Delineating Fire-Hazardous Areas and Fire-Induced Patterns Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Details of the Study Area
2.2. Materials
2.2.1. Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fire Data
2.2.2. Global Digital Elevation Model (GDEM) Data
2.2.3. National Land Cover Type Products
2.2.4. Net Primary Productivity (NPP) Data
2.2.5. China’s Ecological Function Reserve (EFR)
2.3. Methods
2.3.1. Point Density Analysis
2.3.2. The Construction of the Fire Intensity Index
3. Results
3.1. Spatial Development of Active Fires in Northeast China from 2012 to 2020
3.1.1. Spatial Characteristics of Active Fires
3.1.2. Spatial Characteristics of Active Fire Radiation Power
3.1.3. Spatial Identification of Varied Active Fire Intensity
3.2. Characteristics of Occurrence and Development in Active Fire-Hazardous Areas
3.2.1. Topographic Characteristics of Active Fire Occurrence and Development
3.2.2. Characteristics of Land Cover of Active Fire Occurrence and Development
3.2.3. Characteristics of NPP of Active Fire Occurrence and Development
3.3. Active Fire Occurrence-Induced Concept Pattern Recognition
3.3.1. Active Fire-Induced Conceptual Pattern Construction
3.3.2. Active Fire-Induced Pattern and Spatial Recognition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, L.T.; Kurth, L.L.; Parresol, B.R.; Ottmar, R.D.; Prichard, S.J. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States. For. Ecol. Manag. 2012, 273, 43–49. [Google Scholar] [CrossRef]
- Prichard, S.J.; Hessburg, P.F.; Hagmann, R.K.; Povak, N.A.; Dobrowski, S.Z.; Hurteau, M.D.; Kane, V.; Keane, R.E.; Kobziar, L.N.; Kolden, C.A.; et al. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 2021, 31, e02433. [Google Scholar] [CrossRef]
- Temudo, M.P.; Oom, D.; Pereira, J.M. Bio-cultural fire regions of Guinea-Bissau: Analysis combining social research and satellite remote sensing. Appl. Geogr. 2020, 118, 102203. [Google Scholar] [CrossRef]
- Laris, P.; Dadashi, S.; Jo, A.; Wechsler, S. Buffering the savanna: Fire regimes and disequilibrium ecology in West Africa. Plant Ecol. 2016, 217, 583–596. [Google Scholar] [CrossRef]
- Westgate, M.J.; Driscoll, D.A.; Lindenmayer, D.B. Can the intermediate disturbance hypothesis and information on species traits predict anuran responses to fire? OIKOS 2012, 121, 1516–1524. [Google Scholar] [CrossRef]
- Armenteras-Pascual, D.; Retana-Alumbreros, J.; Molowny-Horas, R.; Roman-Cuesta, R.M.; Gonzalez-Alonso, F.; Morales-Rivas, M. Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agric. For. Meteorol. 2011, 151, 279–289. [Google Scholar] [CrossRef]
- Roloff, G.J.; Mealey, S.P.; Bailey, J.D. Comparative hazard assessment for protected species in a fire-prone landscape. For. Ecol. Manag. 2012, 277, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.J.; Archibald, S. Confronting complexity: Fire policy choices in South African savanna parks. Int. J. Wildland Fire 2003, 12, 381–389. [Google Scholar] [CrossRef]
- Butz, R.J. Traditional fire management: Historical fire regimes and land use change in pastoral East Africa. Int. J. Wildland Fire 2009, 18, 442–450. [Google Scholar] [CrossRef]
- White, A.M.; Long, J.W. Understanding ecological contexts for active reforestation following wildfires. New For. 2019, 50, 41–56. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Ellsworth, L.M.; Litton, C.M.; Leary, J.J.K. Restoration impacts on fuels and fire potential in a dryland tropical ecosystem dominated by the invasive grass Megathyrsus maximus. Restor. Ecol. 2015, 23, 955–963. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.P.; Freeborn, P.H.; Boschetti, L.; Justice, C.; Ichoku, C.; Schroeder, W.; Davies, D.; et al. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Roy, D.P.; Kumar, S.S. Multi-year MODIS active fire type classification over the Brazilian Tropical Moist Forest Biome. Int. J. Digit. Earth 2017, 10, 54–84. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Xiao, C.W.; Feng, Z.M.; Li, W.J.; Zhang, X.Z. Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Glob. Change Biol. 2020, 26, 2970–2987. [Google Scholar] [CrossRef] [PubMed]
- International Code Council, 2015 International Wildland-Urban Interface Code. Available online: https://codes.iccsafe.org/content/IWUIC2015/chapter-6-fire-protection-requirements (accessed on 28 December 2021).
