RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015
Abstract
:1. Introduction
- The continuously increasing stress field determines an extensive process of micro-crack formation with a consequent increase in degassing activity together with deep-water and convective heat flow rising toward the surface;
- When the stress field becomes high enough locally to close the cracks and the earthquake occurrence is approaching, all the above processes are expected to reduce up to the time of the earthquake occurrence;
- At the time of the earthquake occurrence, because of a major crack opening in the rupture zone, a new increase in degassing activity (and related phenomena) is expected before a gradual return to normality.
2. Tectonic Setting of the Investigated Area
3. Data
3.1. Satellite Data
3.2. Seismic and Tectonic Information
4. Methodology
4.1. The Robust Estimator of Thermal InfraRed Anomalies (RETIRA)
- r ≡ (x,y) indicates the geographical coordinates of the satellite pixel centre;
- t is the satellite acquisition time with t ϵ Ⴈ, being Ⴈ the temporal support [31] identifying the time series of homogeneous (same month of the year, same time of the day) collection of images;
- ∆T(r,t) = T(r,t) − T(t) is the difference between the TIR brightness temperature T(r,t) and the spatial average T(t) of T(r,t) on the image at hand. It should be stressed that T(t) computation takes account only of cloud-free pixels, within the investigated region, which are part of the identical category (i.e., only sea or land pixels if r is on the sea or land, respectively);
- μ∆T(r,L) and σ∆T(r,L) are, respectively, the temporal mean and standard deviation of ∆T(r,t,L) computed on cloud-free pixels belonging to the chosen dataset (t ϵ Ⴈ). On a monthly basis, we generated two images (μ∆T and σ∆T images) used as ‘reference images’ for the calculation of the RETIRA index. They are representative of expected monthly thermal conditions. To reduce the possible negative impact of the massive presence and/or asymmetric spatial distribution of meteorological clouds on the computation of reference fields and the consequent proliferation of possible false positives (reported, for instance, in [26,35,46]), we adopted here the improved RST pre-processing phases firstly proposed by [49];
- L × L represents the dimension (in pixel units) of the elementary spatial unit centred at location r. L = 1 corresponds to the RETIRA classical configuration (used for Turkey already by [25,56]). For L > 1 (only odd numbers), the variable ∆T(r,t,L) is the spatial mean of the punctual cloud-free ∆T(r’,t) values belonging to the L × L pixel box, centred at location r. In all computation phases, the box is considered cloudy when a threshold percentage CT (Cloud Threshold) of cloudy pixels within the L × L pixel box is overcome;
- we define Thermal Anomaly (TA) as a (not-cloudy) location where ⊗∆T(r,t,L) ≥ K.
4.2. Space-Time Persistence Criteria, Significant Thermal Anomalies (STAs) and Significant Sequences of Thermal Anomalies(SSTAs) Definitions
- Identification and removal of spurious TAs due to massive (more than 80% of pixels) presence of clouds on the scene and/or to the so-called ‘cold spatial average effect’ [26,46]. In both cases, land and sea pixels are separately considered (so that a land/sea TA is excluded if more than 80% of land/sea pixels in the scene are, respectively, cloudy). Similarly, a land/sea TA is removed if the following expression T(t’) > μT—2σT is verified, being T(t’) the spatial average of T(r,t) computed on the cloud-free, land/sea pixels of the image at hand (acquired at time t = t’), μT and σT are, respectively, the temporal average and standard deviation of T(t), computed using the homogeneous dataset of images belonging to the temporal domain Ⴈ.
- Spatial persistence: it is not spatially isolated being part of a group of STAs (1-degree maximum away from each other) covering an area (affected area) ≥150 km2;
- Temporal persistence: the same STAs reappears at least another time in the seven preceding/following days.
5. Data Analysis and Results
- Temporal window: up to 30 days after (pre-earthquake anomaly) the last or until 15 days before (postseismic/coseismic anomaly) the first appearance of TAs;
- Spatial window: within a distance D ≤ R from whatever TAs belonging to the considered SSTA. The distance D is defined under the conditions of 150 km ≤ R ≤ 100.43M, the upper limit being the Dobrovolsky radius (in km) [75], corresponding to an earthquake of magnitude M.
