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Abstract: Growing stock volume is an important biophysical parameter describing the state 

and dynamics of the Boreal zone. Validation of growing stock volume (GSV) maps based 

on satellite remote sensing is challenging due to the lack of consistent ground reference 

data. The monitoring and assessment of the remote Russian forest resources of Siberia can 

only be done by integrating remote sensing techniques and interdisciplinary collaboration. 

In this paper, we assess the information content of GSV estimates in Central Siberian 

forests obtained at 25 m from ALOS-PALSAR and 1 km from ENVISAT-ASAR backscatter 

data. The estimates have been cross-compared with respect to forest inventory data 

showing 34% relative RMSE for the ASAR-based GSV retrievals and 39.4% for the 

PALSAR-based estimates of GSV. Fragmentation analyses using a MODIS-based land 

cover dataset revealed an increase of retrieval error with increasing fragmentation of the 

landscape. Cross-comparisons of multiple SAR-based GSV estimates helped to detect 
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inconsistencies in the forest inventory data and can support an update of outdated forest 

inventory stands. 

Keywords: forest inventory; biomass; ALOS PALSAR; ENVISAT ASAR; land cover 

fragmentation; Siberia; boreal forest management 

 

1. Introduction 

Forests play a pivotal role in Earth’s carbon balance. Hence our ability to fully understand and 

quantify the impact that vast forests have on the global environment is important for the monitoring of 

international agreements aimed at CO2 reductions. The forests in Central Siberia are important carbon 

sinks [1–4]. Quantifying the state and dynamics of above ground biomass is of utmost importance for 

forest resource management on local and regional scale administrative levels. However, more than 

25% of the Russian forest inventory has not been updated in the last 25 years. Moreover, human and 

environmental forest disturbances continuously change forest cover and biomass distribution. The 

magnitude and extent of on-going environmental pressures (e.g., forest fragmentation and the impact 

of global climate change) and the loss rates of particular habitat types is not known in detail in Central 

Siberia. Forest management administrations, forest-related industry [4,5], and the carbon modeling 

community rely on updated and correct data on forest distribution and carbon stocks [6,7]. However, 

the existing forest inventory data is often outdated, not consistent in terms of accuracy and reliability 

on national level, and of restricted access. 

Biomass is one of the considered Essential Biodiversity and Climate Variables (ECV, EBV [8]). 

Growing stock volume (GSV) is densely correlated with above ground biomass of forest ecosystems. 

In addition, the availability of a system of regression equations between all live biomass components 

(stems, branches, foliage, roots, understory, and green forest floor) allows to assess the entire biomass  

of forest ecosystems based on remotely sensed GSV [1]. Thus, GSV is the key parameter for full 

terrestrial carbon accounting. A deeper understanding of satellite-based above-ground biomass 

assessment at different scales would allow for a significant reduction of uncertainties in forest carbon 

cycling assessment. Important research needs have to be addressed for a better representation of GSV 

estimates in carbon accounting models by implementing timely earth observation data and improving 

the spatial resolution of the model input parameters, as stated by [3]. 

Forest biomass assessment and monitoring requires a sound uncertainty analysis, in particular for 

comparing geo-information of forest stock maps at different spatial scales. However, a proper accuracy 

assessment between satellite-based maps and forest inventory is often problematic due to high 

expenses for ground truth measurements, limited access to existing statistical data and restrictions for 

delivery of in situ data. Capabilities and limitations of up- and downscaling above-ground biomass 

geo-information products are still not completely understood and require strong interdisciplinary 

interactions. For several decades, remotely sensed data have aided many aspects of forest monitoring [9]. 

Besides optical space borne systems, such as LIDAR [10], Landsat [11,12], and IRS [13] up-to-date 

earth observation data sources and techniques have improved in the last decade. For instance,  

multi-temporal SAR-based data can provide biophysical information on forest growing stock retrieval 
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algorithms [14,15]. The application of SAR systems in combination with the multidimensional system 

of forest biomass structure is a crucial tool for updating obsolete forest inventories and forest regrowth 

after disturbances [15–17]. The development of spatiotemporally more detailed and accurate biomass 

maps including land use and land cover change information is a pre-condition for more accurate 

carbon accounting and net primary production assessments. There is also a need for inter-comparison 

and (cross-) validation assessments of independently derived GSV estimates since SAR data are being 

delivered spatially consistent at continental [18], pan-boreal [19] or global scale [20]. 

Further research has to be initiated in the field of satellite-based multi-source forest resource 

assessment (as indicated in various studies [21–23]). Specifically, integrated concepts for forest 

characterization based on remote sensing (Figure 1) have to be developed to assess the agreement, 

accuracy, and transferability of forest resource maps for large area forest management purposes. 

Figure 1. Integrated concept for forest resource assessment and forest geo-information 

cross validation; the graph exemplarily indicates the range of data specifications in terms 

of spatial and thematic detail in relation to the effort of frequent update. 

