Large Area Aboveground Biomass and Carbon Stock Mapping in Woodlands in Mozambique with L-Band Radar: Improving Accuracy by Accounting for Soil Moisture Effects Using the Water Cloud Model
Abstract
:1. Introduction
- Assess whether a semi-empirical WCM can be used to account for soil moisture effects in AGBC retrieval in low-biomass regions;
- Assess whether explicit consideration of the patchiness of African woodlands improves the performance of the WCM; and
- Create a large-scale moisture-adjusted AGBC map for central Mozambique.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. In Situ AGBC Data
2.2.2. ALOS PALSAR-1 Imagery
2.2.3. Soil Moisture Datasets
Type | Period | Spatial Resolution | Number of Samples/Images | Reference |
---|---|---|---|---|
In situ AGBC | 2006–2010 | Plot size: 0.1–2.2 ha | 96 plots | [47] |
ALOS PALSAR-1 | 2007–2011 | 25 m pixel spacing | For model calibration: 10 images For de-striping effects: 202 images | Refer to Table A1 and Table A3 for detailed information. |
Soil moisture | 2007–2011 | 0.25° | For model calibration: 10 images For de-striping effects: 16 images | [37] |
Tree cover fraction | 2005 | 30 m | 1 image | [54] |
2.2.4. Tree Cover Fraction
2.3. Methods
2.3.1. Model Formulation
2.3.2. Parameterisation
2.3.3. Assessing Model Performance
3. Results
3.1. Prediction Accuracy of the Forward WCMs
3.2. Prediction Accuracy of the Inverted WCMs for AGBC Estimation
3.3. Effects of Inverted WCM on Producing Regional AGBC Mosaics
4. Discussion
4.1. How Much Uncertainty Can Be Reduced in AGBC Estimation When Soil Moisture Is Accounted for?
4.2. Does Reverted WCM Reduce Stripes in AGBC Mosaics by Accounting for Soil Moisture Changes between Adjacent Paths?
4.3. Does Explicit Consideration of the Patchiness of African Woodlands Improve the Performance of the WCM? Which Other Factors Matter?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Region | Year | Month | Day | Product Level | Frame | Track | Orbit |
---|---|---|---|---|---|---|---|
Mozambique | 2007 | 6 | 23 | 1.1 | 6800 | 578 | 7523 |
2007 | 8 | 8 | 1.1 | 6800 | 578 | 8194 | |
2007 | 9 | 23 | 1.1 | 6800 | 578 | 8865 | |
2008 | 6 | 25 | 1.1 | 6800 | 578 | 12891 | |
2008 | 5 | 10 | 1.1 | 6800 | 578 | 12220 | |
2009 | 6 | 28 | 1.1 | 6800 | 578 | 18259 | |
2009 | 9 | 28 | 1.1 | 6800 | 578 | 19601 | |
2010 | 5 | 16 | 1.1 | 6800 | 578 | 22956 | |
2010 | 10 | 1 | 1.1 | 6800 | 578 | 24969 | |
2010 | 7 | 1 | 1.1 | 6800 | 578 | 23627 |
Model | a | b | c | d |
---|---|---|---|---|
WCMstd | 0.070053 | 0.007570 | 0.009327 | 0.017934 |
WCMk | 0.1436208 | 0.0036719 | 0.0097886 | 0.0144768 |
WCM0 | 0.040273 | 0.038612 | / | / |
BM-WCMstd | 1.000000 | 0.005724 | 0.0016250 | 0.0210471 |
BM-WCMk | 1.000000 | 0.0005995 | 0.0015920 | 0.0207997 |
BM-WCM0 | 0.104472 | 0.008363 | / | / |
Reference Path. | Compare Path | Overlay Area | BM-WCM0 Prediction Statistics | BM-WCMstd Prediction Statistics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Path | Day of Year | Soil Moisture (m3/m3) | Path | Day of Year | Soil Moisture (m3/m3) | Area (ha) | Difference in Acquisition (days) | Difference in Soil Moisture (m3/m3) | Mean AGBC (Reference) (tC/ha) | Mean AGBC (Compare) (tC/ha) | Absolute Difference in Mean (tC/ha) | Mean AGBC (Reference) (tC/ha) | Mean AGBC (Compare) (tC/ha) | Absolute Difference in Mean (tC/ha) |
