Long-Term Baseflow Responses to Projected Climate Change in the Weihe River Basin, Loess Plateau, China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area Description
2.2. Data Sources
3. Methods
3.1. Baseflow Separation Algorithm
3.2. Selection of General Circulation Models
3.3. SWAT Model
3.4. Trend Analysis
3.5. Baseflow Drought Determination
4. Results
4.1. Baseflow Estimation
4.2. Detection of Baseflow Changes
4.3. Quantitative Baseflow Analysis Combining Historical and Future Climatic Conditions
5. Discussion
5.1. Baseflow Trends in Historical and Future Climate Periods
5.2. Variability of the Baseflow Index
5.3. Factors Influencing Baseflow Variations
5.4. Implications of Baseflow Droughts
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Song, J.; Cheng, L.; Zheng, H.; Wang, Y.; Huai, B.; Sun, W.; Qi, S.; Zhao, P.; Wang, Y.; et al. Baseflow estimation for catchments in the Loess Plateau, China. J. Environ. Manag. 2019, 233, 264–270. [Google Scholar] [CrossRef]
- Trancoso, R.; Larsen, J.R.; McVicar, T.R.; Phinn, S.; McAlpine, C.A. CO2 vegetation feedbacks and other climate changes implicated in reducing baseflow. Geophys. Res. Lett. 2017, 44, 2310–2318. [Google Scholar] [CrossRef]
- Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: Cambridge, UK, 2005; p. 618. [Google Scholar]
- Singh, S.; Srivastava, P.; Abebe, A.; Mitra, S. Baseflow response to climate variability induced droughts in the Apalachicola Chattahoochee Flint River Basin, U.S.A. J. Hydrol. 2015, 528, 550–561. [Google Scholar] [CrossRef]
- Bakker, M. The effect of loading efficiency on the groundwater response to water level changes in shallow lakes and streams. Water Resour. Res. 2016, 52, 1705–1715. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Brutsaert, W.; Crosbie, R.; Potter, N. Long-term annual groundwater storage trends in Australian catchments. Adv. Water Res. 2014, 74, 156–165. [Google Scholar] [CrossRef]
- Ahiablame, L.; Sheshukov, A.Y.; Rahmani, V.; Moriasi, D. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River Basin. J. Hydrol. 2017, 551, 188–202. [Google Scholar] [CrossRef] [Green Version]
- Arciniega-Esparza, S.; Breña-Naranjo, J.A.; Hernández-Espriú, A.; Pedrozo-Acuña, A.; Scanlon, B.R.; Nicot, J.P.; Young, M.H.; Wolaver, B.D.; Alcocer-Yamanaka, V.H. Baseflow recession analysis in a large shale play: Climate variability and anthropogenic alterations mask effects of hydraulic fracturing. J. Hydrol. 2017, 553, 160–171. [Google Scholar] [CrossRef]
- Rosas, M.A.; Vanacker, V.; Viveen, W.; Gutierrez, R.R.; Huggel, C. The potential impact of climate variability on siltation of Andean reservoirs. J. Hydrol. 2020, 581, 124396. [Google Scholar] [CrossRef]
- Stephens, C.M.; Johnson, F.M.; Marshall, L.A. Implications of future climate change for event-based hydrologic models. Adv. Water Res. 2018, 119, 95–110. [Google Scholar] [CrossRef]
- Gnann, S.J.; Woods, R.A.; Howden, N.J.K. Is there a baseflow Budyko Curve? Water Resour. Res. 2019, 55, 2838–2855. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Piao, S.; Huntingford, C.; Wang, X.; Lian, X.; Chevuturi, A.; Turner, A.G.; Kooperman, G.J. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 2020, 11, 5184. [Google Scholar] [CrossRef]
- Gnann, S.J.; McMillan, H.; Woods, R.A.; Howden, N.J. Including regional knowledge improves baseflow signature predictions in large sample hydrology. Water Resour. Res. 2020, 57, e2020WR028354. [Google Scholar] [CrossRef]