 

A principle goal is to overcome existing gaps of inadequate data integration and interoperability  

as stated as one of the targeted gaps by GEO [24]. In the context of operational forest ecosystem 

monitoring and forest resource assessment, important research questions arising are: How comparable 

are SAR derived GSV datasets at different scales, derived with different SAR systems and modeling 

approaches; and to what extent can SAR-based GSV retrievals and forest inventory data from different 

regions be compared to one another? 
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The aim of this paper is to: 

- cross-compare GSV maps derived from ALOS-PALSAR (25 m, L-band) data and ENVISAT 

ASAR (1 km, C-band) backscatter data with updated forest inventory maps for test sites in 

Central Siberia, and 

- analyze the effects of forest cover type and landscape fragmentation on the spatial congruence of 

multi-scale GSV maps. 

2. Study Area and Data 

2.1. Forest Inventory Data of Central Siberia Test Sits 

In situ data were available from three forest management areas in Central Siberia (referred to as test 

sites) covering an area of 2,049,629 ha (Table 1). The location and spatial distribution is shown in 

Figure 2. The dataset consists of a digital map of forest stands and several strata of forest variables 

(land cover type, species composition, tree density, average age, height, diameter, and GSV). A forest 

stand is defined as an elementary forest inventory unit (EFIU), a forest area relatively homogeneous in 

vegetation structure and growing conditions. According to the Russian forest inventory regulations [25], 

forest stands are delineated and described by a forest inventory expert on 1:10,000 scales by using 

multispectral airborne images and auxiliary reference field data. The average is 17 ha with a standard 

deviation of 21.5 ha. The minimum size of all forest stands within the study area was four ha. 

Table 1. Test sites. 

Site № Site Name (Forest Management Area) Area, ha Number of EFIU Region 

1 Kazachinsk and Bolshemurtinsk 943,494 51,804 Krasnoyarsk Kray
2 Abansk and Dolgomostovsk 727,139 45,424 Krasnoyarsk Kray
3 Padunsk 378,996 23,408 Irkutsk Oblast 

Total 2,049,629 120,636 

Figure 2. Location of the test sites in Central Siberia. 
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2.2. ALOS PALSAR 

Spatially explicit estimates of GSV with a pixel size of 25 m were obtained from Advanced Land 

Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR) images. ALOS PALSAR 

operated between 2006 and 2011 at L-band (wavelength of 23 cm) with a pre-defined acquisition plan 

aiming, among other, at a yearly wall-to-wall coverage of forests. The PALSAR dataset consisted of 

four yearly mosaics of the radar backscattered intensity acquired during summer and fall between 2007 

and 2010 in the Fine Beam Dual (FBD) mode. In FBD mode, PALSAR acquired co-polarized (HH) 

and cross-polarized (HV) signals. For each year, the mosaic included images of the radar backscatter 

acquired during summer and fall because unfrozen conditions cause the backscatter to be most 

sensitive to forest structural parameters [26]. The PALSAR mosaics were obtained after SAR long 

strip processing, ortho-rectification, slope correction and neighboring strip suppression [27]. The mosaics 

were provided through JAXA’s Kyoto and Carbon Science Initiative [28] in a ready-to-use format. 

2.3. ENVISAT ASAR 

Spatially explicit estimates of GSV with a pixel size of 1000 m were obtained from Envisat’s 

Advanced Synthetic Aperture Radar (ASAR) images acquired in the ScanSAR mode between October 

2009 and February 2011. ENVISAT ASAR operated between 2002 and 2012 at C-band (wavelength 

of 6 cm); ScanSAR mode, multiple images were acquired globally whenever resources were available. 

This led to a very dense archive of images. For the boreal zone almost daily observations were available. 

2.4. MODIS 

MODIS (MOD09GQ/GA) data were used to map land cover types at 230 m spatial resolution. The 

land cover map was obtained from time series of spectral reflectance composite images, corresponding 

to different seasons of the year and capturing the spatial-temporal variations in onset, peak and end of 

growing season as well as in the winter period (associated with snow cover [29,30]). Four MODIS-based 

seasonal image composites have been produced by temporal averaging of uncontaminated pixels for the 

spectral channels, such as spring (15 April 2010–15 June 2010), summer (15 June 2010–15 August 2010), 

autumn (15 August 2010–15 October2010), and winter (15 November 2009–15 March 2010). For the 

winter image composite production snow cover related pixels have been involved into temporal 

averaging of surface reflectance values. Three seasonal composites, such as spring, summer and winter 

ones, have been produced for three (red, NIR and SWIR) spectral channels. The winter mosaic 

generation did not involve the SWIR channel due to its relatively high noise level. 

3. Methods 

3.1. Update and Quality Assessment of Forest Inventory Data 

Since the forest stands were inventoried in the time period of 2001–2008, the database of in situ 

measurements was updated to account for vegetation cover changes up to 2011. Optical imagery  

from multiple sensors (LANDSAT TM, Resource-DK, Monitor-E, RAPIDEYE, QUICKBIRD, 

WORLDVIEW 1/2) were used. A GIS-based approach was used to check the consistency of the forest 
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inventory (FI) data with respect to the optical EO data. To minimize the impact of geolocation errors 

between the forest stand map and the EO data, a 30 m buffer was removed along the perimeter of each 

stand. A spatial homogeneity analysis based on mean and standard deviation (SD) of spectral band 

brightness values of 2010–2011 Landsat TM scenes was calculated for each EFIU. Forest stands  

with SD greater than two SD were assigned as change area and removed from the dataset of in situ 

measurements. The FI update identified 4% of the test sites as disturbed areas (logging and burned 

areas. To account for forest growth, stand age, height, diameter, relative density, and GSV, growth 

factors were applied on the in situ data based on reference growth tables of the tree species [31]. 