575 | 169 | 0.1780 | 576 | 186 | 0.2292 | 255,682 | 17 | 0.0512 | 22.56 | 19.64 | 2.93 | 19.77 | 18.06 | 1.71 |
575 | 169 | 0.1780 | 576 | 278 | 0.0426 | 251,055 | 109 | 0.1353 | 23.06 | 19.42 | 3.64 | 19.93 | 15.05 | 4.87 |
576 | 186 | 0.2292 | 577 | 203 | 0.0988 | 490,935 | 17 | 0.1304 | 20.14 | 16.00 | 4.14 | 19.19 | 13.42 | 5.77 |
576 | 186 | 0.2292 | 577 | 295 | 0.0196 | 481,940 | 109 | 0.2096 | 20.09 | 18.71 | 1.38 | 19.17 | 14.65 | 4.52 |
576 | 278 | 0.0426 | 577 | 203 | 0.0988 | 499,512 | 75 | 0.0561 | 17.87 | 15.85 | 2.02 | 14.48 | 13.42 | 1.06 |
576 | 278 | 0.0426 | 577 | 295 | 0.0196 | 490,579 | 17 | 0.0231 | 17.72 | 18.47 | 0.76 | 14.43 | 14.65 | 0.22 |
577 | 203 | 0.0988 | 578 | 220 | 0.0451 | 581,227 | 17 | 0.0537 | 15.63 | 14.66 | 0.98 | 12.75 | 11.34 | 1.42 |
577 | 203 | 0.0988 | 578 | 266 | 0.0317 | 557,049 | 63 | 0.0671 | 15.80 | 14.51 | 1.29 | 12.83 | 11.07 | 1.75 |
577 | 295 | 0.0196 | 578 | 220 | 0.0451 | 593,844 | 75 | 0.0255 | 16.22 | 14.72 | 1.49 | 12.41 | 11.37 | 1.04 |
577 | 295 | 0.0196 | 578 | 266 | 0.0317 | 568,455 | 29 | 0.0121 | 16.35 | 14.53 | 1.81 | 12.49 | 11.12 | 1.37 |
578 | 220 | 0.0451 | 579 | 283 | 0.0283 | 737,958 | 63 | 0.0167 | 17.37 | 13.87 | 3.50 | 14.77 | 11.33 | 3.44 |
578 | 266 | 0.0317 | 579 | 283 | 0.0283 | 775,789 | 17 | 0.0034 | 16.20 | 14.00 | 2.19 | 13.39 | 11.46 | 1.93 |
579 | 283 | 0.0283 | 580 | 162 | 0.1187 | 757,593 | 121 | 0.0903 | 18.37 | 15.21 | 3.16 | 15.89 | 14.20 | 1.69 |
579 | 283 | 0.0283 | 580 | 254 | 0.1187 | 763,426 | 29 | 0.0903 | 18.25 | 16.42 | 1.84 | 15.88 | 13.86 | 2.02 |
580 | 162 | 0.1187 | 581 | 225 | 0.1187 | 511,570 | 63 | 0.0000 | 19.16 | 17.84 | 1.31 | 18.17 | 15.28 | 2.89 |
580 | 162 | 0.1187 | 581 | 271 | 0.0627 | 491,326 | 109 | 0.0560 | 19.27 | 18.23 | 1.05 | 18.22 | 16.40 | 1.82 |
580 | 254 | 0.1187 | 581 | 225 | 0.1187 | 512,187 | 29 | 0.0000 | 20.31 | 17.75 | 2.56 | 17.88 | 15.39 | 2.50 |
580 | 254 | 0.1187 | 581 | 271 | 0.0627 | 492,136 | 17 | 0.0560 | 20.50 | 18.20 | 2.30 | 17.95 | 16.55 | 1.40 |
581 | 225 | 0.1187 | 582 | 196 | 0.0627 | 260,384 | 29 | 0.0560 | 19.55 | 15.49 | 4.05 | 17.14 | 13.24 | 3.89 |
581 | 225 | 0.1187 | 582 | 288 | 0.0168 | 254,649 | 63 | 0.1019 | 19.53 | 16.25 | 3.28 | 17.11 | 13.75 | 3.36 |
581 | 271 | 0.0627 | 582 | 196 | 0.0627 | 266,131 | 75 | 0.0000 | 18.52 | 15.55 | 2.98 | 16.81 | 13.22 | 3.59 |
581 | 271 | 0.0627 | 582 | 288 | 0.0168 | 260,515 | 17 | 0.0459 | 18.50 | 16.28 | 2.22 | 16.79 | 13.71 | 3.08 |
582 | 196 | 0.0627 | 583 | 213 | 0.0006 | 88,890 | 17 | 0.0621 | 14.03 | 12.31 | 1.72 | 11.84 | 9.92 | 1.92 |
582 | 196 | 0.0627 | 583 | 259 | 0.0077 | 90,859 | 63 | 0.0550 | 14.04 | 12.88 | 1.16 | 11.84 | 10.56 | 1.28 |
582 | 288 | 0.0168 | 583 | 213 | 0.0006 | 91,113 | 75 | 0.0162 | 13.13 | 12.33 | 0.80 | 10.81 | 9.91 | 0.91 |
582 | 288 | 0.0168 | 583 | 259 | 0.0077 | 93,078 | 29 | 0.0091 | 13.14 | 12.89 | 0.25 | 10.82 | 10.55 | 0.28 |
References
- Herold, M.; Carter, S.; Avitabile, V.; Espejo, A.B.; Jonckheere, I.; Lucas, R.; McRoberts, R.E.; Næsset, E.; Nightingale, J.; Petersen, R. The role and need for space-based forest biomass-related measurements in environmental management and policy. Surv. Geophys. 2019, 40, 757–778. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.C.; Ulaby, F.T.; Letoan, T.; Beaudoin, A.; Kasischke, E.S.; Christensen, N. Dependence of Radar Backscatter on Coniferous Forest Biomass. IEEE Trans. Geosci. Remote Sens. 1992, 30, 412–415. [Google Scholar] [CrossRef]
