Spatiotemporal Dynamics of Ecological Security Pattern of Urban Agglomerations in Yangtze River Delta Based on LUCC Simulation
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
3. Methodology
3.1. Land-Use Classification
3.2. LUCC Simulation
3.2.1. Land-Use Transfer Matrix
3.2.2. Land-Use Image Prediction
3.2.3. Scene Modeling
3.3. Comprehensive Evaluation Model
3.3.1. Index System
Grassland area + 5971781.53 × Water area
× Water area + 0.2 × Built-up land + 0.3 × No use)/total area
3.3.2. Entropy Weight TOPSIS Model
3.4. Spatial Autocorrelation Analysis
4. Results
4.1. LUCC Simulation
4.1.1. ND Scenarios
4.1.2. US Scenario
4.1.3. EP Scenario
4.2. ES Pattern
4.3. Spatial Autocorrelation Analysis
4.4. Scenario Simulation of ES Pattern
5. Discussion
5.1. Ecosystem Model of Urban Agglomerations in the YRD
5.2. Pattern Optimization of ES Pattern
5.3. Comparison with Other Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sorek-Hamer, M.; Chatfield, R.; Liu, Y. Review: Strategies for using satellite-based products in modeling PM2.5 and short-term pollution episodes. Environ. Int. 2020, 144, 106057. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.; Ghauri, B.M.; Qureshi, M.A. Estimation of Ground Level PM2.5 by using MODIS Satellite data. In Proceedings of the 2019 Sixth International Conference on Aerospace Science and Engineering (ICASE), Islamabad, Pakistan, 12–14 November 2019; pp. 1–5. [Google Scholar]
- Feng, H.; Li, J.; Feng, H.; Ning, E.; Wang, Q. A high-resolution index suitable for multi-pollutant monitoring in urban areas. Sci. Total Environ. 2021, 772, 145428. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Luo, Z.; Chen, Z.; Yu, G.; Duan, W.; Liu, L.; Li, F.; Wu, K. Study on Ultraviolet Imaging Remote Sensing Monitoring Technology for SO2Gas Emission. Spectrosc. Spectr. Anal. 2020, 40, 1289–1296. [Google Scholar] [CrossRef]
- Mak, H.; Joshua, L.; Fung, J.; Zhu, Q.; Cohen, R. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Wang, H. Research on Ecological Environment Changes Based on Remote Sensing Monitoring Perspective. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 621, p. 012136. [Google Scholar]
- Zhou, Y.; Liu, N.; Yu, R. Analysis of remote sensing monitoring methods for construction land at home and abroad. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 783, p. 012127. [Google Scholar] [CrossRef]
- Qiu, L.; Pan, Y.; Zhu, J.; Amable, G.S.; Xu, B. Integrated analysis of urbanization-triggered land use change trajectory and implications for ecological land management: A case study in Fuyang, China. Sci. Total Environ. 2019, 660, 209–217. [Google Scholar] [CrossRef]
- Li, Z.-T.; Yuan, M.-J.; Hu, M.-M.; Wang, Y.-F.; Xia, B.-C. Evaluation of ecological security and influencing factors analysis based on robustness analysis and the BP-DEMALTE model: A case study of the Pearl River Delta urban agglomeration. Ecol. Indic. 2019, 101, 595–602. [Google Scholar] [CrossRef]
- Ezeonu, I.C.; Ezeonu, F.C. The environment and global security. Environmentalist 2000, 20, 41–48. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Hao, Y.; Coscieme, L.; Zhang, J.; Jiang, N.; Casazza, M.; Giannetti, B.F. Quantitative analysis of the dynamic changes of ecological security in the provinces of China through emergy-ecological footprint hybrid indicators. J. Clean. Prod. 2018, 184, 678–695. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China. Ecol. Indic. 2020, 119, 106841. [Google Scholar] [CrossRef]
- Li, Z.-T.; Hu, M.-M.; Li, M.; Jiao, M.-Y.; Xia, B.-C. Identification and countermeasures of limiting factors of regional sustainable development: A case study in the Pearl River Delta of China. Environ. Dev. Sustain. 2019, 22, 4209–4224. [Google Scholar] [CrossRef]