3.2. ALOS PALSAR Estimates of GSV 

GSV was retrieved from the ALOS PALSAR mosaic data using a supervised random forest 

regression approach. Non-parametric tree-based ensemble regression techniques are widely used for 

ecological modeling [32–35]. The potential of random forest and bootstrap sampling to estimate forest 

variables was demonstrated in [9,17,36,37]. Random forest is a tree-based classifier where multiple 

trees are produced and combined based on equally weighted majority voting. A randomly selected third 

of the original training dataset is excluded for training each particular tree. This so-called out-of-bag 

(OOB) bootstrap sample is randomly permuted among the input features for each tree. With the 

remaining 2/3 of the training data, trees are grown to their maximal depth using the impurity gini  

index [38] due to the fact that the random permutation of samples and features antagonizes over fitting. 

In this study, the model was trained using GSV from the inventory database. A threshold of two 

standard deviations of GSV (m3/ha) was applied on the training data to reduce effects of temporal 

mismatches like outdated FI data or eventually other occurring errors in SAR data (e.g., whether  

events leading to striping effects or saturation of the SAR backscatter signal in high volume forest  

stands [39–41]). As predictor variables, four annual HH and HV mosaics of backscattered intensity 

from 2007 to 2010 were used. An ensemble of 500 trees was grown per model run. The multi-temporal 

approach led to RMSE of 54.4 m3/ha. 

3.3. ENVISAT ASAR Estimates of GSV 

A subset corresponding to the study area in Figure 2 has been extracted from the ENVISAT ASAR 

hyper-temporal backscatter series. The ASAR data preparations and the application of the hyper-temporal 

biomass retrieval algorithm contained the SAR processing of the ASAR GM imagery for the years 

2009 and 2010 (geocoding, radiometric calibration, topographic normalization, speckle filtering, image 

tiling, MVA) and the application of the GSV retrieval algorithm. The following processing steps were 

performed by the BIOMASAR algorithm [14]: Training of water-cloud like backscatter model, model 

inversion and extraction of mono-temporal GSV maps, and multi-temporal combination of single GSV 

maps. As auxiliary data MODIS vegetation continuous field (VCF), a water mask, land cover, digital 

elevation model (SRTM) and maximum GSV from the literature were used. A detailed description of 

the BIOMASAR GSV retrieval is given in [14,15]. The ASAR backscatter time series were exploited 

to obtain spatially explicit estimates of GSV for latitudes above 30° N representative for the year 2010 

with an accuracy of 40%–50% at pixel level and below 25% at aggregated level [15]. 
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3.4. Land Cover Mapping 

A locally-adaptive image classification method LAGMA (Locally-Adaptive Global Mapping 

Algorithm) [42] has been applied to recognize different land cover types using above mentioned 

seasonal image composites. The LAGMA method involves a regular grid based estimation of local 

(spectral and temporal) class signatures using spatially distributed reference data and supervised image 

classification. The LAGMA method inherently considers spatial variations of class features and allows 

the exploitation of the discriminative properties of local class signatures to the full extent without any 

preliminarily geographical stratification of mapping area. The obtained land cover map [43] consisted 

of 22 thematic classes, including 18 various vegetation types and 7 forest types defined based on their 

life forms, leaf types and phenology. 

3.5. GSV Cross-Comparisons and Fragmentation Analyses 

The ENVISAT-ASAR and ALOS-PALSAR estimates were cross-compared with respect to the 

updated FI data in order to analyze their characteristics terms of scales and land cover type. The 

PALSAR GSV map and the MODIS 250 m land cover map were resampled to the coarser 1 km 

resolution according to the ASAR GSV map. Cross-comparisons were stratified in terms of land cover 

and forest management area. Root Mean Square Errors (RMSE) were derived to quantify the congruency 

between the two datasets. 

Table 2. Landscape fragmentation metrics used in this study using the Fragsats package [44]. 

Metric Name Description 
Mean Patch Size  ܵܲܯ = 	 (∑_(݅ = 1)^݊▒݆ܽ݅²)/݊_݅	(1/10,000) Mean patch size indicates the mean size of all patches 

for a specific class in the landscape [44]. 

Shape index  ܵܧܲܣܪ = 	  (	݆݅_ܽ)√/(݆݅_݌	0.25)
“Shape index measures the complexity of patch shape 
compared to a standard shape. Mean shape index 
measures the average patch shape, or the average 
perimeter-to-area ratio, for a particular patch type 
(class) or for all patches in the landscape” [44];  
pij = perimeter (m) of patch ij ܽ = area (m ) of patch ij.