- Sader, S.A. Forest Biomass, Canopy Structure, and Species Composition Relationships with Multipolarization L-Band Synthetic Aperture Radar Data. Photogramm. Eng. Remote Sens. 1987, 53, 193–202. [Google Scholar]
- Woodhouse, I.H.; Mitchard, E.T.A.; Brolly, M.; Maniatis, D.; Ryan, C.M. Correspondence: Radar backscatter is not a ‘direct measure’ of forest biomass. Nat. Clim. Chang. 2012, 2, 556–557. [Google Scholar] [CrossRef]
- Brolly, M.; Woodhouse, I.H. Long Wavelength SAR Backscatter Modelling Trends as a Consequence of the Emergent Properties of Tree Populations. Remote Sens. 2014, 6, 7081–7109. [Google Scholar] [CrossRef] [Green Version]
- Le Toan, T.; Quegan, S.; Davidson, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Shimada, M.; Rosenqvist, A.; Tadono, T.; Matsuoka, M.; Romshoo, S.A.; Ohta, K.; Furuta, R.; Nakamura, K.; Moriyama, T. Forest structure dependency of the relation between L-band sigma(0) and biophysical parameters. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3154–3165. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; White, L.J.T.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H.; et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lope National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Sumantyo, J.T.S. Retrieval of tropical forest biomass information from ALOS PALSAR data. Geocarto Int. 2013, 28, 382–403. [Google Scholar] [CrossRef]
- Michelakis, D.; Stuart, N.; Lopez, G.; Linares, V.; Woodhouse, I.H. Local-Scale Mapping of Biomass in Tropical Lowland Pine Savannas Using ALOS PALSAR. Forests 2014, 5, 2377–2399. [Google Scholar] [CrossRef] [Green Version]
- Bouvet, A.; Mermoz, S.; Le Toan, T.; Villard, L.; Mathieu, R.; Naidoo, L.; Asner, G.P. An above-ground biomass map of African savannahs and woodlands at 25m resolution derived from ALOS PALSAR. Remote Sens. Environ. 2018, 206, 156–173. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Carvalhais, N.; Rozendaal, D.; Avitabilie, V.; Araza, A.; de Bruin, S.; Herold, M.; Quegan, S.; Rodríguez Veiga, P. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data Discuss. 2020, 13, 3927–3950. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M. Exploring combinations of multi-temporal and multi-frequency radar backscatter observations to estimate above-ground biomass of tropical forest. Remote Sens. Environ. 2019, 232, 111313. [Google Scholar] [CrossRef]
- Hayashi, M.; Motohka, T.; Sawada, Y. Aboveground Biomass Mapping Using ALOS-2/PALSAR-2 Time-Series Images for Borneo’s Forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2019, 12, 5167–5177. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Meir, P.; Ryan, C.M.; Woollen, E.S.; Williams, M.; Goodman, L.E.; Mucavele, J.A.; Watts, P.; Woodhouse, I.H.; Saatchi, S.S. A novel application of satellite radar data: Measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique. Plant Ecol. Divers. 2013, 6, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.B.; Watanabe, M.; Motohka, T.; Shimada, M. Potential of high-resolution ALOS-PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens. Environ. 2015, 160, 122–133. [Google Scholar] [CrossRef]