- Dai, X.; Gao, Y.; He, X.; Liu, T.; Jiang, B.; Shao, H.; Yao, Y. Spatial-temporal pattern evolution and driving force analysis of ecological environment vulnerability in Panzhihua City. Environ. Sci. Pollut. Res. 2021, 28, 7151–7166. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Fang, C. Evolution process and obstacle factors of ecological security in western China, a case study of Qinghai province. Ecol. Indic. 2020, 117, 106659. [Google Scholar] [CrossRef]
- Lu, S.S.; Qin, F.; Chen, N.; Yu, Z.Y.; Xiao, Y.M.; Cheng, X.Q.; Guan, X.L. Spatiotemporal differences in forest ecological security warning values in Beijing: Using an integrated evaluation index system and system dynamics model. Ecol. Indic. 2019, 104, 549–558. [Google Scholar] [CrossRef]
- Hu, G.; Zeng, W.; Yao, R.; Xie, Y.; Liang, S. An integrated assessment system for the carrying capacity of the water environment based on system dynamics. J. Environ. Manag. 2021, 295, 113045. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; He, Q.; Liu, Y. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach—A Case Study for the City of Wuhan in China. Int. J. Environ. Res. Public Health 2017, 14, 643. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wei, M.; Zeng, J. Simulating Urban Growth Scenarios Based on Ecological Security Pattern: A Case Study in Quanzhou, China. Int. J. Environ. Res. Public Health 2020, 17, 7282. [Google Scholar] [CrossRef]
- Gao, J.; Du, F.; Zuo, L.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Jin, X.; Wei, L.; Wang, Y.; Lu, Y. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2021, 23, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Wang, S.; Bai, X.; Zhou, D.; Luo, G.; Yang, Y.; Hu, Z.; Li, C.; Deng, Y.; Lu, Q. Ecological security and health risk assessment of soil heavy metals on a village-level scale, based on different land use types. Environ. Geochem. Health 2020, 42, 3393–3413. [Google Scholar] [CrossRef]
- Chu, X.; Deng, X.; Jin, G.; Wang, Z.; Li, Z. Ecological security assessment based on ecological footprint approach in Beijing-Tianjin-Hebei region, China. Phys. Chem. Earth 2017, 101, 43–51. [Google Scholar] [CrossRef]
- Wen, J.; Hou, K.; Li, H.; Zhang, Y.; He, D.; Mei, R. Study on the spatial-temporal differences and evolution of ecological security in the typical area of the Loess Plateau. Environ. Sci. Pollut. Res. 2021, 28, 23521–23533. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhou, Q.; Jiao, J.-L. Evaluating water ecological achievements of leading cadres in Anhui, China: Based on water resources balance sheet and pressure-state-response model. J. Clean. Prod. 2020, 269, 122284. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, J. Simulation of Land Use Pattern Evolution from a Multi-Scenario Perspective: A Case Study of Suzhou City in Anhui Province, China. Int. J. Environ. Res. Public Health 2021, 18, 921. [Google Scholar] [CrossRef]
- Wang, H.; Bao, C. Scenario modeling of ecological security index using system dynamics in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2021, 125, 107613. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Deng, Y.; Liu, Y.; Wu, Z.; Chen, Z. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecol. Indic. 2020, 117, 106671. [Google Scholar] [CrossRef]
- Pei, X.; Zhao, D. A GIS-SD-based spatio-temporal modelling and regulating policies on water pollution in Dalian gulf. J. Remote Sens. 2000, 4, 118–124. [Google Scholar]
- Xu, Q.; Wang, Q.; Liu, J.; Liang, H. Simulation of Land-Use Changes Using the Partitioned ANN-CA Model and Considering the Influence of Land-Use Change Frequency. ISPRS Int. J. Geo-Inf. 2021, 10, 346. [Google Scholar] [CrossRef]
- Din, S.U.; Mak, H.W.L. Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sens. 2021, 13, 3337. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Chen, R.; Zheng, X. Simulating land use change by integrating landscape metrics into ANN-CA in a new way. Front. Earth Sci. 2016, 10, 245–252. [Google Scholar] [CrossRef]