Total (Class) Area  CA = ∑_(݆ = 1)^݊▒〖ܽ_݆݅	(1/10,000)	〗 
“Total area equals the sum of the areas (m2) of all 
patches of the corresponding patch type, a measure of 
landscape composition; specifically, how much of the 
landscape is comprised of a particular patch type” [44]; ܽ = area (m) of patch ij. 

Splitting Index  ܵܲܶܫܮ = ݅)_∑)/2^ܣ = 1)^݊▒ܽ_݆݅^2 )  
“Fragmentation indices based on the ability of two 
animals to get connected in a landscape; splitting 
index is defined as the number of patches in a landscape 
when dividing the total region into parts of equal size 
in such a way that this new configuration leads to the 
same degree of landscape division. Effective mesh 
size denotes the size of the areas when the region 
under investigation is divided into areas with the same 
degree of landscape division [45]; ܽ = area (m) of 
patch ij. 2; A = total landscape area (m) 

Effective Mesh Size 	ܪܵܧܯ = (∑_(݅ = (1/10,000)	ܣ/(	2^݆݅_ܽ▒݊^(1
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The effects of landscape fragmentation on the RMSE were quantified by fragmentation indices 

according to [44]. Metrics as shown in Table 2 were derived based on the MODIS land cover dataset 

using the ClassStat function implemented in the R package Species Distribution Modeling Tools 

(SDMTools, [44]). Different fragmentation indices were generated indicating the fragmentation level 

of the forest land cover class distribution in the different test sites. 

4. Results 

4.1. Forest Inventory Update 

The example in Figure 3 shows deforestation detected in a pair of SPOT-5 and WORLDVIEW-2 

images between 2010 and 2011. The maximum and average GSV for each test site and for each major 

forest type are reported in Table 3. Siberian Pine and Scots Pine (in the following referred as Pine) 

exhibit the highest growing stock volume ranging from 360 m3/ha (Dolgomostowsk) to 480 m3/ha 

(Padunsk). Lowest maximum GSV on inventory unit level were estimated for Larch (290 m3/ha) in 

Kazachinsk and Fir (310 m3/ha) in Padunsk. Pine and Fir show increased variations in the average 

GSV between test sites. Disturbance activities were different between the test sites. Padunsk was 

characterized by old clear cuts (5400 ha, 2–10 years old with 2011 as reference year), Bolshemurtinsk 

and Kazachinsk were dominated by active cutting activities with 15,718 ha with an age of two  

years maximum. 

Figure 3. Deforestation change detection based on SPOT-5 Pan (a: 26 July 2010) and 

WORLDVIEW-2 (b: RGB composite of a and c) satellite data. FI stands affected  

by forest cover change are indicated in b. The red polygons (c: 20 June 2011)  

indicate for cross-comparisons inadequate and disturbed FI stands as the result of the 

homogeneity analysis. 
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Table 3. Forest Inventory statistics for local test sites in Central Siberia. 

Test Site Padunsk Bolshemurtinsk Kazachinsk Dolgomostovsk Abansk 

Land cover 

type 

Avg 

m3/ha 

Max 

m3/ha 

Avg 

m3/ha 

Max 

m3/ha

Avg 

m3/ha

Max 

m3/ha

Avg 

m3/ha

Max 

m3/ha 

Avg 

m3/ha

Max 

m3/ha

Birch 109 280 122 320 118 270 103 320 96 270 

Scots Pine 173 480 171 440 185 410 165 420 158 430 

Aspen 132 330 169 450 149 380 157 380 178 340 

Spruce 142 290 202 420 178 380 175 410 140 330 

Fir 147 310 200 470 169 330 229 360 186 340 

Larch 178 400 156 350 149 290 170 380 166 310 

Siberian pine 102 400 269 520 240 400 191 360 275 450 

Willow 39 90 39 90 17 35 49 60 26 40 

Disturbances Stands 
Area 

(ha) 
Stands 

Area 

(ha) 
Stands

Area 

(ha) 
Stands

Area 

(ha) 
Stands

Area 

(ha) 

Actual cutting 

(2010–2011) 
0 0 10 197 23 316 6 57 5 29 

Clear-cut  

(2002–2009) 
475 5,416 649 15,718 160 2,618 181 1,408 526 3,692

Burned area  

(2002–2009) 
67 1,608 5 458 7 336 42 961 99 2,364

4.2. Assessment of Retrieved Forest GSV with Respect to Forest Inventory Data 

Comparisons of the 1-km ASAR and the 25-m PALSAR GSV estimates with forest inventory 

showed positive correlations for all test sites, but different congruency levels occurred among the test 

sites (Table 4). The congruency was weak in Bolshemurtinsk/Kasachinsk and Padunsk with R values 

between 0.3 and 0.45. Moderate correlations were achieved for the Abansk/Dolgomostowsk test site 

(0.6 and 0.55, respectively). The RMSE between ASAR-based GSV and FI GSV was between 47.7 

and 64.9 m3/ha. The RMSE between the PALSAR-based GSV and the FI GSV was between 58.9 and 

71.3 m3/ha. For a better comparability between test sites the relative RMSE was included related to the 

average stocking (167.1 m3/ha) in the FI data. At test site level the ASAR-based map achieves a 

deviation from FI estimates of 28.39%–38.63% (total mean for all test sites = 34.01%). Slightly higher 

RMSE show the GSV maps derived from the PALSAR mosaics (35.06%–42.44%, total mean for all 

test sites = 39.44%). 