- (a)
- The non-casual correlation, found in the ‘ALL’ case, confirms those models (e.g., [20]), suggesting the possible appearance of thermal anomalies both before and/or after seismic events;
- (b)
- The non-casual correlation, found in the ‘PRE’ case, confirms, instead, the predictive capability of the considered parameter;
- (c)
- The gain factor seems to be greater for higher (and rarer) magnitude class events, reinforcing the idea that the correlation is driven by physical relations and not just by the high number of events.
- The greatest number of SSTAs are located along with the East Anatolian Fault system (32%), with about 80% of earthquake-related ones (i.e., 20% of false positives);
- The Isparta Angle and the North Anatolian Fault system register 15% and 14% of the total identified SSTAs, respectively; 80% of successes (i.e., 20% of false positives) are associated with the former, about 75% of successes (i.e., 25% of false positives) with the latter;
- SSTAs in the correspondence of the Hellenic Arc represent about 10% of all identified sequences. All such SSTAs are related to seismic events (100% of success, zero false positives);
- 9% of SSTAs are in correspondence with the Caucasus Thrust Belt, where 80% are earthquake-related (i.e., 20% of false positives), and 8% of SSTAs are along the Dead Sea Fault Zone (about 40% of the success rate);
- A small number of SSTAs are located over the Middle Caspian Region-Kazakhstan fault (4%), the Cyprian Arc (3%), and the Tuzgölü Fault region (2%). The success rate is about 30%, 75%, and 65%, respectively.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bormann, P. From Earthquake Prediction Research to Time-Variable Seismic Hazard Assessment. Applications. Pure Appl. Geophys. 2011, 168, 329–366. [Google Scholar] [CrossRef]
- Vanneste, K.; Stein, S.; Camelbeeck, T.; Vleminckx, B. Insights into earthquake hazard map performance from shaking history simulations. Sci. Rep. 2018, 8, 1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albarello, D. State of the art on short-term earthquake forecasting and preparation in Italy: A preface. Boll. Geofis. Teor. Appl. 2015, 56, 71–82. [Google Scholar] [CrossRef]
- Isikara, A.M.; Vogel, A. A Multidisciplinary Approach to Earthquake Prediction. Review of the Interdisciplinary Conference on Earthquake Prediction Research in the North Anatolian Fault Zone. Dev. Solid Earth Geophys. 1983, 15, 41. [Google Scholar] [CrossRef]
- Eftaxias, K. Footprints of non-extensive Tsallis statistics, self-affinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission. Phys. A Stat. Mech. Appl. 2010, 389, 133–140. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Geophysical Monograph Series; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2018; 365p. [Google Scholar]
- Yuce, G.; Ugurluoglu, D.Y.; Adar, N.; Yalcin, T.; Yaltirak, C.; Streil, T.; Oeser, V. Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey). Appl. Geochem. 2010, 25, 572–579. [Google Scholar] [CrossRef]
- Jing, F.; Shen, X.H.; Kang, C.L.; Xiong, P. Variations of multi-parameter observations in atmosphere related to earthquake. Nat. Hazards Earth Syst. Sci. 2013, 13, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Venkatanathan, N.; Yang, Y.C.; Lyu, J. Observation of abnormal thermal and infrasound signals prior to the earthquakes: A study on Bonin Island earthquake M7.8 (May 30, 2015). Environ. Earth Sci. 2017, 76, 228. [Google Scholar] [CrossRef]
- Chetia, T.; Sharma, G.; Dey, C.; Raju, P.L.N. Multi-Parametric Approach for Earthquake Precursor Detection in Assam Valley (Eastern Himalaya, India) using Satellite and Ground Observation Data. Geotectonics 2020, 54, 83–96. [Google Scholar] [CrossRef]