- Hyandye, C.; Martz, L.W. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int. J. Remote Sens. 2017, 38, 64–81. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.-Q.; Lv, L.-N. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol. Model. 2012, 233, 11–19. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Tong, X. Comparison of metaheuristic cellular automata models: A case study of dynamic land use simulation in the Yangtze River Delta. Comput. Environ. Urban Syst. 2018, 70, 138–150. [Google Scholar] [CrossRef]
- Cui, W.; Cai, L.; Xi, H.; Yang, F.; Chen, M. Ecological seurity asessment and muli-scenario simulation analysis of Zhejiang Greater Bay Area based on LUCC. Acta Eoologica Sin. 2022, 42, 1–13. [Google Scholar]
- Jiao, M.; Wang, Y.; Hu, M.; Xia, B. Spatial deconstruction and differentiation analysis of early warning for ecological security in the Pearl River Delta, China. Sustain. Cities Soc. 2021, 64, 102557. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Gul, H.N.; Li, D. Simulation and optimization of land use pattern to embed ecological suitability in an oasis region: A case study of Ganzhou district, Gansu province, China. J. Environ. Manag. 2021, 287, 112321. [Google Scholar] [CrossRef]
- Sun, S.; Xiao, Y.; Guo, L. The study on the spatial-temporal changes of land use pattern in eastern Sichuan basin based on RS/GIS. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 113, p. 012220. [Google Scholar] [CrossRef]
- Li, Z.-T.; Li, M.; Xia, B.-C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Li, W.; Yi, P.; Zhang, D. Sustainability Evaluation of Cities in Northeastern China Using Dynamic TOPSIS-Entropy Methods. Sustainability 2018, 10, 4542. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Tong, L.; Liu, D. An Empirical Study of the Measurement of Spatial-Temporal Patterns and Obstacles in the Green Development of Northeast China. Sustainability 2020, 12, 10190. [Google Scholar] [CrossRef]
- Peng, C.; Li, B.; Nan, B. An analysis framework for the ecological security of urban agglomeration: A case study of the Beijing-Tianjin-Hebei urban agglomeration. J. Clean. Prod. 2021, 315, 128111. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, D.; Zhang, L.; Zhu, S. Marine functional zoning: A practical approach for integrated coastal management (ICM) in Xiamen. Ocean Coast. Manag. 2021, 207, 104433. [Google Scholar] [CrossRef]
- Politi, V. To the issue of the environmental development of housing construction in the integrated land use management. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 33, p. 03017. [Google Scholar] [CrossRef]
- Chi, Y.; Mak, H. From Comparative and Statistical Assessments of Liveability and Health Conditions of Districts in Hong Kong towards Future City Development. Sustainability 2021, 13, 8781. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, W.; Zhang, J.; Li, M.; Zhu, Q. Zhang Mismatches in Suppliers’ and Demanders’ Cognition, Willingness and Behavior with Respect to Ecological Protection of Cultivated Land: Evidence from Caidian District, Wuhan, China. Int. J. Environ. Res. Public Health 2020, 17, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Zhang, H.; Chen, X.; Huang, G.; Ye, Y.; Wu, Q.; Huang, N.; Kuang, Y. The ecological security patterns and construc-tion land expansion simu-lation in Gaoming. Acta Ecol. Sin. 2013, 33, 1524–1534. [Google Scholar] [CrossRef]
Data Type | Spatial Resolution (m) | Origin | Accessed date |
---|---|---|---|
Landsat8 OLI | 30 | Geospatial data cloud (http://www.gscloud.cn) | October 2015 |
Landsat5 TM | 30 | Geospatial data cloud (http://www.gscloud.cn) | June 2005; October 2010 |
MODIS13Q1 | 250 | NASA (https://www.nasa.gov/) | 2005, 2010, 2015; |
Soil data | 1000 | Qinghai Tibet Plateau scientific data center (https://data.tpdc.ac.cn) | 2009 |
DEM data | 90 | Geospatial data cloud (http://www.gscloud.cn) | 2015 |
Expressway data | / | Geographic information professional knowledge service system (http://kmap.ckcest.cn) | 2015 |
Railway data | / | Geographic information professional knowledge service system (http://kmap.ckcest.cn) | 2015 |