When stratifying the FI-SAR comparisons according to dominant species, the strongest congruency 

for both SAR products was achieved for the classes Spruce (1 km GSV: 34.76%, 25 m GSV: 33.96%) 

and Birch (1 km GSV: 34.96%, 25 m GSV: 35.18%) followed by Larch and Aspen (Figure 4). Species 

with higher maximum average stocking rates like Pine (1 km GSV: 36.51%, 25 m GSV: 42.86%) and 

Siberian Pine (1 km GSV: 39.23%, 25 m GSV: 57.96%) indicate better map congruities for the  

ASAR-based map. Comparisons of the Siberian Pine stands show high incongruities in the Padunsk 

region. The Siberian Pine error distributions of the other two test sites are comparable with those of the 

Pine stands. Except for the Padunsk test site the best FI-SAR GSV congruencies were measured in the 

higher biomass stands of the ASAR-based GSV maps. However, the high stocking stands indicate 

higher incongruities between the ASAR and the PALSAR- based maps. Generally, Kazachinsk (test 
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site 1) and Abansk/Dolgomostowsk (test site 2) have similar results in terms of species-wise GSV 

deviations. Padunsk (test site 3) shows higher errors, particularly for Fir and Siberian Pine. Here, the 

difference between the ASAR-based and the PALSAR-based GSV products has the highest RMSE at  

1 km scale. The FI statistics (Table 3) report most extensive disturbances for the Padunsk test site 

(5416 ha clear cuts and 1608 ha burned area), causing higher small-scale fragmentation of forest. This 

may introduce errors at 1 km scale GSV estimates. 

Table 4. Comparison of ENVISAT ASAR (1 km) and ALOS PALSAR (25 m,  

resampled to 1 km) growing stock volume maps with forest inventory data for 

Bolshemurtinsk/Kasachinsk (1), Abansk/Dolgomostowsk (2), and Padunsk (3). Correlation 

coefficients, root mean square errors (RMSE), and relative RMSE are shown for each test 

site (mean values per test site and total mean); RMSE and relative RMSE are shown for the 

dominant species (mean values per test site and total mean). 

Site 1 2 3 Total Mean 

Overall for Test Sites 1 km 25 m 1 km 25 m 1 km 25 m 1 km 25 m

R 0.34 0.39 0.60 0.55 0.30 0.54 0.41 0.49
RMSE (%) 35.00 40.71 28.39 35.06 38.63 42.44 34.01 39.40

RMSE (m3/ha) 58.80 68.40 47.70 58.90 64.90 71.30 57.13 66.20

RMSE (m3/ha)  
Relative RMSE (%) * 

1 km 25 m 1 km 25 m 1 km 25 m 1 km 25 m

Aspen 
62.50 70.70 46.90 66.00 60.10 69.20 56.50 68.63
37.20 42.08 27.92 39.29 35.77 41.19 33.63 40.85

Birch 
59.10 60.30 48.00 55.00 69.10 62.00 58.73 59.10
35.18 35.89 28.57 32.74 41.13 36.90 34.96 35.18

Fir 
57.70 78.00 46.00 65.90 94.90 66.50 66.20 70.13
34.35 46.43 27.38 39.23 56.49 39.58 39.40 41.75

Larch 
57.40 53.10 75.10 55.00 63.00 55.60 65.17 54.57
34.17 31.61 44.70 32.74 37.50 33.10 38.79 32.48

Pine 
76.10 72.30 47.70 63.70 60.20 79.10 61.33 71.70
45.30 43.04 28.39 37.92 35.83 47.08 36.51 42.68

Siberian pine 
52.10 92.50 53.10 99.80 92.50 99.80 65.90 97.37
31.01 55.06 31.61 59.40 55.06 59.40 39.23 57.96

Spruce 
44.20 62.30 42.30 52.40 88.70 55.10 58.40 56.60
26.31 37.08 25.18 31.19 52.80 32.80 34.76 33.69

* Relative RMSE in % related to the average stocking on FI stand level of 167.1 (m3/ha). 

To get an understanding of the spatial distribution of the discrepancies between the FI dataset and 

the two SAR-based datasets of GSV, difference maps of the SAR-based GSV maps and the forest 

inventory were generated. SAR—FI difference maps are given for the three test sites in Figure 5. The 

images depict similar patterns of over- and underestimation for the resolution levels of 25 m and 1 km, 

i.e., a lower representation of GSV derived from FI in the surrounding of Abansk (Figure 5b) or lower 

SAR GSV retrievals in the Dolgomostowsk district (Figure 5a), detected for both pixel spacing 

resolutions. Except of the comparisons in Figure 5a (Bolshemurtinsk) the SAR GSV retrievals indicate 

consistent maps of the GSV distribution. The observed high deviations between the SAR GSV 
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mapping results in the western Bolshemurtinsk region can be explained with effects of SAR image 

mosaicking where in this region comparable lower backscatter values occur. 