- Genzano, N.; Filizzola, C.; Hattori, K.; Pergola, N.; Tramutoli, V. Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005–2015). J. Geophys. Res. Solid Earth 2021, 126, e2020JB020108. [Google Scholar] [CrossRef]
- Shebalin, P.N.; Narteau, C.; Zechar, J.; Holschneider, M. Combining earthquake forecasts using differential probability gains. Earth Planets Space 2014, 66, 37. [Google Scholar] [CrossRef] [Green Version]
- Genzano, N.; Filizzola, C.; Lisi, M.; Pergola, N.; Tramutoli, V. Toward the development of a multi parametric system for a short-term assessment of the seismic hazard in Italy. Ann. Geophys 2020, 63, PA550. [Google Scholar] [CrossRef]
- Wyss, M. Evaluation of Proposed Earthquake Precursors; AGU: Washington, DC, USA, 1991; Volume 32. [Google Scholar]
- Ingebritsen, S.; Manga, M. Hydrogeochemical precursors. Nat. Geosci. 2014, 7, 697–698. [Google Scholar] [CrossRef]
- Woith, H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015, 224, 611–627. [Google Scholar] [CrossRef]
- Tramutoli, V.; Corrado, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Pergola, N. From visual comparison to Robust Satellite Techniques: 30 years of thermal infrared satellite data analyses for the study of earthquake preparation phases. Boll. Geofis. Teor. Appl. 2015, 56, 167–202. [Google Scholar] [CrossRef]
- Tronin, A.A. Satellite thermal survey—A new tool for the study of seismoactive regions. Int. J. Remote Sens. 1996, 17, 1439–1455. [Google Scholar] [CrossRef]
- Qiang, Z.; Xu, X.; Dian, C. Case 27 thermal infrared anomaly precursor of impending earthquakes. Pure Appl. Geophys. 1997, 149, 159–171. [Google Scholar] [CrossRef]
- Tramutoli, V.; Aliano, C.; Corrado, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Martinelli, G.; Pergola, N. On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST). Chem. Geol. 2013, 339, 157–168. [Google Scholar] [CrossRef]
- Freund, F.T. Pre-earthquake signals—Part I: Deviatoric stresses turn rocks into a source of electric currents. Nat. Hazards Earth Syst. Sci. 2007, 7, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S.A.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Irwin, W.P.; Barnes, I. Tectonic relations of carbon dioxide discharges and earthquakes. J. Geophys. Res. 1980, 85, 3115–3121. [Google Scholar] [CrossRef]
- Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake prediction: A physical basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Genzano, N.; Aliano, C.; Corrado, R.; Filizzola, C.; Lisi, M.; Mazzeo, G.; Paciello, R.; Pergola, N.; Tramutoli, V. RST analysis of MSG-SEVIRI TIR radiances at the time of the Abruzzo 6 April 2009 earthquake. Nat. Hazards Earth Syst. Sci. 2009, 9, 2073–2084. [Google Scholar] [CrossRef]
- Lisi, M.; Filizzola, C.; Genzano, N.; Grimaldi, C.S.L.; Lacava, T.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V. A study on the Abruzzo 6 April 2009 earthquake by applying the RST approach to 15 years of AVHRR TIR observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 395–406. [Google Scholar] [CrossRef]
- Pergola, N.; Aliano, C.; Coviello, I.; Filizzola, C.; Genzano, N.; Lacava, T.; Lisi, M.; Mazzeo, G.; Tramutoli, V. Using RST approach and EOS-MODIS radiances for monitoring seismically active regions: A study on the 6 April 2009 Abruzzo earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 239–249. [Google Scholar] [CrossRef]
- Barka, A. The 17th August 1999 Izmit Earthquake. Science 1999, 285, 1858–1859. [Google Scholar] [CrossRef]
- Lucente, F.P.; Gori, P.D.; Margheriti, L.; Piccinini, D.; Bona, M.D.; Chiarabba, C.; Agostinetti, N.P. Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L’Aquila earthquake, Italy. Geology 2010, 38, 1015–1018. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust AVHRR Techniques (RAT) for Environmental Monitoring: Theory and Applications; Zilioli, E., Ed.; Society of Photo Optical: Bellingham, WA, USA, 1998; Volume 3496, pp. 101–113. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust satellite techniques (RST) for natural and environmental hazards monitoring and mitigation: Theory and applications. In Proceedings of the International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007. [Google Scholar] [CrossRef]