- Ayers, J.R.; Villarini, G.; Jones, C.; Schilling, K. Changes in monthly baseflow across the U.S. Midwest. Hydrol. Process. 2019, 33, 748–758. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Robeson, S.M.; Knouft, J.H. Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophys. Res. Lett. 2016, 43, 5079–5088. [Google Scholar] [CrossRef]
- Menzel, L.; Bürger, G. Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). J. Hydrol. 2002, 267, 53–64. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.; Wanrui, W.; Qi, J.; Linshan, Y.; Zhang, Y.; Lei, W.; Cui, X.; Wang, P. An analytical approach to separate climate and human contributions to basin streamflow variability. J. Hydrol. 2018, 559, 30–42. [Google Scholar] [CrossRef]
- Koppa, A.; Alam, S.; Miralles, D.G.; Gebremichael, M. Budyko-based long-term water and energy balance closure in global watersheds from earth observations. Water Resour. Res. 2021, 57, e2020WR028658. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Fisher, J.B.; Niu, J. Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE. Water Resour. Res. 2016, 52, 5537–5554. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wei, X.; Zhang, M.; Liu, W.; Giles-Hansen, K.; Wang, Y. The cumulative effects of forest disturbance and climate variability on streamflow components in a large forest-dominated watershed. J. Hydrol. 2018, 557, 448–459. [Google Scholar] [CrossRef]
- Morrissey, P.; Nolan, P.; McCormack, T.; Johnston, P.; Naughton, O.; Bhatnagar, S.; Gill, L. Impacts of climate change on groundwater flooding and ecohydrology in lowland karst. Hydrol. Earth Syst. Sci. 2021, 25, 1923–1941. [Google Scholar] [CrossRef]
- Straatsma, M.; Droogers, P.; Hunink, J.; Berendrecht, W.; Buitink, J.; Buytaert, W.; Karssenberg, D.; Schmitz, O.; Sutanudjaja, E.H.; van Beek, L.P.H.; et al. Global to regional scale evaluation of adaptation measures to reduce the future water gap. Environ. Model. Softw. 2020, 124, 104578. [Google Scholar] [CrossRef]
- Thompson, J.; Green, A.; Kingston, D.; Gosling, S. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. J. Hydrol. 2013, 486, 1–30. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; McVicar, T.R.; Beck, H.E.; Zhang, Y.; Liu, B. Disconnection between trends of atmospheric drying and continental runoff. Water Resour. Res. 2018, 54, 4700–4713. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Zhang, S.; McVicar, T.R.; Donohue, R.J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 2018, 9, 44–48. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Jang, W.S.; Lim, K.J.; Engel, B.A. Assessment of baseflow estimates considering recession characteristics in SWAT. Water 2018, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Nan, Z.; Yu, W.; Zhao, Y.; Xu, Y. Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Sci. Total Environ. 2018, 622–623, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Lauffenburger, Z.H.; Gurdak, J.J.; Hobza, C.; Woodward, D.; Wolf, C. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA. Agric. Water Manag. 2018, 204, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Hellwig, J.; Stahl, K. An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times. Hydrol. Earth Syst. Sci. 2018, 22, 6209–6224. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Song, J.; Long, Y.; Zhang, Y.; Zhang, B.; Wang, Y.; Wang, Y. Quantifying the spatial variations of hyporheic water exchange at catchment scale using the thermal method: A case study in the Weihe River, China. Adv. Meteorol. 2017, 2017, 8. [Google Scholar] [CrossRef]