Figure 4. Relative RMSE of SAR—forest inventory comparisons of dominant forest species 

(mean values of all test sites); the 1 km GSV map better matches with FI in the high 

biomass levels and vice versa. 

 

4.3. Cross-Comparison of SAR-Based GSV Datasets 

Both SAR estimates show an overestimation in the low GSV areas and underestimation in the high 

GSV areas (Figure 6). To get a better understanding of the two SAR-based estimates and increase our 

understanding of the discrepancies with respect to the FI data, the SAR-based estimates of GSV were 

cross-compared (Figure 7), also with regard to forest land cover classes. The total RMSE for the test 

sites was 51.62 m3/ha (Bolshemurtinsk/Kazachinsk), 46.07 m3/ha (Abansk/Dolgomostowsk), and 

45.68 m3/ha (Padunsk). Relative RMSE was 30.91%, 27.59% and 27.46%. The SAR-based GSV 

comparisons generally show a better correlation compared to the FI-SAR comparisons, where 

increased RMSE deviations between the test sites could be reported. The lower saturation stadium for 

the PALSAR-based GSV maps compared to the ASAR-derived map is visible for all test sites and land 

cover classes. This is supported by deviations from the 1:1 line of the high volume biomass classes in 

favor to the ASAR-based map. 
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Figure 5. Difference of the 1 km GSV (left) and 25 m GSV (right) maps with respect to 

the inventory map for the test sites of Kazachinsk and Bolshemurtinsk (a), Abansk and 

Dolgomostowsk (b), and Padunsk (c). 
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Figure 6. Correlation between growing stock volume and forest inventory and 25 m SAR 

GSV (a) and 1 km SAR GSV (b) for all test sites. 

  
(a) (b) 

Class-wise land cover comparisons are shown in Figure 7 to assess whether RMSE discrepancies 

between ASAR and PALSAR could be explained in terms of forest types. The strongest congruency 

between the SAR-based datasets of GSV was obtained for Evergreen-Dark Needleleaf Forest  

(RMSE = 31.29 m3/ha and 40.45 m3/ha at Bolshemurtinsk/Kazachinsk and Abansk/Dolgomostowsk). 

Even higher RMSE values were achieved in the Padunsk test site (45.47 m3/ha). Land cover types 

consisting of mixed (deciduous and evergreen) forest types or more open forest cover types show 

higher RMSE and increased variations between test sites than mature forests. Particularly in the 

Bolshemurtinsk test site, increased scattering in the open forest types can be observed. 

Cross-comparisons of the GSV retrievals from FI, ASAR, and PALSAR show distinct differences 

of the GSV congruency between the three test sites. In order to depict the most consistent dataset 

between the test sites the RMSE of the three combinations (FI vs. ASAR, FI vs. PALSAR, ASAR vs. 

PALSAR) are presented in Figure 8. The ASAR and PALSAR GSV estimates comparisons indicate 

the best map matching among the test sites. As discussed, Bolshemurtinsk/Kazachinsk achieved 

significantly higher errors than the remaining test regions. Variance in the error distribution is visible 

within the FI-SAR comparisons for both, between test sites and SAR products. As discussed,  

the ASAR-based map represents closer results to the FI reference than PALAR. However, the  

FI-SAR comparisons show substantial inconsistencies between the test sites. The highest errors  

are observed for Padunsk (which is in contrast to the ASAR-PALSAR comparisons), followed by 

Bolshemurtinsk/Kazachinsk and Abansk/Dolgomostowsk. The latter test site comes out as most 

consistent for all comparisons. 
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Figure 7. Scatterplots showing GSV map congruencies between 25 m and 1 km mapping 

scales per land cover class for three test sites in central Siberia. 
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Figure 8. Cross-comparisons of the GSV retrievals from forest inventory, ASAR-based 

mapping and PALSAR- based mapping. 

 

4.4. Land Cover Distribution Effects on Growing Stock Volume Estimation and Map Congruity 

The multi-scale cross-comparisons clearly indicate that the spatial distribution of the forest cover 

types or landscape distribution is influencing the GSV map matching. Fragmentation indices derived 

from the MODIS land cover map help to assess these effects on a per class basis. Class-specific GSV 

RMSE estimates were compared to a selected set of landscape metrics (mean shape index, mean patch 

area, effective mesh size, and splitting index). Shape index measures the complexity of patch shape 

compared to a standard shape. Mean shape index measures the average patch shape for a particular 

class or for all patches in the landscape. This implies a strong impact of the areal extent of the land 

cover class in the landscape on the deviations of the GSV estimates in the two GSV products. Mean 

patch size indicates the mean size of all patches for a specific landscape class [44]. Mesh size and 

splitting index characterize the fragmentation of an area independent of their size and can be used for 

comparisons of different landscapes. These indices are useful for forest fragmentation analyses in 

forest landscapes and monitoring changes of the land cover types [45]. 

The class-wise GSV RMSE estimates show a clear linear trend for the Padunsk test site (Figure 9). 

