Crop Classification and Representative Crop Rotation Identifying Using Statistical Features of Time-Series Sentinel-1 GRD Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Method
3.1. Generalized Gamma Distribution (GΓD)
3.2. Crop Classification Using the RF Classifier
4. Experiment and Results
4.1. Crop Classification Using a Single Type of Feature
4.2. Crop Classification Using Feature Combinations
4.3. Crop Sequence and Crop Rotation Mapping Result (2017–2021)
5. Discussion
5.1. Feature Time Series Analysis
5.2. Feature Importance Evaluation
5.3. Classification Performance Using the Automatic Segmentation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liebman, M.; Dyck, E. Crop Rotation and Intercropping Strategies for Weed Management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Panigrahy, S.; Sharma, S.A. Mapping of Crop Rotation Using Multidate Indian Remote Sensing Satellite Digital Data. ISPRS J. Photogramm. Remote Sens. 1997, 52, 85–91. [Google Scholar] [CrossRef]
- Waldhoff, G.; Lussem, U.; Bareth, G. Multi-Data Approach for Remote Sensing-Based Regional Crop Rotation Mapping: A Case Study for the Rur Catchment, Germany. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 55–69. [Google Scholar] [CrossRef]
- Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gelfand, I.; Hurtt, G.C. Identifying Representative Crop Rotation Patterns and Grassland Loss in the US Western Corn Belt. Comput. Electron. Agric. 2014, 108, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Xu, M.; Chen, Z.; Gao, B.; Cai, J.; Shen, F.; He, X.; Zhuang, Y.; Chen, D. Phenology-Based Classification of Crop Species and Rotation Types Using Fused MODIS and Landsat Data: The Comparison of a Random-Forest-Based Model and a Decision-Rule-Based Model. Soil Tillage Res. 2021, 206, 104838. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Chen, S.; Ye, T. Mapping Crop Rotation by Using Deeply Synergistic Optical and SAR Time Series. Remote Sens. 2021, 13, 4160. [Google Scholar] [CrossRef]
- McNairn, H.; der Sanden, J.J.; Brown, R.J.; Ellis, J. The Potential of RADARSAT-2 for Crop Mapping and Assessing Crop Condition. In Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; Volume 2, pp. 81–88. [Google Scholar]
- Foody, G.M.; McCulloch, M.B.; Yates, W.B. Crop Classification from C-Band Polarimetric Radar Data. Int. J. Remote Sens. 1994, 15, 2871–2885. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The Application of C-Band Polarimetric SAR for Agriculture: A Review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Lee, J.-S.; Grunes, M.R.; Pottier, E. Quantitative Comparison of Classification Capability: Fully Polarimetric versus Dual and Single-Polarization SAR. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2343–2351. [Google Scholar]
- Hoekman, D.H.; Vissers, M.A.M. A New Polarimetric Classification Approach Evaluated for Agricultural Crops. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2881–2889. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.S.; Alonso, L.; Moreno, J.F.; Mateo, M.P.C.; de La Cruz, D.F.; Montoro, A. A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1057–1070. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Dou, Q.; Peng, X.; Wang, J.; Lopez-Sanchez, J.M.; Shang, J.; Fu, H.; Zhu, J. Crop Classification Based on the Physically Constrained General Model-Based Decomposition Using Multi-Temporal RADARSAT-2 Data. Remote Sens. 2022, 14, 2668. [Google Scholar] [CrossRef]
- Del Frate, F.; Schiavon, G.; Solimini, D.; Borgeaud, M.; Hoekman, D.H.; Vissers, M.A.M. Crop Classification Using Multiconfiguration C-Band SAR Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1611–1619. [Google Scholar] [CrossRef] [Green Version]
- Silva-Perez, C.; Marino, A.; Lopez-Sanchez, J.M.; Cameron, I. Multitemporal Polarimetric SAR Change Detection for Crop Monitoring and Crop Type Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12361–12374. [Google Scholar] [CrossRef]
