remote Sens. 2021, 16, 3319. [Google Scholar] [CrossRef]
- Shi, M.; Xie, F.; Zi, Y.; Yin, J. Cloud Detection of Remote Sensing Images by Deep Learning. In Proceedings of the 2016 International Geoscience and Remote Sensing Symposium IGARSS, Beijing, China, 10–15 July 2016; pp. 701–704. [Google Scholar]
- Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep Learning Based Cloud Detection for Medium and High Resolution Remote Sensing Images of Different Sensors. ISPRS J. Photogramm. Remote Sens. 2019, 250, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel Cloud Detection in Remote Sensing Images Based on Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 8, 3631–3640. [Google Scholar] [CrossRef]
- Francis, A.; Sidiropoulos, P.; Muller, J. CloudFCN: Accurate and Robust Cloud Detection for Satellite Imagery with Deep Learning. Remote Sens. 2019, 11, 2312. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Medical Image Computing and Computer-Assisted Intervention, Pt III. Springer: Cham, Switzerland, 2015. [Google Scholar]
- Li, X.; Yang, X.; Li, X.; Lu, S.; Ye, Y.; Ban, Y. GCDB-UNet: A Novel Robust Cloud Detection Approach for Remote Sensing. Knowl.-Baed Syst. 2022, 238, 107890. [Google Scholar] [CrossRef]
- Wu, X.; Shi, Z. Utilizing Multilevel Features for Cloud Detection on Satellite Imagery. Remote Sens. 2018, 10, 1853. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014. Available online: http://arxiv.org/abs/1409.1556 (accessed on 6 February 2022).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. (NIPS) 2012, 60, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Ouyang, W.; Li, H.; Wang, X. Saliency Detection by Multi-Context Deep Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1265–1274. [Google Scholar]
- Zhan, Y.; Wang, J.; Shi, J.; Cheng, G.; Yao, L.; Sun, W. Distinguishing Cloud and Snow in Satellite Images via Deep Convolutional Network. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1785–1789. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2017, arXiv:1606.00915. Available online: https://arxiv.org/abs/1606.00915 (accessed on 11 October 2022).
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.E.B.; Simbes, R.E.O.; et al.; Queiroz, G.R. Comparison of Cloud Cover Detection Algorithms on Sentinel-2 Images of the Amazon Tropical Forest. Remote Sens. 2020, 12, 1284. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Moran, R.; Gomez-Chova, L.; Alonso, L.; Mateo-Garcia, G.; Lopez-Puigdollers, D. Towards a Novel Approach for Sentinel-3 Synergistic OLCI/SLSTR Cloud and Cloud Shadow Detection Based on Stereo Cloud-Top Height Estimation. ISPRS J. Photogramm. Remote Sens. 2021, 181, 238–253. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Murino, L.; Amato, U.; Carfora, M.F.; Antoniadis, A.; Huang, B.; Menzel, W.P.; Serio, C. Cloud Detection of MODIS Multispectral Images. J. Atmos. Ocean. Technol. 2014, 31, 347–365. [Google Scholar]
- Jang, J.D.; Viau, A.A.; Anctil, F.; Bartholome, E. Neural Network Application for Cloud Detection in SPOT VEGETATION Images. Int. J. Remote Sens. 2006, 4, 719–736. [Google Scholar] [CrossRef]
- Dong, Z.P.; Liu, Y.X.; Xu, W.; Feng, Y.K.; Chen, Y.L.; Tang, Q.H. A Cloud Detection Method for GaoFen-6 Wide Field of View Imagery Based on the Spectrum and Variance of Superpixels. Int. J. Remote Sens. 2021, 16, 6315–6332. [Google Scholar]
- Segal-Rozenhaimer, M.; Li, A.; Das, K.; Chirayath, V. Cloud Detection Algorithm for Multi-Modal Satellite Imagery Using Convolutional Neural-Networks (CNN). Remote Sens. Environ. 2020, 237, 111446. [Google Scholar] [CrossRef]
- Houze, R.A. Types of Clouds in Earth’s Atmosphere. In Cloud Dynamics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 3–23. [Google Scholar]
- Sun, L.; Wang, Q.; Zhou, X.Y.; Wei, J.; Yang, X.; Zhang, W.H.; Ma, N. A Priori Surface Reflectance-Based Cloud Shadow Detection Algorithm for Landsat 8 OLI. IEEE Geosci. Remote Sens. Lett. 2017, 10, 1610–1614. [Google Scholar] [CrossRef]
- Salvoldi, M.; Tubul, Y.; Karnieli, A. VENμS Derived NDVI and REIP at Different View Azimuth Angles. Remote Sens. 2022, 14, 184. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Daytime Cloud Detection Algorithm Based on a Multitemporal Dataset for GK-2A Imagery. Remote Sens. 2021, 13, 3215. [Google Scholar] [CrossRef]
- Müller, V. Anotace MapovéHo Podkladu Podle SatelitníCh SníMků TeréNu. Master’s Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2021. [Google Scholar]
- Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667. [Google Scholar] [CrossRef]
- Hoeser, T.; Bachofer, F.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part II: Applications. Remote Sens. 2020, 11, 3053. [Google Scholar] [CrossRef]
- Ye, J.C.; Sung, W.K. Understanding Geometry of Encoder-Decoder CNNs. In Proceedings of the Machine Learning Research, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; JMLR-Journal Machine Learning Research: Cambridge, MA, USA, 2019. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving Neural Networks by Preventing Co-Adaptation of Feature detectors. arXiv 2012, arXiv:1207.0580. Available online: https://arxiv.org/abs/1207.0580 (accessed on 11 October 2022).