- Wang, W.; Song, J.; Zhang, G.; Liu, Q.; Guo, W.; Tang, B.; Cheng, D.; Zhang, Y. The influence of hyporheic upwelling fluxes on inorganic nitrogen concentrations in the pore water of the Weihe River. Ecol. Eng. 2018, 112, 105–115. [Google Scholar] [CrossRef]
- Zhan, C.S.; Jiang, S.S.; Sun, F.B.; Jia, Y.W.; Niu, C.W.; Yue, W.F. Quantitative contribution of climate change and human activities to runoff changes in the Wei River basin, China. Hydrol. Earth Syst. Sci. 2014, 18, 3069–3077. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Tang, B.; Zhang, J.; Dou, X.; Liu, Q.; Shen, W. System dynamics simulation for optimal stream flow regulations under consideration of coordinated development of ecology and socio-economy in the Weihe River Basin, China. Ecol. Eng. 2018, 124, 51–68. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Istanbulluoglu, E.; Bai, T.; Huang, Q.; Yang, D.; Huang, S. Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat. Int. 2015, 380-381, 169–179. [Google Scholar] [CrossRef]
- Zhao, A.; Zhu, X.; Liu, X.; Pan, Y.; Zuo, D. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. Catena 2016, 137, 318–327. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, J. Spatial variation and influencing factors of the effectiveness of afforestation in China’s Loess Plateau. Sci. Total Environ. 2021, 771, 144904. [Google Scholar] [CrossRef]
- Jin, Z.; Guo, L.; Lin, H.; Wang, Y.; Yu, Y.; Chu, G.; Zhang, J. Soil moisture response to rainfall on the Chinese Loess Plateau after a long-term vegetation rehabilitation. Hydrol. Process. 2018, 32, 1738–1754. [Google Scholar] [CrossRef]
- Shao, R.; Zhang, B.; He, X.; Su, T.; Li, Y.; Long, B.; Wang, X.; Yang, W.; He, C. Historical water storage changes over China’s Loess Plateau. Water Resour. Res. 2021, 57, e2020WR028661. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, J.; Cheng, L. Evaluating relative merits of four baseflow separation methods in Eastern Australia. J. Hydrol. 2017, 549, 252–263. [Google Scholar] [CrossRef]
- Yang, Y.; McVicar, T.R.; Donohue, R.J.; Zhang, Y.; Roderick, M.L.; Chiew, F.H.S.; Zhang, L.; Zhang, J. Lags in hydrologic recovery following an extreme drought: Assessing the roles of climate and catchment characteristics. Water Resour. Res. 2017, 53, 4821–4837. [Google Scholar] [CrossRef]
- Rammal, M.; Archambeau, P.; Erpicum, S.; Orban, P.; Brouyère, S.; Pirotton, M.; Dewals, B. Technical Note: An operational implementation of recursive digital filter for base flow separation. Water Resour. Res. 2018, 54, 8528–8540. [Google Scholar] [CrossRef]
- Brutsaert, W.; Nieber, J.L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 1977, 13, 637–643. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Brutsaert, W. Automated selection of pure base flows from regular daily streamflow data: Objective algorithm. J. Hydrol. Eng. 2016, 21, 06016008. [Google Scholar] [CrossRef]
- Ponce, V.M.; Lindquist, D.S. Management of baseflow augmentation: A review. JAWRA J. Am. Water Resour. Assoc. 1990, 26, 259–268. [Google Scholar] [CrossRef]