Obviously, this is the test site with the best match between the ASAR—PALSAR comparisons. 

Abansk/Dolgomostowsk shows a similar distribution except for two outlier classes (Evergreen Dark 

Needle-leaf Forest and Evergreen Light Needle-leaf Forest). No correlation is visible in the 

Bolshemmurtinsk/Dolgomostowsk test site. The linearity of the fragmentation indices is linked with 

the distribution of the total area and the RMSE of the ASAR—PALSAR comparisons. The best correlation 

of total area and RMSE GSV shows Padunsk, which achieved the best ASAR—PALSAR coherence. 

The distribution of all fragmentation indices is connected to the land cover area distribution of the 

multi-scale GSV RMSE. Padunsk shows a normally distributed scattering of GSV with similar 

deviations from the 1:1 line, whereas the other test sites show an overrepresentation of GSV with 

regard to the ASAR- based map for all forest classes. By analyzing the fragmentation indices it is 
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obvious that the forest types with high RMSE measures also show increased fragmentation rates. This 

is particularly indicated by the splitting index indicating increased fragmentation rates for Deciduous 

Needle-leaf Forest and Sparse Deciduous Needle-leaf Forest. Deciduous Broadleaf Forests, 

Broadleaf/Needleleaf Forests and Evergreen Dark Needle-leaf Forests depict a better connectivity due 

to a more homogeneous distribution of the forest patches (as indicated by increased values of all 

fragmentation indices). The Congruency of the GSV estimates between different forest types is 

determined by the area proportion of the class, the patch area, and the connectivity of the forest class in 

the landscape. This was indicated by the linear relationship between shape index and GSV congruency. 

Figure 9. Scatterplots of landscape metrics derived from the MODIS land cover map and 

class-specific GSV RMSE between ASAR and PALSAR GSV maps. 

 

5. Discussion 

Until now, little knowledge has been acquired to assess the suitability of the different sources of 

growing stock volume observations for operational forest monitoring and assessment purposes by 

comparing independently derived SAR-based GSV maps with forest inventory at regional scales. The 

research question has to be captured, how comparable SAR derived GSV datasets at different scales 

are and to what extent different SAR-based GSV retrievals fit to forest inventory from different 

regions. Results of this study show that an interplay of (a) sensor and GSV retrieval method; (b) forest 

cover type and distribution; and (c) forest inventory in the different forest management areas are 

affecting the incongruences of the FI-SAR GSV distribution. 
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5.1. Determinants of Sensor Type and GSV Retrieval Methods 

The ASAR- based map shows for all sites with RMSE of 34.01% slightly lower deviations than the 

ALOS PALSAR product (39.4%). The product cross-comparisons varied between 45.7 and 51.6 m3/ha 

for all sites. Map matches with a RMSE difference of 5.9 m3/ha between the test sites were achieved 

despite of the fact that (a) different SAR systems were used (L-band vs. C-band), (b) different temporal 

resolutions were compared (hyper-temporal ENVISAT-ASAR data vs. annual ALOS-PALSAR mosaic 

data), and (c) different GSV retrieval methods were applied on the data. The GSV maps correlate well 

in the average GSV levels. Due to the higher SAR backscatter saturation level the hyper-temporal 

retrieval approach applied on the ASAR time series shows a general better performance in the mature 

forests. The advantage of the BIOMASAR algorithm is that it is independent of GSV training data as it 

is calibrated using literature values and MODIS vegetation continuous field data and estimating  

the central GSV tendency by using temporal statistics from the multi-temporal backscatter data [14]. 

The cross-comparisons proved a general consistency of large-scale ALOS PALSAR-based GSV 

estimation. Some artifacts of striping due to weather or calibration effects were detected in parts of the 

PALSAR HH and HV mosaics, leading to local inconsistencies in the GSV estimates as also found by [46] 

and [47]. From a monitoring perspective, acceptable results were achieved with the ALOS-PALSAR 

and ENVISAT-ASAR derived GSV maps. The random forest regressions used for the ALOS-PALSAR 

backscatter modeling rely on the GSV training data, which is a disadvantage for product updates  

and for an operationalization of the mapping framework. This highlights a general disadvantage of 

supervised modeling approaches. Model calibration of multi-temporal backscatter data is a critical 

issue since forest inventory is conducted periodically. For instance in remote and inaccessible areas of 

Central Siberia a frequent FI update is challenging and outdated FI data can be the major source of 

error for the remotely sensed GSV estimation. Research activities according to [11] have to be intensified 

to support GSV retrieval algorithms independent of in situ data. 