- Tramutoli, V.; Di Bello, G.; Pergola, N.; Piscitelli, S. Robust satellite techniques for remote sensing of seismically active areas. Ann. Geofis. 2001, 44, 295–312. [Google Scholar] [CrossRef]
- Di Bello, G.; Filizzola, C.; Lacava, T.; Marchese, F.; Pergola, N.; Pietrapertosa, C.; Piscitelli, S.; Scaffidi, I.; Valerio, T. Robust satellite techniques for volcanic and seismic hazards monitoring. Ann. Geophys. 2004, 47, 49–64. [Google Scholar] [CrossRef]
- Filizzola, C.; Pergola, N.; Pietrapertosa, C.; Tramutoli, V. Robust satellite techniques for seismically active areas monitoring: A sensitivity analysis on September 7, 1999 Athens’s earthquake. Phys. Chem. Earth 2004, 29, 517–527. [Google Scholar] [CrossRef]
- Eneva, M.D.; Adams, N.; Wechsler, Y.; Ben-Zion, Y.; Dor, O. Thermal Properties of Faults in Southern California from Remote Sensing Data; Report Sponsored by NASA under Contract to SAIC No. NNH05CC13C; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2008; p. 70. [Google Scholar]
- Halle, W.; Oertel, D.; Schlotzhauer, G.; Zhukov, B. Early Warning of Earthquakes by Space-Borne Infrared Sensors [Erdbebenfrüherkennung mit InfraRot Sensoren aus dem Weltraum]; Institut für Robotik und Mechatronik Optische Informationssysteme: Berlin, Germany, 2008; pp. 1–106. [Google Scholar]
- Li, J.; Wu, L.; Dong, Y.; Liu, S.; Yang, X. An quantitative model for tectonic activity analysis and earthquake magnitude predication based on thermal infrared anomaly. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Barcelona, Spain, 23–28 July 2007; pp. 3039–3042. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. A comparison of classical and intelligent methods to detect potential thermal anomalies before the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4). Nat. Hazards Earth Syst. Sci. 2013, 13, 1077–1083. [Google Scholar] [CrossRef]
- Xiong, P.; Gu, X.F.; Bi, Y.X.; Shen, X.H.; Meng, Q.Y.; Zhao, L.M.; Kang, C.L.; Chen, L.Z.; Jing, F.; Yao, N.; et al. Detecting seismic IR anomalies in bi-angular Advanced Along-Track Scanning Radiometer data. Nat. Hazards Earth Syst. Sci. 2013, 13, 2065–2074. [Google Scholar] [CrossRef] [Green Version]
- Xiong, P.; Shen, X.; Gu, X.; Meng, Q.; Zhao, L.; Zhao, Y.; Li, Y.; Dong, J. Seismic infrared anomalies detection in the case of the Wenchuan earthquake using bi-angular advanced along-track scanning radiometer data. Ann. Geophys. 2015, 58, S0217. [Google Scholar] [CrossRef]
- Bellaoui, M.; Hassini, A.; Bouchouicha, K. Pre-seismic anomalies in remotely sensed land surface temperature measurements: The case study of 2003 Boumerdes earthquake. Adv. Space Res. 2017, 59, 2645–2657. [Google Scholar] [CrossRef]
- Khalili, M.; Panah, S.K.A.; Eskandar, S.S.A. Using Robust Satellite Technique (RST) to determine thermal anomalies before a strong earthquake: A case study of the Saravan earthquake (April 16th, 2013, MW = 7.8, Iran). J. Asian Earth Sci. 2019, 173, 70–78. [Google Scholar] [CrossRef]
- Kouli, M.; Peleli, S.; Saltas, V.; Makris, J.; Vallianatos, F. Robust Satellite Techniques for mapping thermal anomalies possibly related to seismic activity of March 2021, Thessaly Earthquakes. BGSG 2021, 58, 105–130. [Google Scholar] [CrossRef]
- Mukhopadhyay, U.K.; Sharma, R.N.K.; Anwar, S.; Dutta, A.D. Earthquakes and Thermal Anomalies in a Remote Sensing Perspective. In Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges. Studies in Big Data; Hassanien, A.E., Darwish, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 77. [Google Scholar] [CrossRef]