- Skriver, H. Crop Classification by Multitemporal C-and L-Band Single-and Dual-Polarization and Fully Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2138–2149. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of Crop Identification Based on Optical and SAR Image Time Series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Bargiel, D. A New Method for Crop Classification Combining Time Series of Radar Images and Crop Phenology Information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Shang, J.; Liao, C.; Liu, J. Application of Polarization Signature to Land Cover Scattering Mechanism Analysis and Classification Using Multi-Temporal C-Band Polarimetric RADARSAT-2 Imagery. Remote Sens. Environ. 2017, 193, 11–28. [Google Scholar] [CrossRef]
- Wang, D.; Lin, H.; Chen, J.; Zhang, Y.; Zeng, Q. Application of Multi-Temporal ENVISAT ASAR Data to Agricultural Area Mapping in the Pearl River Delta. Int. J. Remote Sens. 2010, 31, 1555–1572. [Google Scholar] [CrossRef]
- Gao, H.; Wang, C.; Wang, G.; Fu, H.; Zhu, J. A Novel Crop Classification Method Based on PpfSVM Classifier with Time-Series Alignment Kernel from Dual-Polarization SAR Datasets. Remote Sens. Environ. 2021, 264, 112628. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Xie, Q.; Al Baz, A.; Huang, X.; Shang, J.; He, Y. Synergistic Use of Multi-Temporal RADARSAT-2 and VENμS Data for Crop Classification Based on 1D Convolutional Neural Network. Remote Sens. 2020, 12, 832. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Chaudhuri, U.; Bhogapurapu, N.R.; Lopez-Sanchez, J.M.; Banerjee, B.; Bhattacharya, A.; Mandal, D.; Rao, Y.S. Synergistic Use of TanDEM-X and Landsat-8 Data for Crop-Type Classification and Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8744–8760. [Google Scholar] [CrossRef]
- Mestre-Quereda, A.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Jacob, A.W.; Engdahl, M.E. Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4070–4084. [Google Scholar] [CrossRef]
- Whelen, T.; Siqueira, P. Coefficient of Variation for Use in Crop Area Classification across Multiple Climates. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 114–122. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, W.; Shang, J.; Liu, J.; Liu, X. Superpixel-Based Cropland Classification of SAR Image With Statistical Texture and Polarization Features. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2695–2709. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Chen, Q.; Liu, X. A Practical Plateau Lake Extraction Algorithm Combining Novel Statistical Features and Kullback-Leibler Distance Using Synthetic Aperture Radar Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4702–4713. [Google Scholar] [CrossRef]
- Li, H.; Hong, W.; Wu, Y.; Fan, P.; Member, S. On the Empirical-Statistical Modeling of SAR Images With Generalized Gamma Distribution. IEEE J. Sel. Top. Signal Process. 2011, 5, 386–397. [Google Scholar] [CrossRef]
- Ouellette, J.D.; Johnson, J.T.; Balenzano, A.; Mattia, F.; Satalino, G.; Kim, S.-B.; Dunbar, R.S.; Colliander, A.; Cosh, M.H.; Caldwell, T.G.; et al. A Time-Series Approach to Estimating Soil Moisture from Vegetated Surfaces Using L-Band Radar Backscatter. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3186–3193. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Q.; Zou, Q.; Li, Q.; Wu, G. Stepwise Evolution Analysis of the Region-Merging Segmentation for Scale Parameterization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2461–2472. [Google Scholar] [CrossRef]
Pixel VH | Pixel VV | Pixel VH/VV | Object VH | Object VV | Object VH/VV | |
Corn | 90.38% | 86.55% | 73.57% | 98.73% | 91.42% | 78.62% |
Soybean | 88.55% | 80.40% | 71.06% | 87.97% | 90.50% | 100.00% |
Wheat | 61.76% | 62.49% | 31.97% | 100.00% | 30.48% | 50.91% |
Grass | 38.05% | 38.32% | 1.29% | 61.72% | 40.76% | 3.79% |
Woodland | 93.56% | 84.89% | 91.15% | 96.93% | 100.00% | 94.33% |
Build-up | 14.98% | 11.85% | 2.30% | 62.48% | 79.99% | 20.18% |
OA | 85.21% | 79.29% | 69.42% | 92.17% | 87.39% | 83.79% |
Kappa | 79.19% | 71.15% | 56.52% | 89.16% | 82.72% | 77.33% |
OGΓD vVH | OGΓD vVV | OGΓD vVH/VV | OGΓD σVH | OGΓD σVV | OGΓD σVH/VV | |
Corn | 69.69% | 46.39% | 42.46% | 98.73% | 92.70% | 92.70% |
Soybean | 62.27% | 43.27% | 67.72% | 94.29% | 95.38% | 90.17% |
Wheat | 22.43% | 26.66% | 76.29% | 100.00% | 49.80% | 80.68% |