- Yang, J.Y.; Guo, J.H.; Yue, H.J.; Liu, Z.H.; Hu, H.F.; Li, K. CDnet: CNN-Based Cloud Detection for Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 8, 6195–6211. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Hirose, I.; Tsunomura, M.; Shishikura, M.; Ishii, T.; Yoshimura, Y.; Ogawa-Ochiai, K.; Tsumura, N. U-Net-Based Segmentation of Microscopic Images of Colorants and Simplification of Labeling in the Learning Process. J. Imaging 2022, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 12, 2481–2495. [Google Scholar] [CrossRef]
- Li, W.; Cao, Y.; Zhang, W.; Ning, Y.; Xu, X. Cloud Detection Method Based on All-Sky Polarization Imaging. Sensors 2022, 22, 6162. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2016, arXiv:1412.7062. Available online: https://arxiv.org/abs/1412.7062 (accessed on 12 October 2022).
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, CA, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. Available online: https://arxiv.org/abs/1706.05587 (accessed on 11 October 2022).
- Liu, W.; Rabinovich, A.; Berg, A.C. ParseNet: Looking Wider to See Better. arXiv 2017, arXiv:1506.04579. Available online: https://arxiv.org/abs/1506.04579 (accessed on 11 October 2022).
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2017, arXiv:1502.03167. Available online: https://arxiv.org/abs/1502.03167 (accessed on 11 October 2022).
- Chen, L.C.; Zhu, Y.K.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Computer Vision—ECCV 2018, Pt VII. Springer: Berlin, Germany, 2018. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Pedrayes, O.D.; Lema, D.G.; Garcia, D.F.; Usamentiaga, R.; Alonso, A. Evaluation of Semantic Segmentation Methods for Land Use with Spectral Imaging Using Sentinel-2 and PNOA Imagery. Remote Sens. 2021, 13, 2292. [Google Scholar] [CrossRef]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. Available online: https://arxiv.org/abs/1710.05941 (accessed on 11 October 2022).
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, CA, USA, 2000. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 1, 79–86. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 3, 297–302. [Google Scholar] [CrossRef]
- Zijdenbos, A.P.; Dawant, B.M.; Margolin, R.A.; Palmer, A.C. Morphometric Analysis of White-Matter Lesions in MR Images: Method and Validation. IEEE Trans. Med. Imaging 1994, 4, 716–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, D.; Newsam, S.; Zhang, H.K.K.; Qiu, Y.; Huang, J.F. Cloud and Cloud Shadow Detection in Landsat Imagery Based on Deep Convolutional Neural Networks. Remote Sens. Environ. 2019, 225, 307–316. [Google Scholar] [CrossRef]
- Shao, Z.F.; Pan, Y.; Diao, C.Y.; Cai, J.J. Cloud Detection in Remote Sensing Images Based on Multiscale Features-Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 6, 4062–4076. [Google Scholar] [CrossRef]
- Yu, J.C.; Li, Y.C.; Zheng, X.X.; Zhong, Y.F.; He, P. An Effective Cloud Detection Method for Gaofen-5 Images via Deep Learning. Remote Sens. 2020, 12, 2106. [Google Scholar] [CrossRef]
- Karnieli, A. Development and Implementation of Spectral Crust Index over Dune Sands. Int. J. Remote Sens. 1997, 18, 1207–1220. [Google Scholar] [CrossRef]