- Aliano, C.; Corrado, R.; Filizzola, C.; Genzano, N.; Pergola, N.; Tramutoli, V. TIR Satellite Techniques for monitoring Earthquake active regions: Limits, main achievements and perspectives. Ann. Geophys. 2008, 51, 303–317. [Google Scholar] [CrossRef]
- Aliano, C.; Corrado, R.; Filizzola, C.; Pergola, N.; Tramutoli, V. Robust Satellite Techniques (RST) for Seismically Active Areas Monitoring: The Case of 21st May, 2003 Boumerdes/Thenia (Algeria) Earthquake. In Proceedings of the 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007. [Google Scholar] [CrossRef] [Green Version]
- Genzano, N.; Aliano, C.; Filizzola, C.; Pergola, N.; Tramutoli, V. A robust satellite technique for monitoring seismically active areas: The case of Bhuj-Gujarat earthquake. Tectonophysics 2007, 431, 197–210. [Google Scholar] [CrossRef]
- Eleftheriou, A.; Filizzola, C.; Genzano, N.; Lacava, T.; Lisi, M.; Paciello, R.; Pergola, N.; Vallianatos, F.; Tramutoli, V. Long-Term RST Analysis of Anomalous TIR Sequences in Relation with earthquakes occurred in Greece in the Period 2004–2013. Pure Appl. Geophys. 2016, 173, 285–303. [Google Scholar] [CrossRef] [Green Version]
- Aliano, C.; Corrado, R.; Filizzola, C.; Genzano, N.; Pergola, N.; Tramutoli, V. Robust satellite techniques (RST) for the thermal monitoring of earthquake prone areas: The case of Umbria-Marche October, 1997 seismic events. Ann. Geophys. 2008, 51, 451–459. [Google Scholar] [CrossRef]
- Pergola, N.; D’angelo, G.; Lisi, M.; Marchese, F.; Mazzeo, G.; Tramutoli, V. Time domain analysis of Robust Satellite Techniques (RST) for near real-time monitoring of active volcanoes and thermal precursor identification. Phys. Chem. Earth 2009, 34, 380–385. [Google Scholar] [CrossRef]
- Bonfanti, P.; Genzano, N.; Heinicke, J.; Italiano, F.; Martinelli, G.; Pergola, N.; Telesca, L.; Tramutoli, V. Evidences of CO2-gas emission variations in Central Apennines (Italy) during the L’Aquila seismic sequence (March–April 2009). Boll. Geof. Teor. Appl. 2012, 53, 147–168. [Google Scholar] [CrossRef]
- Tramutoli, V.; Corrado, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N. One year of RST based satellite thermal monitoring over two Italian seismic areas. Boll. Geofis. Teor. Appl. 2015, 56, 275–294. [Google Scholar] [CrossRef]
- Genzano, N.; Filizzola, C.; Paciello, R.; Pergola, N.; Tramutoli, V. Robust Satellite Techniques (RST) for monitoring earthquake prone areas by satellite TIR observations: The case of 1999 Chi-Chi earthquake (Taiwan). J. Asian Earth Sci. 2015, 114, 289–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Q. A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area using MODIS LST data. Nat. Hazards Earth Syst. Sci. 2019, 19, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Corrado, R.; Caputo, R.; Filizzola, C.; Pergola, N.; Pietrapertosa, C.; Tramutoli, V. Seismically active area monitoring by robust TIR satellite techniques: A sensitivity analysis on low magnitude earthquakes in Greece and Turkey. Nat. Hazards Earth Syst. Sci. 2005, 5, 101–108. [Google Scholar] [CrossRef]
- Tramutoli, V.; Jakowski, N.; Pulinets, S.; Romanov, A.; Filizzola, C.; Shagimuratov, I.; Pergola, N.; Ouzounov, D.; Papadopulos, G.; Genzano, N.; et al. From PRE-EARTQUAKES to EQUOS: How to exploit multi-parametric observations within a novel system for Time-Dependent Assessment of Seismic Hazard (T-DASH) in a pre-operational Civil Protection context. In Proceedings of the Second European Conference on Earthquake Engineering and Seismology (2ECEES), Instanbul, Turkey, 24–29 August 2014; Abstract Number 3141. Available online: http://www.eaee.org/Media/Default/2ECCES/2ecces_esc/3141.pdf (accessed on 1 November 2021).