- Su, C.-H.; Peterson, T.J.; Costelloe, J.F.; Western, A.W. A synthetic study to evaluate the utility of hydrological signatures for calibrating a base flow separation filter. Water Resour. Res. 2016, 52, 6526–6540. [Google Scholar] [CrossRef]
- Stewart, M.K. Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 2587–2603. [Google Scholar] [CrossRef] [Green Version]
- Lyne, V.; Hollick, M. Stochastic time-variable rainfall-runoff modelling. In Proceedings of Institute of Engineers Australia National Conference; Institute of Engineers Australia: Barton, Australia, 1979; pp. 89–93. [Google Scholar]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Zhao, P.; Lü, H.; Yang, H.; Wang, W.; Fu, G. Impacts of climate change on hydrological droughts at basin scale: A case study of the Weihe River Basin, China. Quat. Int. 2019, 513, 37–46. [Google Scholar] [CrossRef]
- Takle, E.S.; Jha, M.; Anderson, C.J. Hydrological cycle in the upper Mississippi River basin: 20th century simulations by multiple GCMs. Geophys. Res. Lett. 2005, 32, L18407. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.-S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Jha, M.K.; Gassman, P.W.; Arnold, J.G. Water quality modeling for the Raccoon River watershed using SWAT. Trans. ASABE 2007, 50, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Yang, H.; Wang, L.; Xu, Z.; Xue, B. Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters. Hydrol. Process. 2014, 28, 1032–1042. [Google Scholar] [CrossRef]
- Easton, Z.M.; Fuka, D.R.; Walter, M.T.; Cowan, D.M.; Schneiderman, E.M.; Steenhuis, T.S. Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. J. Hydrol. 2008, 348, 279–291. [Google Scholar] [CrossRef]
- Guo, T.; Engel, B.A.; Shao, G.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R. Development and improvement of the simulation of woody bioenergy crops in the Soil and Water Assessment Tool (SWAT). Environ. Model. Softw. 2019, 122, 104295. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, L. Hydrological responses to conservation practices in a catchment of the Loess Plateau, China. Hydrol. Process. 2004, 18, 1885–1898. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, L.; Zhang, X.; Cheng, L.; Potter, N.; Cowan, T.; Cai, W. Long-term streamflow trends in the middle reaches of the Yellow River Basin: Detecting drivers of change. Hydrol. Process. 2015, 30, 1315–1329. [Google Scholar] [CrossRef]
- Brunner, M.I.; Hingray, B.; Zappa, M.; Favre, A.-C. Future trends in the interdependence between flood peaks and volumes: Hydro-climatological drivers and uncertainty. Water Resour. Res. 2019, 55, 4745–4759. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Van Lanen, H.A.J. Catchment memory explains hydrological drought forecast performance. Sci. Rep. 2022, 12, 2689. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, J.; Cheng, L.; Kumar Paul, P.; Gan, R.; Shi, X.; Luo, Z.; Zhao, P. Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches. J. Hydrol. 2020, 585, 124780. [Google Scholar] [CrossRef]