- Ryan, C.M.; Hill, T.; Woollen, E.; Ghee, C.; Mitchard, E.; Cassells, G.; Grace, J.; Woodhouse, I.H.; Williams, M. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Change Biol. 2012, 18, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Grace, J.; José, J.S.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Williams, M.; Ryan, C.M.; Rees, R.M.; Sarnbane, E.; Femando, J.; Grace, J. Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique. Forest Ecol. Manag. 2008, 254, 145–155. [Google Scholar] [CrossRef]
- Campbell, B.M. The Miombo in Transition: Woodlands and Welfare in Africa; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 1996. [Google Scholar]
- Yu, Y.; Saatchi, S. Sensitivity of L-band SAR backscatter to aboveground biomass of global forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Tanase, M.A.; Bourgeau-Chavez, L.L.; Borr, M. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sens. Environ. 2011, 115, 227–232. [Google Scholar] [CrossRef]
- Lucas, R.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.; Bray, S.; et al. An Evaluation of the ALOS PALSAR L-Band Backscatter-Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure. IEEE J. Sel. Top. Appl. Earth 2010, 3, 576–593. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Yang, L. A review of regional and global gridded forest biomass datasets. Remote Sens. 2019, 11, 2744. [Google Scholar] [CrossRef] [Green Version]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Räsänen, M.; Merbold, L.; Vakkari, V.; Aurela, M.; Laakso, L.; Beukes, J.P.; Van Zyl, P.G.; Josipovic, M.; Feig, G.; Pellikka, P. Root-zone soil moisture variability across African savannas: From pulsed rainfall to land-cover switches. Ecohydrology 2020, 13, e2213. [Google Scholar] [CrossRef]
- Shimada, M.; Ohtaki, T. Generating large-scale high-quality SAR mosaic datasets: Application to PALSAR data for global monitoring. IEEE J. Sel. Top. Appl. Earth 2010, 3, 637–656. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Shimada, M.; Isoguchi, O. JERS-1 SAR mosaics of Southeast Asia using calibrated path images. Int. J. Remote Sens. 2002, 23, 1507–1526. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation Modeled as a Water Cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M.; Kellndorfer, J. Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sens. Environ. 2012, 124, 466–478. [Google Scholar] [CrossRef]
- Mermoz, S.; Toan, T.L.; Villard, L.; Rejou-Mechain, M.; Seifert-Granzin, J. Biomass assessment in the Cameroon savanna using ALOS PALSAR data. Remote Sens. Environ. 2014, 155, 109–119. [Google Scholar] [CrossRef]
- Park, S.-E.; Jung, Y.T.; Cho, J.-H.; Moon, H.; Han, S.-h. Theoretical Evaluation of Water Cloud Model Vegetation Parameters. Remote Sens. 2019, 11, 894. [Google Scholar] [CrossRef] [Green Version]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113, 113. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.; Cosh, M.; Dunbar, R.; Dang, L.; Pashaian, L. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Ryan, C.M.; Pritchard, R.; McNicol, I.; Owen, M.; Fisher, J.A.; Lehmann, C. Ecosystem services from southern African woodlands and their future under global change. Philos. Trans. R. Soc. B 2016, 371, 20150312. [Google Scholar] [CrossRef]