- Taymaz, T.; Yilmaz, Y.; Dilek, Y. The geodynamics of the Aegean and Anatolia: Introduction. Geol. Soc. Spec. Publ. 2007, 291, 1–16. [Google Scholar] [CrossRef]
- Tsapanos, T.M.; Burton, P.W. Seismic hazard evaluation for specific seismic regions of the world. Tectonophysics 1991, 194, 153–169. [Google Scholar] [CrossRef]
- McKenzie, D. Active Tectonics of the Mediterranean Region. Geophys. J. Int 1972, 30, 109–185. [Google Scholar] [CrossRef] [Green Version]
- Dewey, J.F.; Pitman, W.C.; Ryan, W.B.F.; Bonnin, J. Plate tectonics and the evolution of the Alpine System. Geol. Soc. Am. Bull. 1973, 84, 3137–3180. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Şaroğlu, F.; Olgun, Ş.; Elmacı, H.; Çan, T. Active fault database of Turkey. Bull. Earthquake Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Şengör, A.M.C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 1979, 279, 590–593. [Google Scholar] [CrossRef]
- Şengör, A.M.C. The North Anatolian transform fault: Its age, offset and tectonic significance. J. Geol. Soc. 1979, 136, 269–282. [Google Scholar] [CrossRef]
- Bozkurt, E. Neotectonics of Turkey—A synthesis. Geodin. Acta 2001, 14, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Active Faults of Eurasia (and Adjacent seas) Database, AFEAD. Available online: http://neotec.ginras.ru/index/english/database_eng.html (accessed on 1 November 2021).
- Bachmanov, D.M.; Kozhurin, A.I.; Trifonov, V.G. The Active Faults of Eurasia Database. Geodyn. Tectonophys. 2017, 8, 711–736. [Google Scholar] [CrossRef] [Green Version]
- Zelenin, E.; Bachmanov, D.; Garipova, S.; Trifonov, V.; Kozhurin, A. The Database of the Active Faults of Eurasia (AFEAD): Ontology and Design behind the Continental-Scale Dataset. Earth Syst. Sci. Data Discuss. 2021. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org (accessed on 1 November 2021).
- Planet OpenStreetMap. Available online: https://planet.openstreetmap.org (accessed on 1 November 2021).
- USGS Search Earthquake Catalog. Available online: http://earthquake.usgs.gov/earthquakes/search/ (accessed on 1 November 2021).
- Michael, A.J. Testing prediction methods: Earthquake clustering versus the Poisson model. Geophys. Res. Lett. 1997, 24, 1891–1894. [Google Scholar] [CrossRef]
- Tramutoli, V.; Filizzola, C.; Genzano, N.; Lisi, M. Robust Satellite Techniques for detecting pre-seismic thermal anomalies. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; Geophysical Monograph Series; AGU Publications: Washington, DC, USA, 2018; pp. 234–258. [Google Scholar] [CrossRef]
- Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C.; Tramutoli, V. A self-sufficient approach for GERB cloudy radiance detection. Atmos. Res. 2004, 72, 39–56. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Molchan, G.M. Earthquake prediction as a decision-making problem. Pure Appl. Geophys. 1997, 149, 233–247. [Google Scholar] [CrossRef]
- Aki, K. Ideal probabilistic earthquake prediction. Tectonophysics 1989, 169, 197–198. [Google Scholar] [CrossRef]
- Kossobokov, V.G. Testing earthquake prediction methods: The West Pacific short-term forecast of earthquakes with magnitude MwHRV = 5.8. Tectonophysics 2006, 413, 25–31. [Google Scholar] [CrossRef]
- Tamburello, G.; Pondrelli, S.; Chiodini, G.; Rouwet, D. Global-scale control of extensional tectonics on CO2 Earth degassing. Nat. Commun. 2018, 9, 4608. [Google Scholar] [CrossRef] [PubMed]
- Mojarab, M.; Memarian, H.; Zare, M. Performance evaluation of the M8 algorithm to predict M7+ earthquakes in Turkey. Arab. J. Geosci. 2014, 8, 5921–5934. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filizzola, C.; Corrado, A.; Genzano, N.; Lisi, M.; Pergola, N.; Colonna, R.; Tramutoli, V. RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sens. 2022, 14, 381. https://doi.org/10.3390/rs14020381
Filizzola C, Corrado A, Genzano N, Lisi M, Pergola N, Colonna R, Tramutoli V. RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sensing. 2022; 14(2):381. https://doi.org/10.3390/rs14020381
Chicago/Turabian StyleFilizzola, Carolina, Angelo Corrado, Nicola Genzano, Mariano Lisi, Nicola Pergola, Roberto Colonna, and Valerio Tramutoli. 2022. "RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015" Remote Sensing 14, no. 2: 381. https://doi.org/10.3390/rs14020381
APA StyleFilizzola, C., Corrado, A., Genzano, N., Lisi, M., Pergola, N., Colonna, R., & Tramutoli, V. (2022). RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sensing, 14(2), 381. https://doi.org/10.3390/rs14020381