- Miller, R.K.; Field, C.B.; Mach, K.J. Factors influencing adoption and rejection of fire hazard severity zone maps in California. Int. J. Disaster Risk Reduct. 2020, 50, 101686. [Google Scholar] [CrossRef]
- Enoh, M.A.; Okek, U.C.; Narinua, N.Y. Identification and modelling of forest fire severity and risk zones in the Cross-Niger transition forest with remotely sensed satellite data. Egypt. J. Remote Sens. Space Sci. 2021, 24, 879–887. [Google Scholar] [CrossRef]
- Herbert, C.; Butsic, V. Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses. Fire 2022, 5, 44. [Google Scholar] [CrossRef]
- Sinha, D.; Kumari, R.; Tripathi, S. Semisupervised Classification Based Clustering Approach in WSN for Forest Fire Detection. Wirel. Pers. Commun. 2019, 109, 2561–2605. [Google Scholar] [CrossRef]
- Fengjin, X.; Lianchun, S. Analysis of extreme low-temperature events during the warm season in Northeast China. Nat. Hazards. 2013, 58, 1333–1344. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, Y.; Yuan, X.; Wang, J.S.; Zhang, X.Z. Analysis of forest fires in Northeast China from 2003 to 2011. Int. J. Remote Sens. 2013, 34, 8235–8251. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Zhao, Y.D.; Liu, W.P.; Liu, S.B.; Yao, R.T. An Intelligent Wireless System for Field Ecology Monitoring and Forest Fire Warning. Sensors 2018, 18, 4457. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, A.H.; Zhang, J.; Groninger, J.W.; van Etten, E.J.; Sarkodie, S.A.; Lutz, J.A.; Valencia, C.F. Seasonal weather and climate prediction over area burned in grasslands of northeast China. Sci. Rep. 2020, 10, 19961. [Google Scholar] [CrossRef]
- Chen, W.; Moriya, K.; Sakai, T.; Koyama, L.; Cao, C.X. Monitoring of post-fire forest recovery under different restoration modes based on time series Landsat data. Eur. J. Remote Sens. 2014, 47, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.P. Fire Suppression and the Wildfire Paradox in Contemporary China: Policies, Resilience, and Effects in Chinese Fire Regimes. Hum. Ecol. 2021, 49, 19–32. [Google Scholar] [CrossRef]
- Wang, H.; Finney, M.A.; Song, Z.; Wang, Z.S.; Li, X.C. Ecological techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. For. Ecol. Manag. 2021, 495, 119376. [Google Scholar] [CrossRef]
- O’Connor, C.D.; Falk, D.A.; Lynch, A.M.; Swetnam, T.W. Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleno Mountains, Arizona, USA. For. Ecol. Manag. 2014, 329, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Nyongesa, K.W.; Vacik, H. Fire Management in Mount Kenya: A Case Study of Gathiuru Forest Station. Forests 2018, 9, 481. [Google Scholar] [CrossRef]
- Li, X.Y.; Jin, H.J.; Wang, H.W.; Wu, X.D.; Huang, Y.D.; He, R.X.; Luo, D.L.; Jin, X.Y. Effects of forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan) mountains, Northeast China. Permafr. Periglac. Processes 2019, 30, 163–177. [Google Scholar] [CrossRef]
- Moretti, M.; Conedera, M.; Duelli, P.; Edwards, P.J. The effects of wildfire on ground-active spiders in deciduous forests on the Swiss southern slope of the Alps. J. Appl. Ecol. 2002, 39, 321–336. [Google Scholar] [CrossRef]
- Driessen, M.M.; Kirkpatrick, J.B. The implications of succession after fire for the conservation management of moorland invertebrate assemblages. J. Insect Conserv. 2017, 21, 15–37. [Google Scholar] [CrossRef]
- Naficy, C.E.; Keeling, E.G.; Landres, P.; Hessburg, P.F.; Veblen, T.T.; Sala, A. Wilderness in the 21st Century: A Framework for Testing Assumptions about Ecological Intervention in Wilderness Using a Case Study of Fire Ecology in the Rocky Mountains. J. For. 2016, 114, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Dombeck, M.P.; Williams, J.E.; Wood, C.A. Wildfire policy and public lands: Integrating scientific understanding with social concerns across landscapes. Conserv. Biol. 2004, 18, 883–889. [Google Scholar] [CrossRef]
- Dos Santos, A.C.; Montenegro, S.D.R.; Ferreira, M.C.; Barradas, A.C.S.; Schmidt, I.B. Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas. J. OF Environ. Manag. 2021, 289, 112508. [Google Scholar] [CrossRef]
- Muzy, A.; Nutaro, J.J.; Zeigler, B.P.; Coquillard, P. Modeling and simulation of fire spreading through the activity tracking paradigm. Ecol. Model. 2008, 219, 212–225. [Google Scholar] [CrossRef]
CLASSES | Secondary Classification System | Value |
---|---|---|
1. Cropland | Irrigated cropland | 11 |
Rainfed cropland | 12 | |
2. Forest | Forest land | 21 |
Shrubland | 22 | |
Sparse forest | 23 | |
Other forest | 24 | |
3. Grassland | High-cover grassland | 31 |
Medium-cover grassland | 32 | |
Low-cover grassland | 33 | |
4. Water body | Wetland, lake, etc. | 41/42/43/44/46 |
5. Settlement | Urban, rural residential area, etc. | 51/52/53 |
6. Unused land | Sandy land, bare soil, saline–alkali land, etc. | 61/62/63/64/65/66/67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, P.; Feng, Z. Delineating Fire-Hazardous Areas and Fire-Induced Patterns Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires in Northeast China. Remote Sens. 2022, 14, 5115. https://doi.org/10.3390/rs14205115
Li W, Li P, Feng Z. Delineating Fire-Hazardous Areas and Fire-Induced Patterns Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires in Northeast China. Remote Sensing. 2022; 14(20):5115. https://doi.org/10.3390/rs14205115
Chicago/Turabian StyleLi, Wenjun, Peng Li, and Zhiming Feng. 2022. "Delineating Fire-Hazardous Areas and Fire-Induced Patterns Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires in Northeast China" Remote Sensing 14, no. 20: 5115. https://doi.org/10.3390/rs14205115
APA StyleLi, W., Li, P., & Feng, Z. (2022). Delineating Fire-Hazardous Areas and Fire-Induced Patterns Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires in Northeast China. Remote Sensing, 14(20), 5115. https://doi.org/10.3390/rs14205115