- White, F. The Vegetation of Africa. A Descriptive Memoir to Accompany the Unesco/AETFAT/UNSO Vegetation Map of Africa; The United Nations Educational, Scientific and Cultural Organization: Paris, France, 1983; p. 356. [Google Scholar]
- Valentini, R.; Arneth, A.; Bombelli, A.; Castaldi, S.; Cazzolla Gatti, R.; Chevallier, F.; Ciais, P.; Grieco, E.; Hartmann, J.; Henry, M. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 2014, 11, 381–407. [Google Scholar] [CrossRef] [Green Version]
- McNicol, I.M.; Ryan, C.M.; Mitchard, E.T. Carbon losses from deforestation and widespread degradation offset by extensive growth in African woodlands. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.; Fensholt, R. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, J.; Mitchard, E.; Gloor, E. Perturbations in the carbon budget of the tropics. Glob. Chang. Biol. 2014, 20, 3238–3255. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO); United Nations Environment Programme (UNEP). The State of the World’s Forests 2020. Forests, Biodiversity and People; UNEP: Rome, Italy, 2020. [Google Scholar]
- Frost, P. The ecology of miombo woodlands. In The Miombo in Transition: Woodlands and Welfare in Africa; Campbell, B.M., Ed.; Centre for International Forestry Research: Bogor, Indonesia, 1996; pp. 11–57. [Google Scholar]
- Ryan, C.M.; Williams, M.; Grace, J. Above- and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique. Biotropica 2011, 43, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Ferrazzoli, P.; Guerriero, L. Radar sensitivity to tree geometry and woody volume: A model analysis. IEEE Trans. Geosci. Remote Sens. 1995, 33, 360–371. [Google Scholar] [CrossRef]
- Atwood, D.; Denny, P.; Hogenson, K.; Dixon, B.; Gens, R. MapReady: An open source tool for the utilization of SAR in geospatial applications. AGUFM 2008, 2008, IN31C-1155. [Google Scholar]
- Lee, J.-S.; Wen, J.-H.; Ainsworth, T.L.; Chen, K.-S.; Chen, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.Q.; Wang, J. Evaluation of Satellite and Reanalysis Soil Moisture Products over Southwest China Using Ground-Based Measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef] [Green Version]
- The Tropical Rainfall Measuring Mission (TRMM). Tropical Rainfall Measuring Mission (TMPA) Rainfall Estimate L3 3 Hour 0.25 Degree x 0.25 Degree V7; Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2011. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- Prevot, L.; Champion, I.; Guyot, G. Estimating Surface Soil-Moisture and Leaf-Area Index of a Wheat Canopy Using a Dual-Frequency (C and X-Bands) Scatterometer. Remote Sens. Environ. 1993, 46, 331–339. [Google Scholar] [CrossRef]
- Graham, A.J.; Harris, R. Extracting biophysical parameters from remotely sensed radar data: A review of the water cloud model. Prog. Phys. Geog. 2003, 27, 217–229. [Google Scholar] [CrossRef]
- Kumar, K.; Rao, H.P.S.; Arora, M.K. Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment. Hydrol. Process 2015, 29, 2137–2148. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Hüttich, C.; Korets, M.; Bartalev, S.; Zharko, V.; Schepaschenko, D.; Shvidenko, A.; Schmullius, C. Exploiting growing stock volume maps for large scale forest resource assessment: Cross-comparisons of ASAR-and PALSAR-based GSV estimates with forest inventory in central Siberia. Forests 2014, 5, 1753–1776. [Google Scholar] [CrossRef] [Green Version]