5.2. Determinants of Forest Cover Type and Distribution 

For most of the sites a good correlation was achieved between the multi-scale products for the 

Evergreen-dark Needle-leaf Forests. Stronger variances occur in the mixed and Evergreen-light 

needle-leaf Forest types. This observation correlates with the GSV map comparisons to forest 

inventory units. Soil moisture affects the correlation between backscatter and biomass in areas with 

low biomass levels (e.g., forest regrowth), as found in [48]. This might be a reason for the increased 

RMSE for the Sparse Light Needle-leaf Forest classes. Fragmentation analyses can help to detect local 

and forest type specific deviations of the spatial GSV distribution of different GSV map products since 

the fragmentation indices used in this study perform well if the GSV follows a normally distributed 

shape. Over- or underrepresentation of one product (or in a specific area) results in non-linear distributions 

of the fragmentation indices compared to the RMSE of two GSV maps. The integration of an auxiliary 

land cover map helps to detect the forest classes affected by GSV mismatches. Testing independent 

GSV maps on the linear distribution of RMSE on class level can thus be used to test the general 

consistency of forest resource information. However, further research has to be conducted to analyze 

the effect of forest fragmentation and GSV distribution on a landscape level. 
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5.3. Fostering SAR-Based GSV Assessments for Central Siberian Forest Inventory Support 

Compared to the SAR-based RMSE variations between the test sites (5.9 m3/ha), the variations of 

the RMSE of the FI-SAR comparisons appeared to be higher (Bolshemurtinsk/Kazachinsk: 9.6 m3/ha, 

Abansk/Dolgomostowsk: 11.2 m3/ha, Padunsk: 6.4 m3/ha). Although an intensive FI update was 

conducted and up to 5% of 120,636 forest inventory units were excluded from the comparisons, the 

increased FI-SAR RMSE variations indicate a principal inconsistency of the in situ data used in this 

study. However, SAR-based GSV assessments can be an important information source to detect spatial 

inconsistencies of FI data. Examples are given with the FI-SAR difference maps in Figure 5. Using 

such maps in the operational forest management can help to detect forest cover change areas. 

Figure 10. Mapping region of the 25 m ALOS PALSAR growing stock volume map 

(upper image); spatial resolution effects are shown for three examples for 25 m spatial 

resolution (A–C) and 1 km spatial resolution (D–F). 
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Figure 10 visualizes the full extent of the 25 m resolution GSV map. Compared to the ASAR-based 

map, both products indicate the suitability for large scale forest monitoring. In fact, the 1 km scale is 

not appropriate for tracking forest change at the local scale. As Figure 10 shows, land use patterns such 

as agricultural lands (a and d) and large-scale deforestation areas (b–f) are represented as mixed pixel 

information. For an operational spatially explicit forest change tracking we recommend a minimum 

mapping unit of 50 m and smaller. The K&C 25 m PALSAR mosaics have the potential for further 

global forest monitoring purposes. JAXA recently released a global 50 m backscatter mosaic [49]. This 

and other operationally processed and globally provided data sources will be key for a spatio-temporally 

consistent forest change tracking in Boreal ecosystems. 

6. Conclusions 

Two independently developed large-area GSV maps derived from ENVISAT-ASAR C-band and 

ALOS PALSAR L-band backscatter data were compared to forest inventory and against each other. 

Auxiliary land cover data were used and integrated in fragmentation analyses in order to assess  

class-specific patterns in the GSV distribution in three test sites in Central Siberia covering an area of 

1,968,748 ha. 

Differences in the GSV distributions of both SAR-based GSV estimates occur (a) between the test 

sites and (b) between different forest types. Moreover, a general inconsistency in the forest inventory 

dataset was detected. The forest inventory database turns out to be more inconsistent than the SAR-based 

GSV maps within the test regions. Following standardized methods and frequent forest inventory 

updates with comparable error rates is challenging. Reasons for that are for instance the remote  

and often inaccessible forests in Siberia. However, until now the national forest inventory data are the 

most important reference information for biomass and growing stock volume mapping and carbon 

modeling. This study identifies substantial needs for standardized validation methods and guidelines 

for SAR-based GSV estimates, but also a frequent update of forest inventory on the in situ level. This 

is even more important since forest cover change can be expected to increase in the future (e.g., 

intensification of logging activities, forest fires, insect outbreaks and permafrost melting). 

Implementing integrative concepts of forest resource assessment as shown in Figure 1 could also 

mean that large scale remotely sensed GSV maps should be used to detect quality gaps in the existing 

forest inventory databases. Keeping in mind that the update of forest inventory in Siberia is time and 

cost intensive and a systematic wall-to-wall survey is challenging, the use of SAR-based GSV maps 

will enhance the future consistency of forest inventory databases. Globally available Radar backscatter 

mosaic data will be of local relevance in this process. Better spatial and temporal resolution will allow 

for forest change tracking at local scales with a high spatial and thematic detail. Increasing problems of 

illegal logging as reported by [50] and [51] can be better quantified and reported in the inventory and 

located by integrating more frequently updated biomass geo-information. 

Upcoming global monitoring programs [20,52] aim at the global quantification of forest biomass 

distribution to improve resource assessment and carbon accounting, and to foster consistent regional to 

global vegetation characterization. The methodological toolsets for SAR-based GSV tracking as well 

as the globally consistent data availability is entering a technical readiness level towards an operational 

tracking of forest carbon, forest cover change, and growing stock volume. The scientific forest remote 
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sensing community is entering a new era in earth observation based forests monitoring, where consistent 

GSV mapping is made possible by spatially consistent and spatio-temporally dense data availability. 

This situation should be regarded in the national forest inventory strategies. 
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