- Gunning, D.; Aha, D.W. DARPA’s Explainable Artificial Intelligence Program. AI Magazione 2019, 2, 44–58. [Google Scholar] [CrossRef]
- Vicente-Saez, R.; Martinez-Fuentes, C. Open Science Now: A Systematic Literature Review for an Integrated Definition. J. Bus. Res. 2018, 88, 428–436. [Google Scholar] [CrossRef]
Band | Central Wavelength [nm] | Bandwidth [nm] | Main Application |
---|---|---|---|
Band 1 | 423.9 | 40 | Atmospheric correction, water |
Band 2 | 446.9 | 40 | Aerosols, clouds |
Band 3 | 491.9 | 40 | Atmospheric correction, water |
Band 4 | 555.0 | 40 | Land |
Band 5 | 619.7 | 40 | Vegetation indices |
Band 6 | 619.7 | 40 | DEM, image quality |
Band 7 | 666.2 | 30 | Red edge |
Band 8 | 702.0 | 24 | Red edge |
Band 9 | 741.1 | 16 | Red edge |
Band 10 | 782.2 | 16 | Red edge |
Band 11 | 861.1 | 40 | Vegetation indices |
Band 12 | 908.7 | 20 | Water vapour |
Architecture | fb | fb_a | rgb | rgb_a | rgb_ndvi | rgb_ndvi_a |
---|---|---|---|---|---|---|
U-Net_d00 | 0.330 | 0.368 | 0.384 | 0.434 | 0.348 | 0.340 |
U-Net_d50 | 0.353 | 0.362 | 0.415 | 0.380 | 0.467 | 0.359 |
SegNet_d00 | 0.383 | 0.401 | 0.406 | 0.403 | 0.373 | 0.372 |
SegNet_d50 | 0.439 | 0.422 | 0.431 | 0.497 | 0.494 | 0.398 |
DeepLabV3+_rn50_d00 | 0.378 | 0.423 | 0.431 | 0.444 | 0.435 | 0.506 |
DeepLabV3+_rn50_d50 | 0.410 | 0.429 | 0.405 | 0.445 | 0.356 | 0.452 |
DeepLabV3+_rn101_d00 | 0.423 | 0.420 | 0.375 | 0.377 | 0.386 | 0.349 |
DeepLabV3+_rn101_d50 | 0.426 | 0.452 | 0.420 | 0.406 | 0.368 | 0.484 |
DeepLabV3+_rn152_d00 | 0.411 | 0.396 | 0.380 | 0.399 | 0.353 | 0.356 |
DeepLabV3+_rn152_d50 | 0.412 | 0.436 | 0.415 | 0.404 | 0.390 | 0.424 |
Architecture | fb | fb_a | rgb | rgb_a | rgb_ndvi | rgb_ndvi_a |
---|---|---|---|---|---|---|
U-Net_d00 | 0.062 | 0.090 | 0.090 | 0.100 | 0.058 | 0.049 |
U-Net_d50 | 0.069 | 0.097 | 0.089 | 0.091 | 0.091 | 0.114 |
SegNet_d00 | 0.115 | 0.094 | 0.119 | 0.107 | 0.086 | 0.097 |
SegNet_d50 | 0.268 | 0.189 | 0.239 | 0.139 | 0.114 | 0.141 |
DeepLabV3+_rn50_d00 | 0.116 | 0.181 | 0.094 | 0.107 | 0.101 | 0.068 |
DeepLabV3+_rn50_d50 | 0.137 | 0.118 | 0.111 | 0.135 | 0.118 | 0.125 |
DeepLabV3+_rn101_d00 | 0.095 | 0.075 | 0.137 | 0.065 | 0.238 | 0.063 |
DeepLabV3+_rn101_d50 | 0.097 | 0.141 | 0.111 | 0.107 | 0.153 | 0.122 |
DeepLabV3+_rn152_d00 | 0.151 | 0.171 | 0.145 | 0.159 | 0.155 | 0.153 |
DeepLabV3+_rn152_d50 | 0.180 | 0.189 | 0.192 | 0.186 | 0.222 | 0.226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pešek, O.; Segal-Rozenhaimer, M.; Karnieli, A. Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types. Remote Sens. 2022, 14, 5210. https://doi.org/10.3390/rs14205210
Pešek O, Segal-Rozenhaimer M, Karnieli A. Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types. Remote Sensing. 2022; 14(20):5210. https://doi.org/10.3390/rs14205210
Chicago/Turabian StylePešek, Ondřej, Michal Segal-Rozenhaimer, and Arnon Karnieli. 2022. "Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types" Remote Sensing 14, no. 20: 5210. https://doi.org/10.3390/rs14205210
APA StylePešek, O., Segal-Rozenhaimer, M., & Karnieli, A. (2022). Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types. Remote Sensing, 14(20), 5210. https://doi.org/10.3390/rs14205210