GDP density data | 1000 | The resource and environmental science and data center of Chinese Academy of Sciences (http://www.resdc.cn/) | 2005, 2010 and 2015 |
Population density data | 1000 | The resource and environmental science and data center of Chinese Academy of Sciences (http://www.resdc.cn/) | 2005, 2010 and 2015 |
Rainfall data | 1000 | Qinghai Tibet Plateau scientific data center (https://data.tpdc.ac.cn) | Daily data for 2005, 2010 and 2015 |
Planning data | / | Development planning of urban agglomeration in the YED |
Scenarios | Land-Use Types | Agricultural | Forest | Grassland | Water | Built-Up Land | No Use |
---|---|---|---|---|---|---|---|
ND | Agricultural | 0.8784 | 0.0031 | 0.0010 | 0.0013 | 0.1163 | 0 |
Forest | 0.0041 | 0.9785 | 0.0002 | 0.0030 | 0.0141 | 0 | |
Grassland | 0.0205 | 0.0016 | 0.4944 | 0.0101 | 0.4732 | 0.0003 | |
Water | 0.0073 | 0.0039 | 0.0144 | 0.9674 | 0.0066 | 0.0005 | |
Built-up land | 0.0332 | 0.0014 | 0.0015 | 0.0008 | 0.9631 | 0 | |
No use | 0.0014 | 0 | 0.0063 | 0.0017 | 0.1144 | 0.8761 | |
US | Agricultural | 0.8584 | / | / | / | 0.1363 | / |
Forest | / | 0.9585 | / | / | 0.0341 | / | |
EP | Agricultural | 0.8984 | / | / | / | 0.0963 | / |
Forest | / | 0.9815 | / | / | 0.0111 | / |
Project Layer | Index Layer | Objective Weight |
---|---|---|
Pressure | Population density | 0.12 |
State | NDVI | 0.13 |
Patch density | 0.10 | |
ESV | 0.14 | |
Soil erosion | 0.12 | |
Habitat quality | 0.12 | |
Slope | 0.12 | |
Response | Ecological control area | 0.15 |
Unsafety | Relative Unsafety | General Safety | Relative Safety | Safety |
---|---|---|---|---|
<0.5824 | 0.5824–0.6814 | 0.6814–0.7514 | 0.7514–0.8319 | >0.8319 |
Index | 2005 | 2010 | 2015 |
---|---|---|---|
p-value | 0.01 | 0.01 | 0.01 |
z-scores | 1205 | 1156 | 1200 |
City | Unsafety and Relative Unsafety | Safety and Relative Safety | ||||
---|---|---|---|---|---|---|
ND | US | EP | ND | US | EP | |
Shanghai | 99.47 | 99.47 | 99.44 | 0.23 | 0.21 | 0.23 |
Nanjing | 6.28 | 6.72 | 6.68 | 50.84 | 48.15 | 50.03 |
Wuxi | 49.02 | 50.11 | 49.94 | 12.52 | 11.82 | 12.18 |
Changzhou | 46.29 | 48.23 | 46.74 | 1.66 | 1.53 | 1.77 |
Suzhou | 51.27 | 52.97 | 52.46 | 7.95 | 6.80 | 8.02 |
Nantong | 8.71 | 9.01 | 7.71 | 3.88 | 3.81 | 4.69 |
Yangzhou | 10.38 | 10.72 | 10.07 | 27.51 | 27.21 | 27.77 |
Zhenjiang | 5.52 | 5.67 | 5.73 | 58.92 | 56.54 | 57.59 |
Taizhou | 11.92 | 11.84 | 12.97 | 6.68 | 6.49 | 5.25 |
Hangzhou | 12.36 | 13.30 | 12.32 | 65.19 | 64.11 | 65.77 |
Ningbo | 0.04 | 0.05 | 0.03 | 95.30 | 99.95 | 94.90 |
Jiaxing | 1.46 | 1.53 | 1.64 | 53.94 | 49.84 | 53.43 |
Huzhou | 0.16 | 0.17 | 0.15 | 96.15 | 95.24 | 96.41 |
Shaoxing | 0.12 | 0.14 | 0.12 | 97.67 | 96.82 | 97.45 |
Taizhou | 0.02 | 0.02 | 0.01 | 98.93 | 98.99 | 99.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Shao, H.; Li, X.; Xian, W.; Shao, Q.; Yin, Z.; Lai, F.; Qi, J. Spatiotemporal Dynamics of Ecological Security Pattern of Urban Agglomerations in Yangtze River Delta Based on LUCC Simulation. Remote Sens. 2022, 14, 296. https://doi.org/10.3390/rs14020296
Zhang S, Shao H, Li X, Xian W, Shao Q, Yin Z, Lai F, Qi J. Spatiotemporal Dynamics of Ecological Security Pattern of Urban Agglomerations in Yangtze River Delta Based on LUCC Simulation. Remote Sensing. 2022; 14(2):296. https://doi.org/10.3390/rs14020296
Chicago/Turabian StyleZhang, Shiyao, Huaiyong Shao, Xiaoqin Li, Wei Xian, Qiufang Shao, Ziqiang Yin, Fang Lai, and Jiaguo Qi. 2022. "Spatiotemporal Dynamics of Ecological Security Pattern of Urban Agglomerations in Yangtze River Delta Based on LUCC Simulation" Remote Sensing 14, no. 2: 296. https://doi.org/10.3390/rs14020296
APA StyleZhang, S., Shao, H., Li, X., Xian, W., Shao, Q., Yin, Z., Lai, F., & Qi, J. (2022). Spatiotemporal Dynamics of Ecological Security Pattern of Urban Agglomerations in Yangtze River Delta Based on LUCC Simulation. Remote Sensing, 14(2), 296. https://doi.org/10.3390/rs14020296