Grass | 0.00% | 26.03% | 40.76% | 100.00% | 40.76% | 59.24% |
Woodland | 39.30% | 57.46% | 72.51% | 100.00% | 90.03% | 74.58% |
Build-up | 93.99% | 83.90% | 23.53% | 59.44% | 57.17% | 100.00% |
OA | 56.59% | 46.22% | 58.54% | 96.66% | 88.25% | 86.56% |
Kappa | 39.77% | 27.99% | 42.86% | 95.34% | 83.80% | 81.34% |
Pixel VH + OGΓD σVH | Object VH + OGΓD σVH | Pixel VH + OGΓD vVH/VV | Object VH + OGΓD vVH/VV | Pixel All | Object All | OGΓD vall | OGΓD σall | |
---|---|---|---|---|---|---|---|---|
Corn | 95.59% | 98.73% | 42.46% | 94.02% | 92.12% | 91.42% | 81.19% | 91.42% |
Soybean | 87.97% | 94.29% | 67.72% | 87.97% | 90.18% | 100.00% | 81.20% | 94.29% |
Wheat | 100.00% | 100.00% | 76.29% | 100.00% | 66.94% | 13.77% | 86.23% | 80.68% |
Grass | 61.72% | 66.77% | 40.76% | 61.72% | 34.75% | 29.44% | 29.82% | 55.45% |
Woodland | 96.93% | 100.00% | 79.70% | 100.00% | 93.98% | 96.93% | 80.79% | 100.00% |
Build-up | 48.33% | 74.60% | 22.66% | 63.26% | 15.16% | 55.56% | 84.13% | 91.69% |
OA | 90.84% | 95.54% | 59.85% | 91.18% | 86.58% | 88.58% | 79.22% | 92.03% |
Kappa | 87.31% | 93.78% | 45.19% | 87.72% | 81.13% | 84.07% | 71.13% | 89.01% |
2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |
Corn | 97.27% | 95.90% | 96.91% | 100.00% | 98.73% | 99.72% | 97.20% | 93.41% | 100.00% | 100.00% |
Soybean | 94.95% | 99.76% | 93.99% | 100.00% | 94.29% | 100.00% | 100.00% | 100.00% | 98.68% | 99.89% |
Wheat | 82.27% | 87.70% | 100.00% | 58.26% | 100.00% | 78.45% | 44.44% | 57.54% | 100.00% | 76.58% |
Grass | 75.91% | 51.81% | 32.28% | 63.45% | 100.00% | 100.00% | 77.72% | 100.00% | 50.63% | 100% |
Woodland | 92.33% | 100.00% | 100.00% | 99.90% | 100.00% | 92.39% | 97.20% | 100.00% | 91.12% | 99.36% |
Build-up | 94.64% | 53.03% | 98.20% | 27.02% | 59.44% | 73.38% | 100.00% | 59.82% | 56.96% | 22.29% |
OA | 93.99% | 92.93% | 96.66% | 95.14% | 95.72% | |||||
Kappa | 91.47% | 90.10% | 95.34% | 92.80% | 93.94% |
Rank | Crop Sequence | % of the Total Area | Cumulative % | Total Field Number |
---|---|---|---|---|
#1 | S-C-S-C-S | 12.80% | 12.80% | 50 |
#2 | C-S-C-S-C | 12.40% | 25.20% | 50 |
#3 | C-S-S-C-S | 4.34% | 29.54% | 29 |
#4 | C-S-C-C-S | 3.66% | 33.20% | 14 |
#5 | G-W-W-W-W | 2.55% | 35.75% | 21 |
#6 | W-W-W-W-W | 2.51% | 38.26% | 14 |
#7 | C-C-C-C-C | 2.50% | 40.76% | 9 |
#8 | C-S-C-C-C | 2.08% | 42.85% | 8 |
#9 | C-C-C-C-S | 1.97% | 44.81% | 8 |
#10 | S-C-S-S-C | 1.93% | 46.75% | 9 |
2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |
Corn | 89.67% | 92.44% | 93.31% | 93.24% | 94.59% | 93.13% | 93.12% | 89.26% | 95.56% | 93.76% |
Soybean | 94.24% | 93.06% | 87.62% | 96.27% | 89.33% | 93.58% | 93.53% | 95.36% | 93.19% | 92.89% |
Wheat | 79.01% | 79.68% | 91.58% | 52.11% | 74.10% | 54.70% | 42.23% | 38.97% | 94.40% | 66.06% |
Grass | 65.31% | 39.64% | 30.51% | 57.16% | 84.25% | 76.93% | 43.41% | 74.24% | 48.62% | 87.23% |
Woodland | 76.07% | 87.53% | 86.13% | 89.17% | 83.92% | 85.36% | 82.01% | 90.05% | 76.14% | 91.91% |
Build-up | 34.98% | 22.97% | 32.21% | 9.02% | 35.98% | 52.48% | 44.82% | 19.32% | 10.35% | 5.13% |
OA | 86.81% | 86.14% | 88.10% | 87.53% | 89.07% | |||||
Kappa | 81.32% | 80.59% | 83.38% | 81.58% | 84.46% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wang, J.; He, Y.; Shan, B. Crop Classification and Representative Crop Rotation Identifying Using Statistical Features of Time-Series Sentinel-1 GRD Data. Remote Sens. 2022, 14, 5116. https://doi.org/10.3390/rs14205116
Zhou X, Wang J, He Y, Shan B. Crop Classification and Representative Crop Rotation Identifying Using Statistical Features of Time-Series Sentinel-1 GRD Data. Remote Sensing. 2022; 14(20):5116. https://doi.org/10.3390/rs14205116
Chicago/Turabian StyleZhou, Xin, Jinfei Wang, Yongjun He, and Bo Shan. 2022. "Crop Classification and Representative Crop Rotation Identifying Using Statistical Features of Time-Series Sentinel-1 GRD Data" Remote Sensing 14, no. 20: 5116. https://doi.org/10.3390/rs14205116
APA StyleZhou, X., Wang, J., He, Y., & Shan, B. (2022). Crop Classification and Representative Crop Rotation Identifying Using Statistical Features of Time-Series Sentinel-1 GRD Data. Remote Sensing, 14(20), 5116. https://doi.org/10.3390/rs14205116