- Beaulieu, M.; Schreier, H.; Jost, G. A shifting hydrological regime: A field investigation of snowmelt runoff processes and their connection to summer base flow, Sunshine Coast, British Columbia. Hydrol. Process. 2012, 26, 2672–2682. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, W00A07. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Laaha, G. Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol. 2015, 526, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Thackeray, C.W.; DeAngelis, A.M.; Hall, A.; Swain, D.L.; Qu, X. On the connection between global hydrologic sensitivity and regional wet extremes. Geophys. Res. Lett. 2018, 45, 11,343–11,351. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Miralles, D.G.; de Jeu, R.A.M.; Sampurno Bruijnzeel, L.A.; McVicar, T.R.; Schellekens, J. Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resour. Res. 2013, 49, 7843–7863. [Google Scholar] [CrossRef] [Green Version]
- Haberlandt, U.; Klöcking, B.; Krysanova, V.; Becker, A. Regionalisation of the base flow index from dynamically simulated flow components—a case study in the Elbe River Basin. J. Hydrol. 2001, 248, 35–53. [Google Scholar] [CrossRef]
- Singh, S.K.; Pahlow, M.; Booker, D.J.; Shankar, U.; Chamorro, A. Towards baseflow index characterisation at national scale in New Zealand. J. Hydrol. 2019, 568, 646–657. [Google Scholar] [CrossRef]
- Cheng, S.; Cheng, L.; Liu, P.; Qin, S.; Zhang, L.; Xu, C.Y.; Xiong, L.; Liu, L.; Xia, J. An analytical baseflow coefficient curve for depicting the spatial variability of mean annual catchment baseflow. Water Resour. Res. 2021, 57, e2020WR029529. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, X.; Zhu, B.; Meng, S.; Yao, Y. Unexpected groundwater recovery with decreasing agricultural irrigation in the Yellow River Basin. Agric. Water Manag. 2019, 213, 858–867. [Google Scholar] [CrossRef]
- Stoelzle, M.; Schuetz, T.; Weiler, M.; Stahl, K.; Tallaksen, L.M. Beyond binary baseflow separation: A delayed-flow index for multiple streamflow contributions. Hydrol. Earth Syst. Sci. 2020, 24, 849–867. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cheng, L.; Chiew, F.; Fu, B. Understanding the impacts of climate and landuse change on water yield. Curr. Opin. Environ. Sustain. 2018, 33, 167–174. [Google Scholar] [CrossRef]
- He, X.; Zhou, J.; Zhang, X.; Tang, K. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Reg. Environ. Change 2006, 6, 62–70. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Q.; Huang, W.; Zhang, J.; Li, Y.; Yang, Y. Hydrological Response to Precipitation and Human Activities-A Case Study in the Zuli River Basin, China. Int. J. Environ. Res. Public. Health 2018, 15, 2780. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Li, Q.; Wei, X.; Yang, X.; Giles-Hansen, K.; Zhang, M.; Liu, W. Topography significantly influencing low flows in snow-dominated watersheds. Hydrol. Earth Syst. Sci. 2018, 22, 1947–1956. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Lehner, F.; Wood, A.W.; Vano, J.A.; Lawrence, D.M.; Clark, M.P.; Mankin, J.S. The potential to reduce uncertainty in regional runoff projections from climate models. Nat. Clim. Change 2019, 9, 926–933. [Google Scholar] [CrossRef]
- Chou, C.; Chiang, J.C.H.; Lan, C.-W.; Chung, C.-H.; Liao, Y.-C.; Lee, C.-J. Increase in the range between wet and dry season precipitation. Nat. Geosci. 2013, 6, 263–267. [Google Scholar] [CrossRef]
Station ID | Station | Latitude | Longitude | Elevation (m) |
---|---|---|---|---|
53738 | WuQi | 36.95 | 108.17 | 1331.4 |
53821 | HuanXian | 36.58 | 107.3 | 1255.6 |
53903 | XiJi | 35.97 | 105.78 | 1916.5 |
53915 | PingLiang | 35.55 | 106.57 | 1346.6 |
53923 | XiFengZhen | 35.73 | 107.63 | 1421 |
53929 | ChuangWu | 35.2 | 107.8 | 1206.5 |
53942 | LuoChuan | 35.82 | 109.5 | 1159.8 |
53947 | TongChuan | 35.08 | 109.07 | 978.9 |