- Ulaby, F.T.; Allen, C.T.; Eger, G.; Kanemasu, E. Relating the Microwave Backscattering Coefficient to Leaf-Area Index. Remote Sens. Environ. 1984, 14, 113–133. [Google Scholar] [CrossRef]
- Xu, H.; Steven, M.D.; Jaggard, K.W. Monitoring leaf area of sugar beet using ERS-1 SAR data. Int. J. Remote Sens. 1996, 17, 3401–3410. [Google Scholar] [CrossRef]
- Kweon, S.K.; Oh, Y. A Modified Water-Cloud Model With Leaf Angle Parameters for Microwave Backscattering From Agricultural Fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2802–2809. [Google Scholar] [CrossRef]
- Bates, D.M.; Watts, D.G. Nonlinear Regression Analysis and Its Applications; Wiley Online Library: Hoboken, NJ, USA, 1988; Volume 2. [Google Scholar]
- Santoro, M.; Beaudoin, A.; Beer, C.; Cartus, O.; Fransson, J.E.; Hall, R.J.; Pathe, C.; Schmullius, C.; Schepaschenko, D.; Shvidenko, A. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sens. Environ. 2015, 168, 316–334. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
V1 | V2 | Model Description | Reference |
---|---|---|---|
1 | W | Developed for different frequency, polarization and crop type | [30] |
1 | LAI | Cropland; 8.6, 13.0, 17.0, and 35.6 GHz | [60] |
LAI | LAI | Cropland; 8.6, 13.0, 17.0, and 35.6 GHz | [60] |
LAI | LAI | Cropland; C and X-bands | [55] |
1 | LAI | Cropland; ERS-1 C-band | [61] |
LAI | LAI | Cropland; C and X-bands | [62] |
1 | AGBC | African savannahs; L-band | [11] |
1 | GSV/AGBC | Varies forest ecosystems; X-, C-, and L-band; tree canopy parameter k was introduced | [13,31] |
Forward WCMs | Inverted WCMs | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model Type | Calibration Error (m2/m2) | Validation Error (m2/m2) | Model Type | Calibration Error (tC/ha) | Validation Error (tC/ha) | Validation RMSE Per Group (tC/ha) | |||
RMSE | RMSE | Bias | RMSE | RMSE | Bias | ≤10 tC/ha | ≤20 tC/ha | ||
WCMstd | 0.0061 | 0.0061 | 0.00040 | BM-WCMstd | 7.62 | 7.72 | 0.50 | 7.06 | 6.69 |
WCMk | 0.0060 | 0.0061 | 0.00041 | BM-WCMk | 7.74 | 7.70 | 0.49 | 7.14 | 6.74 |
WCM0 | 0.0082 | 0.0083 | 0.00167 | BM-WCM0 | 8.02 | 8.10 | 0.55 | 8.08 | 7.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, Y.; Ryan, C.M.; Reiche, J. Large Area Aboveground Biomass and Carbon Stock Mapping in Woodlands in Mozambique with L-Band Radar: Improving Accuracy by Accounting for Soil Moisture Effects Using the Water Cloud Model. Remote Sens. 2022, 14, 404. https://doi.org/10.3390/rs14020404
Gou Y, Ryan CM, Reiche J. Large Area Aboveground Biomass and Carbon Stock Mapping in Woodlands in Mozambique with L-Band Radar: Improving Accuracy by Accounting for Soil Moisture Effects Using the Water Cloud Model. Remote Sensing. 2022; 14(2):404. https://doi.org/10.3390/rs14020404
Chicago/Turabian StyleGou, Yaqing, Casey M. Ryan, and Johannes Reiche. 2022. "Large Area Aboveground Biomass and Carbon Stock Mapping in Woodlands in Mozambique with L-Band Radar: Improving Accuracy by Accounting for Soil Moisture Effects Using the Water Cloud Model" Remote Sensing 14, no. 2: 404. https://doi.org/10.3390/rs14020404
APA StyleGou, Y., Ryan, C. M., & Reiche, J. (2022). Large Area Aboveground Biomass and Carbon Stock Mapping in Woodlands in Mozambique with L-Band Radar: Improving Accuracy by Accounting for Soil Moisture Effects Using the Water Cloud Model. Remote Sensing, 14(2), 404. https://doi.org/10.3390/rs14020404