57006 | TianShui | 34.58 | 105.75 | 1141.7 |
57016 | BaoJi | 34.35 | 107.13 | 612.4 |
57034 | WuGong | 34.25 | 108.22 | 447.8 |
57036 | XiAn | 34.3 | 108.93 | 397.5 |
57046 | HuaShan | 34.48 | 110.08 | 2064.9 |
ID | GCM | Originating Group (s) | Country | Resolution (°) |
---|---|---|---|---|
1 | ACCESS1.0 | CSIRO-BOM | Australia | 1.88 × 1.25 |
2 | ACCESS1.3 | CSIRO-BOM | Australia | 1.88 × 1.25 |
3 | BCC-CSM1.1 | BCC | China | 2.81 × 2.81 |
4 | BCC-CSM1.1.M | BCC | China | 1.13 × 1.12 |
5 | BNU-ESM | BNU-ESM | China | 2.81 × 2.81 |
6 | CanESM2 | CCCMA | Canada | 2.81 × 2.79 |
7 | CCSM4 | NCAR | USA | 1.25 × 0.94 |
8 | CESM1(BGC) | NCAR | USA | 1.25 × 0.94 |
9 | CESM1(CAM5) | NCAR | USA | 1.25 × 0.94 |
10 | CESM1(WACCM) | NCAR | USA | 2.5 × 1.89 |
11 | CMCC-CM | CMCC | Italy | 0.75 × 0.75 |
12 | CMCC-CMS | CMCC | Italy | 1.88 × 1.88 |
13 | CNRM-CM5 | CNRM-CERFACS | France | 1.41 × 1.40 |
14 | CSIRO-Mk3.6.0 | CSIRO-QCCCE | Australia | 1.88 × 1.88 |
15 | EC-EARTH | MOHC | UK | 1.13 × 1.13 |
16 | FGOALS-g2 | LASG-GESS | China | 2.81 × 3.05 |
17 | FGOALS-s2 | LASG-IAP | China | 2.81 × 1.41 |
18 | FIO-ESM | FIO | China | 2.81 × 2.81 |
19 | GFDL-CM3 | NOAA GFDL | USA | 2.50 × 2.00 |
20 | GFDL-ESM2G | NOAA GFDL | USA | 2.50 × 2.00 |
21 | GFDL-ESM2M | NOAA GFDL | USA | 2.50 × 2.00 |
22 | GISS-E2-H | NASA GISS | USA | 2.50 × 2.00 |
23 | GISS-E2-H-CC | NASA GISS | USA | 2.50 × 2.00 |
24 | GISS-E2-R | NASA GISS | USA | 2.50 × 2.00 |
25 | GISS-E2-R-CC | NASA GISS | USA | 2.50 × 2.00 |
26 | HadGEM2-AO | KMA/NIMR | UK/Korea | 1.88 × 1.25 |
27 | HadGEM2-CC | KMA/NIMR | UK/Korea | 1.88 × 1.25 |
28 | HadGEM2-ES | KMA/NIMR | UK/Korea | 1.88 × 1.25 |
29 | INMCM4 | INM | Russia | 2.00 × 1.50 |
30 | IPSL-CM5A-LR | IPSL | France | 3.75 × 1.89 |
31 | IPSL-CM5A-MR | IPSL | France | 2.50 × 1.27 |
32 | IPSL-CM5B-LR | IPSL | France | 3.75 × 1.89 |
33 | MIROC5 | MIROC | Japan | 1.41 × 1.40 |
34 | MIROC-ESM | MIROC | Japan | 2.81 × 2.79 |
35 | MIROC-ESM-CHEM | MIROC | Japan | 2.81 × 2.79 |
36 | MPI-ESM-LR | MPI-M | Germany | 1.88 × 1.87 |
37 | MPI-ESM-MR | MPI-M | Germany | 1.88 × 1.87 |
38 | MRI-CGCM3 | MRI | Japan | 1.13 × 1.12 |
39 | NorESM1-M | NCC | Norway | 2.50 × 1.89 |
40 | NorESM1-ME | NCC | Norway | 2.50 × 1.89 |
Scenario | GCM | K (days) | α (1/day) |
---|---|---|---|
RCP4.5 | CSIRO-Mk3-6-0 | 53.2 | 0.981 |
FGOALSg2 | 64.5 | 0.985 | |
MIROC5 | 69 | 0.986 | |
RCP8.5 | CSIRO-Mk3-6-0 | 54.3 | 0.982 |
FGOALSg2 | 67.1 | 0.985 | |
MIROC5 | 63.7 | 0.984 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, P.; Zhang, Y.; Cheng, L.; Song, J.; Fu, G.; Wang, Y.; Liu, Q.; Lyu, S.; Qi, S.; et al. Long-Term Baseflow Responses to Projected Climate Change in the Weihe River Basin, Loess Plateau, China. Remote Sens. 2022, 14, 5097. https://doi.org/10.3390/rs14205097
Zhang J, Zhao P, Zhang Y, Cheng L, Song J, Fu G, Wang Y, Liu Q, Lyu S, Qi S, et al. Long-Term Baseflow Responses to Projected Climate Change in the Weihe River Basin, Loess Plateau, China. Remote Sensing. 2022; 14(20):5097. https://doi.org/10.3390/rs14205097
Chicago/Turabian StyleZhang, Junlong, Panpan Zhao, Yongqiang Zhang, Lei Cheng, Jinxi Song, Guobin Fu, Yetang Wang, Qiang Liu, Shixuan Lyu, Shanzhong Qi, and et al. 2022. "Long-Term Baseflow Responses to Projected Climate Change in the Weihe River Basin, Loess Plateau, China" Remote Sensing 14, no. 20: 5097. https://doi.org/10.3390/rs14205097